
Lab Manual - DD2427 Image Based

Classification and Recognition

Babak Rasolzadeh, Josephine Sullivan

April 16, 2014

Face Detection

Real-time face detection in multi-scale images with a boosted classifiers.

In this project you will explore the machine learning method called Adaboost
by implementing it for the computer vision task of real-time face detection in
images. The final classifier/detector should be capable of detecting upright
frontal faces observed in reasonable lighting conditions.

Face detection is an important problem in image processing. It could poten-
tially be the first step in many applications – marking areas of interest for
better quality encoding for television broadcasting, content-based represen-
tation (in MPEG-4), face recognition, face tracking and gender recognition.
In fact for this latter task computer-based algorithms out-perform humans.

During the past decade, many methods and techniques have been gradually
developed and applied to solve the problem. These include vector quanti-
zation with multiple codebooks, face templates and Principal Component
Analysis (PCA). The latter technique is directly related to Eigenfaces and
Fisherfaces. Here we will develop a face detection system based on the
well-known work of Paul Viola and Michael Jones Viola and Jones [2001a].
This basically involves the interpretation of Haar-like features in a boosted
cascade, see paper on the course homepage.

1

The lab project

Getting started

Your task is to code up, from scratch, a face detector. This set of notes
guides you through the solution you should initially follow. Fairly explicit
instructions are given. To ensure the code you’ve written is correct, there are
many debugging checks set up along the way. Please use them. If you want
to follow your own design I suggest, first implement the solution described
here and then incrementally change things to your own design. In fact, this
is expected if you hope to get a high grade for the lab. It is important to note
that the implementation described here is computationally quite efficient,
however, due to the just-in-time compilation of Matlab it is slow to run on
lots of data. But it is an easily understood implementation and lends itself
to easy debugging. Also it is not hard to convert the implementation to
a more Matlab efficient one and this document will explain how to do this
once you have a version up and running.

Material to download

Training images: To get started download TrainingImages.tar.gz, the
database of face and non-face images, from the course website. Under the
directory TrainingImages you will find the images of face (FACES) and non-
face (NFACES) images.

Test images: When you have a face detector up and running, you will want
to use it to detect faces of all sizes in large images. Initially, you will perform
these tasks on the set of images contained in TestImages.tar.gz; available at
the course website.

Debugging information: Throughout this lab you will verify the cor-
rectness of your code by checking your output against previously computed
results DebugInfo.tar.gz; once again available at the course website.

Task I - Integral image and feature computation

Initially, you will write the functions to compute the Haar-like features on
which the face detector is based, see figure 2. Let I(x, y) represent the
intensity of a pixel at (x, y) and B(x, y, w, h) the sum of the pixel intensities
in a rectangular region. This rectangular region has width w and height h

2

http://www.csc.kth.se/utbildning/kth/kurser/DD2427/bik13/DownloadMaterial/TrainingImages.tar.gz
http://www.csc.kth.se/utbildning/kth/kurser/DD2427/bik13/DownloadMaterial/TestImages.tar.gz
http://www.csc.kth.se/utbildning/kth/kurser/DD2427/bik14/DownloadMaterial/FaceLab/DebugInfo.tar.gz

pixels and (x, y) are the coordinates of its top left coordinate. So formally

B(x, y, w, h) =

x+w−1∑
x′=x

y+h−1∑
y′=y

I(x′, y′) (1)

Each Haar-like feature is formed from adding and subtracting sums from

(x, y)

W

H

x

y

h

w

Figure 1: The features used are constructed from the sum of pixel intensities

within rectangular regions. In this work a rectangular region is parametrized by

the coordinates of its top left hand corner and its width and height.

different rectangular regions. So for instance features of type I and type II
respectively have the form

B(x, y, w, h)−B(x, y + h,w, h) and B(x+ w, y, w, h)−B(x, y, w, h)

These Haar-like features can be computed quickly from the image’s integral

w

h

(x, y)

h
w

h

w

(x, y)
w

h

w

(x, y)
w w

h

w
h

(x, y)

(a) Type I (b)Type II (c) Type III (d) Type IV

Figure 2: The four type of features used in the Viola &Jones system and conse-

quently this lab. The figure shows how they are parametrized by the four postive

integers (x, y, w, h). The sum of pixels in white rectangles are subtracted from those

in the black rectangles.

image. To refresh your memory, the integral image is defined as

I ′(x, y) =

y∑
y′=1

x∑
x′=1

I(x′, y′) (2)

3

Without further ado then let’s get started with the lab. As a word of advice,
you should create a separate directory (subdirectories) to contain your code.

2.1 Initial image processing

To begin you will write a function LoadImage.m. It will take as input the
filename of an image and return two arrays. The first corresponds to a
normalized version of the pixel data of the image and the second to its
integral image. This function will contain three parts.

Program 1: function [im, ii im] = LoadIm(im fname)

Read in image: The Matlab function imread can be used to do this.
Remember to cast the loaded data to double.

Image normalization: You will want your face detector to have some
invariance to illumination changes. Thus you have to normalize the pixel
values by applying this transformation to your image:

I(x, y) =
I(x, y)− µ

σ
(3)

where µ is the average intensity value of the image and σ is the standard
deviation of the pixel intensity values. (Matlab functions mean and std can
compute these values.) Note you will run into problems if σ equals zero. In
this case you can either decide not to divide by σ or add a small value to σ.

Compute the integral image: This can be done efficiently using the
Matlab function cumsum.

Sanity Check:
Is data in im normalized? Check that the average intensity of im is 0 and
that its standard deviation is 1.

Does ii im contain the correct values? For instance check that
ii im(y, x) equals sum(sum(im(1:y, 1:x))) for different values of x and y.

Debug Point: Run your function LoadImage.m on the the image face00001.bmp
from the FACES directory. The matrices you calculate should match those
in DebugInfo/debuginfo1.mat. Check this with

>> dinfo1 = load(’DebugInfo/debuginfo1.mat’);

>> eps = 1e-6;

>> s1 = sum(abs(dinfo1.im(:) - im(:)) > eps)

>> s2 = sum(abs(dinfo1.ii im(:) - ii im(:)) > eps)

4

If everything is correct then s1 and s2 should both be equal to zero. When
you display im and ii im, they should look as in figure 3.

image integral image

Figure 3: The original image and its integral image when computed from the

original image normalized.

2.2 Computation of the Haar-like features

You now have the code to load an image, normalize it and compute its inte-
gral image. The next stage is to efficiently compute the Haar-like features.
The steps required to write this code are presented here.

2.2.1 Sum of pixel values within a rectangular region

The first step is to write a function ComputeBoxSum.m that computes the
sum of the pixel values within a rectangular area using the integral image.
A rectangular region is defined by 4 numbers (x, y, w, h) as shown in
figure 1. Note this function is a short one.

Program 2: function A = ComputeBoxSum(ii im, x, y, w, h)

Use the integral image, ii im, to compute the sum of the pixel values in the
original im in the rectangular region defined by (x, y, w, h), as in equation
(1).

Sanity Check:
Compute B(x, y, w, h) using sum(sum(im(y:y+h-1, x:x+w-1))). Check your
function ComputeBoxSum(ii im, x, y, w, h) produces the same output.

The function ComputeBoxSum.m forms the basis for the evaluation of the four
features types used in this lab. And these are what you will now compute.

5

2.2.2 Feature computations

Each feature is defined by its type and four numbers (x, y, w, h). (x,y)
is the coordinate of the upper left corner of the feature. w is the width
and h is the height of the sub rectangular regions from which the feature
is constructed. So in this case type I features have total width w and total
height 2h while type IV features have total width 2w and total height 2h, see
figure 2. Your task is to write the four different functions to compute these
four different features which take the integral image and (x, y, w, h) as
input.

Program 3: function f = FeatureTypeI(ii im, x, y, w, h)

Use the integral image and the function ComputeBoxSum to compute

F1(x, y, w, h) = B(x, y, w, h)−B(x, y + h,w, h)

Sanity Check:
Compute F1(x, y, w, h) from im using the function sum and check your
function FeatureTypeI(ii im, x, y, w, h) produces the same results.

Program 4: function f = FeatureTypeII(ii im, x, y, w, h)

Use the integral image and the function ComputeBoxSum to compute
F2(x, y, w, h).

Sanity Check:
Compute F2(x, y, w, h) from im using the function sum and check your
function FeatureTypeII(ii im, x, y, w, h) produces the same results.

Program 5: function f = FeatureTypeIII(ii im, x, y, w, h)

Use the integral image and the function ComputeBoxSum to compute
F3(x, y, w, h).

Sanity Check:
Compute F3(x, y, w, h) from im using the function sum and check your
function FeatureTypeIII(ii im, x, y, w, h) produces the same results.

6

Program 6: function f = FeatureTypeIV(ii im, x, y, w, h)

Use the integral image and the function ComputeBoxSum to compute
F4(x, y, w, h).

Sanity Check:
Compute F4(x, y, w, h) from im using the function sum and check your
function FeatureTypeIV(ii im, x, y, w, h) produces the same results.

Debug Point: Using the integral image, ii im, computed from the image
face00001.bmp, check your newly written functions with the following code.
Note that you are checking the ouput of your function with values previously
calculated.

>> dinfo2 = load(’DebugInfo/debuginfo2.mat’);

>> x = dinfo2.x; y = dinfo2.y; w = dinfo2.w; h = dinfo2.h;

>> abs(dinfo2.f1 - FeatureTypeI(ii im, x, y, w, h)) > eps

>> abs(dinfo2.f2 - FeatureTypeII(ii im, x, y, w, h)) > eps

>> abs(dinfo2.f3 - FeatureTypeIII(ii im, x, y, w, h)) > eps

>> abs(dinfo2.f4 - FeatureTypeIV(ii im, x, y, w, h)) > eps

2.3 Enumerate all features

At this point you have written code to calculate each feature type of a certain
size and at a certain position. Now you have to enumerate all the different
possible position and sizes of a feature type that can be computed within the
19×19 image patch. The latter sentence means the support of the entire
feature must be included entirely within the image. Thus, for example,
features of type II can have starting positions and sizes enumerated by:

for w = 1:floor(W/2)-2

for h = 1:H-2

for x = 2:W-2*w

for y = 2:H-h

...........

Figure 4 displays a small subset of all the possible type II features. Now write
a function EnumAllFeatures.m which enumerates all the features given the
width W and height H of the image.

7

Program 7: function all ftypes = EnumAllFeatures(W, H)

Write a function that enumerates all the features. Keep a record of these
features in the matrix all ftypes. all ftypes will have size nf×5 where nf

is the number of features. Each row is a description of the feature and has the
form (type, x, y, w, h) where type is either 1, 2, 3, 4 corresponding
to the feature type. While the rest of the numbers are the starting position
and size of the feature. Tip allocate the memory for all ftypes at the start.
Note you can declare an array that has too many rows and trim it at the end
when you know the exact number of features you have declared.

Sanity Check:
Check the limits of the for loops used to define all the different features
and that all the features have support within the 19×19 image. Do this by
checking that for every feature defined x+w-1 ≤ W and y+h-1 ≤ H. nf should
have a value around 32,746.

Figure 4: A small subset of different possible features of type II.

Program 8: function fs = ComputeFeature(ii ims, ftype)

The inputs of this function are a cell array ii ims and the parameters of a
feature ftype. Each element of ii ims is an integral image. Now write the
code to extract the feature defined by ftype from each integral image de-
fined in ii ims. The output is stored in an array fs of size 1×length(ii ims).

Debug Point: Load and compute the integral image for the first 100 images
in the directory ’FACES’, (i.e. face00001.bmp, . . . , face00100.bmp). Store
the integral images in a cell array ii ims. Check your newly written function
produces the same output as a version we have written.

8

>> dinfo3 = load(’DebugInfo/debuginfo3.mat’);

>> ftype = dinfo3.ftype;

>> sum(abs(dinfo3.fs - ComputeFeature(ii ims, ftype)) > eps)

2.4 Vectorize your code

You have now written debugged code that computes all the features. How-
ever, in its current form the code is not very efficient computationally (w.r.t.
Matlab). Therefore, in this subsection you will write code to vectorize the
operations. You are aiming to perform the feature computation as a matrix
multiplication. That is if given an integral image ii im then the computa-
tion of a feature can be written as

ii im(:)’ * ftype vec

where ftype vec is a column vector. To achieve this first write a function
VecBoxSum.m that computes the correct b vec to compute the sum of the
pixel intensities in a rectangle defined by (x, y, w, h) in the form just
described.

Program 9: function b vec = VecBoxSum(x, y, w, h, W, H)

If W and H are the dimensions of the integral image then this function returns
the column vector b vec which will be zeros except for 4 elements such that

ii im(:)’*b vec equals ComputeBoxSum(ii im, x, y, w, h)

Sanity Check:
Given the integral image ii im of face00001.bmp, calculate

>> b vec = VecBoxSum(x, y, w, h, 19, 19);

>> A1 = ii im(:)’ * b vec

>> A2 = ComputeBoxSum(ii im, x, y, w, h)

for differing values of x,y,w and h. Check each A1 equals A2.

Given the ability to compute the correct b vec to apply to an integral image
to compute the sum of the pixels in rectangular image, it is then easy to
compute the b vec needed to be applied to an integral image to compute
features defined by ftype. This is what you should do in the function
VecFeature.m that you will write next.

9

Program 10: function ftype vec = VecFeature(ftype, W, H)

In this function, calculate the column vector required to compute the response
for a feature defined by ftype. So for instance features of type I can be
calculated with

ftype vec=VecBoxSum(x, y, w, h, W, H)-VecBoxSum(x, y+h, w,

h, W, H)

Notice how this is analagous to the functions you wrote in previous subsec-
tions. Note that you can use the Matlab switch function to check which
feature type is defined by ftype(1).

Sanity Check:
Given the integral image ii im of face00001.bmp, calculate

>> ftype vec = VecFeature([1, x, y, w, h], 19, 19);

>> A1 = ii im(:)’ * ftype vec

>> A2 = FeatureTypeI(ii im, x, y, w, h)

for differing values of x,y,w and h and check A1 equals A2. Try similar
calculations for the different feature types 2, 3 and 4.

You can now generate ftype vec for any feature type. The next task is
to compute a feature matrix fmat. The columns of this matrix are the
ftype vec for each feature defined by all ftypes. Write the function
VecAllFeatures.m to compute this.

Program 11: function fmat = VecAllFeatures(all ftypes, W, H)

This function will generate the column vectors used to generate each feature
defined in all ftypes. It will return an array fmat of size W*H × nf

where each column corresponds to a feature. Note all you need to do is
call VecFeature the appropriate number of times and store the output in fmat.

Your final task in this section is to replicate the function ComputeFeature.m
with a new function VecComputeFeature.m. This time round the inputs are
an array ii ims containing the integral images you want to process and
ftype vec the column vector defining your feature.

10

Program 12: function fs = VecComputeFeature(ii ims, ftype vec)

The inputs of this function are an array ii ims of size ni × W*H and
ftype vec is a column vector containing the description of a feature. Each
row of ii ims is an integral image. Now write the code to extract the feature
defined by ftype vec from each integral image defined in ii ims. The output
is stored in an array fs of size size(ii ims, 1)×1.

Sanity Check:
Given the integral image ii im of the first 100 face images face00001.bmp,
face00002.bmp, . . . and check that if you calculate

>> fs1 = VecComputeFeature(ii ims, fmat(:, 1));

>> fs2 = ComputeFeature(ii ims1, all ftypes(1, :));

then fs1 and fs2 are equal. Note that ii ims1 contains the same data as
ii ims but just in a cell array and the images are stored as 2d arrays. Try
similar calculations for different features.

Note you will probably not use this function again as it is only one line of
code, it will be better to directly write this line into any function.

2.5 Extract features and training data

A list of ni numbers randomly chosen images in the directory ’FACES’ can
be obtained with the following code:

face fnames = dir(’FACES’);

aa = 3:length(face fnames);

a = randperm(length(aa));

fnums = aa(a(1:ni));

These numbers correspond to the images you will use for training so for
instance the first image will be:

im fname = [’FACES/’, face fnames(fnums(1)).name];

The next function you will write is to load all the images you will use for
training and also to compute fmat for the features you have defined.

11

Program 13: function LoadSaveImData(dirname, ni, im sfn)

Choose images: Randomly pick ni images in the directory dirname as
described in the text.

Load data: For each image use the function LoadIm to load it and
compute its integral image. Then store each integral image as a row in an
array called ii ims.

Save the image data: Save the details of the training image data in
the file im sfn:

save(im sfn, ’dirname’, ’fnums’, ’ii ims’);

Sanity Check:
Run your newly written function on the ’FACES’ directory with ni = 100.
Check that the code runs smoothly.

Program 14: function ComputeSaveFData(all ftypes, f sfn)

Compute feature vectors: Use VecAllFeatures to compute fmat from
all ftypes and set the values of W and H to 19.

Save the feature info: Save the details of the features you will use
in the file f sfn:

save(f sfn, ’fmat’, ’all ftypes’, ’W’, ’H’);

Sanity Check:
Check that the code runs smoothly.

Debug Point: Set dirname to the FACES directory. Read in the file
debuginfo4.mat and follow the instructions below to check the output of
your newly written functions.

>> dinfo4 = load(’DebugInfo/debuginfo4.mat’);

>> ni = dinfo4.ni;

>> all ftypes = dinfo4.all ftypes;

>> im sfn = ’FaceData.mat’;

>> f sfn = ’FeaturesToMat.mat’;

>> rng(dinfo4.jseed);

>> LoadSaveImData(dirname, ni, im sfn);

>> ComputeSaveFData(all ftypes, f sfn);

Then check that dinfo4.fmat equals the fmat you calculated and similarly
for dinfo4.ii ims.

12

You are now ready to write the final function in this section. Basically, in
this function you compute and save the training data extracted from both
the face images and the non-face images.

Program 15: function GetTrainingData(all ftypes, np, nn)

Write a function which calls LoadSaveImData twice - once for data ex-
tracted from the face images and the second time round for the non-face
images. np is the number of face images used and nn is the number of
non-face images used. In the two calls to LoadSaveImData, set im sfn to
FaceData.mat and NonFaceData.mat respectively. The function should also
call ComputeSaveFData and set f sfn to FeaturesToUse.mat.

Now to create the data required for training the face detector run the fol-
lowing code:

>> dinfo5 = load(’DebugInfo/debuginfo5.mat’);

>> np = dinfo5.np;

>> nn = dinfo5.nn;

>> all ftypes = dinfo5.all ftypes;

>> rng(dinfo5.jseed);

>> GetTrainingData(all ftypes, np, nn);

Note that it may take upto several minutes for the function GetTrainingData

to complete, depending on the speed of your machine and the effeciency of
your code. Once it has completed then load your saved files into Matlab
with the following commands:

>> Fdata = load(’FaceData.mat’);

>> NFdata = load(’NonFaceData.mat’);

>> FTdata = load(’FeaturesToUse.mat’);

Fdata, NFdata and FTdata are structures and contain the data you have
just saved. So, for instance, the name of the directory containing the face
training images is accessed with Fdata.dirname, while the integral image
data is accessed with Fdata.ii ims.

If you have successfully reached this point then you are ready to get this part
of the lab, Check I, signed off by one of the Teaching Assistants (TA). See
the accompanying form to see what the TA will expect you to demonstrate
and answer questions on.

13

Task II - Boosting to learn a strong classifier

Boosting is a process of forming a strong strong classifier through the linear
combination of weak ones. In the context of Viola-Jones face detection, a
binary classification task, the weak classifiers are derived from the extracted
set of features.

The details of the AdaBoost algorithm are given in algorithm 1. The core
idea behind the use of AdaBoost is the application of a weight distribution
to the training examples and the modification of the distribution during
each iteration of the algorithm. At the beginning the weight distribution
is flat, but after each iteration of the algorithm each of the weak classifiers
returns a classification on each of the sample-images. If the classification
is correct the weight on that image is reduced (seen as an easier sample),
otherwise there is no change to its weight. Therefore, weak classifiers that
manage to classify difficult sample-images (i.e. with high weights) are given
higher weighting in the final strong classifier.

Now let’s go and implement the AdaBoost algorithm to build a face detector.

3.1 Defining & learning a weak classifier

At this moment you have extracted many Haar-like features from many
training images. How can these simple features be used to build weak clas-
sifiers from which we will build the strong classifier? We choose the weak
classifiers to have a very simple form. In the mathematical description of
the algorithm we denote the feature vector extracted when all the Haar-
like filters are applied to an image x as fx = (f1(x), . . . , fN (x)) where N is
the total number of features extracted. Then one weak classifier h(·) with
parameters Θ = (j, p, θ)

h(fx ; Θ) = h(fx ; j, p, θ) =

{
1 if p fj(x) < pθ

0 otherwise
(8)

where fj(x) is the response of the jth feature when applied to image x.
This is the type of weak classifier you will use in the lab. However, you are
free to define another form of weak classifier when you make changes to the
default detector. In this subsection you will write code to automatically set
the parameters p, θ associated with the weak classifiers of this form when
there is a weight associated with misclassifying each training algorithm.
Algorithm 2 describes a very simple way to do this.

Before finding the parameters of a weak classifier we will ensure that you
understand what is meant when referring to feature responses. Remember,
the structure FTdata contains the matrix fmat. Each column of this matrix

14

Algorithm 1 AdaBoost

Input: A set of feature vectors {fx1 , . . . , fxn} extracted from each example
image xi and associated labels {y1, . . . , yn} where yi ∈ {0, 1}. yi = 0
denotes a negative example and yi = 1 a positive one. m is the number
of negative examples. A postive integer T which defines the number of
weak classifiers used in the final strong classifier.

Output: A set of parameters {Θ1, . . . ,ΘT } associated with the weak clas-
sifier h(·) and a set of weights α1, . . . , αT which define a stong classifier of
the form:

H(fx) =

{
1 if

(∑T
t=1 αt h(fx; Θt)

)
≥ 1

2

∑T
t=1 αt

0 otherwise
(4)

Steps of Algorithm:
Initialize the n weights to:

w
(1)
i =

{
(2m)−1 if yi = 0

(2(n−m))−1 otherwise
(5)

for t = 1, . . . , T do

• Normalize the weights so they sum to one: w
(t)
i =

w
(t)
i∑

j w
(t)
j

.

• For each feature j train a weak classifier h restricted to using this
feature that tries to minimize the error

εj =
∑
i

w
(t)
i |h(fxi ; j,θj)− yi | (6)

• Choose the weak classifier with the lowest error: j∗ = arg min
j

εj

• Set Θt = (j∗,θj∗) and εt = εj∗ .

• Update the weights:

w
(t+1)
i = w

(t)
i β

1−|h(fxi ;Θt)−yi |
t , with βt =

εt
1− εt

. (7)

• Set αt = log 1
βt

.

end for

15

corresponds to a column vector which when multiplied with the integral im-
age of an image (represented as a row vector) produces the value of applying
a particular Haar-like feature to the original image. The structures Fdata

and NFdata contain the integral images extracted from the face and non-
face training images. Using these integral images and one column of fmat,
say fmat(:, 12028), one can compute the feature responses for all the im-
ages for this feature type with a simple matrix multiplication - remember
VecComputeFeatures.m. From this data create a vector of responses fs for
the positive and for the negative examples. Next use hist to compute the
histogram of the feature responses from the face images and from the non-
face images. Display the histograms on the same figure. You should plot
curves that look like those in figure 5.

Now your task is to write the function LearnWeakClassifier that imple-
ments algorithm 2. It takes as input the vector of weights associated with
each training image, a vector containing the value of a particular feature
extracted from each training image and a vector of the labels associated
with each training image. The outputs are then the learnt parameters of
the weak classifier and its associated error.

Program 16: function [theta, p, err] =

LearnWeakClassifier(ws, fs, ys)

Compute the threshold and parity as described in algorithm 2.

Sanity Check:
As stated before the structure FTdata contains the feature array fmat while
the structures Fdata and NFdata contain the integral images extracted from
the face and non-face training images. Using these integral images and one
column of fmat, say fmat(:, 12028), compute the feature responses for one
ftype. Use this data to create fs and ys. Then set the weights ws as they are
initialized in algorithm 2. Using this input run your newly written function
to compute theta and p. You should get values similar to theta = -3.6453

and p = 1.

Next use hist to compute the histogram of the feature responses from
the face images and from the non-face images. Display the histograms on the
same figure as well as the line x = θ, see figure 5. You can repeat this process
for different features and check that your function produces sensible results.

3.2 Display functions

Before proceeding to write a program to implement the boosting algorithm,
you will write a couple of functions used for display purposes. These will

16

Algorithm 2 Simple weak classifier

Input: A set of feature responses {fj(x1), . . . , fj(xn)} extracted by
applying the feature fj to each training image xi and associated labels
{y1, . . . , yn} where yi ∈ {0, 1}. A set of non-negative weights {w1, . . . , wn}
associated with each image that sum to one.

Output: θ = (p, θ) and ε > 0. θ is a threshold value and p ∈ {−1, 1} is a
parity value. Together they define a weak classifier of the form:

g(fj(x) ; p, θ) =

{
1 if p fj(x) < pθ

0 otherwise
(9)

ε is the value of the error associated with this classifier when applied to
the training data.
(The parameters θ = (p, θ) along with j will then be the parameters of the weak

classifier defined in equation (8).)

Steps of Algorithm:

• Compute the weighted mean of the postive examples and negative
examples

µP =

∑n
i=1wi fj(xi) yi∑n

i=1wi yi
, µN =

∑n
i=1wi fj(xi) (1− yi)∑n

i=1wi (1− yi)
(10)

• Set the threshold to θ = 1
2(µP + µN).

• Compute the error associated with the two possible values of the
parity

ε−1 =

n∑
i=1

wi |yi − g(fj(xi) ; −1, θ)|, (11)

ε1 =
n∑
i=1

wi |yi − g(fj(xi) ; 1, θ)| (12)

• Set p∗ = arg min
p∈{−1,1}

εp and then ε = εp∗ .

17

−20 −15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

feature response

fr
eq

ue
nc

y

face class non−face class

Figure 5: A simple weak classifier. The blue curve is the histogram of the

feature responses for the non-face training images. The red curve those for the face

images. The black line is the threshold value chosen using algorithm 2. Marked on

the figure are the regions, defined by the threshold, where feature responses will be

classified as face /non-face.

be extremely useful when debugging your boosting implementation and in-
terpreting its output. The first function is to make an image representing a
feature, as in figure 2, defined by the vector ftype.

Program 17: function fpic = MakeFeaturePic(ftype, W, H)

Create a matrix, fpic, of zeros of size (H, W). From the information in
ftype, set the appropriate pixels to 1 and to -1.

Sanity Check:
Run

fpic = MakeFeaturePic([4, 5, 5, 5, 5], 19, 19);

and then display fpic via imagesc. The feature should appear as in figure
6(a).

The strong classifier, though, consists of a weighted sum of the weak clas-
sifiers. Thus the second display function you have to write takes as input
the array defining each feature, a vector chosen f of postive integers that
correspond to the features used in the classifier and the weights alphas
associated with each feature/weak classifier.

18

Program 18: function cpic =

MakeClassifierPic(all ftypes, chosen f, alphas, ps, W, H)

Create a matrix, cpic, of zeros of size (H, W). For each feature in chosen f

create its picture via

MakeFeaturePic(all ftypes(chosen f(i), :), W, H);

Then set cpic as a weighted sum of these newly create pictures. The weights
are equal to alphas .* ps.

Sanity Check:
Run

cpic = MakeClassifierPic(all ftypes, [5192, 12765], [1.8725,1.467],

[1,-1]);

and then display cpic via imagesc. You may have to compensate for
potential negative numbers in cpic. The image representation of the classifier
should appear as in figure 6(b).

(a) (b)

Figure 6: Example output of the feature and classifier display.

3.3 Implement the Boosting algorithm

You are now ready to write the code to implement the AdaBoost algorithm
to produce a face detector. Before we start we introduce the concept of a
structure (struct) in Matlab as the function BoostingAlg returns a struc-
ture, Cparams, containing the parameters of the strong classifier and those of
the associated weak classifiers. The structure Cparams contains the following
fields:

Cparams.alphas, Cparams.Thetas, Cparams.fmat, Cparams.all ftypes

where alphas represents the αt’s in equation (4) and Thetas represents the
Θt’s in algorithm 1 which are the parameters of the weak classifiers. Thus
alphas is vector of length T and Thetas is an array of size T×3 where the first
column represents the features chosen, the second column the thresholds of
the weak classifiers and the third column the associated parities. The other
fields have already been introduced.

19

Program 19: function Cparams = BoostingAlg(Fdata, NFdata, FTdata, T)

Implement the boosting algorithm as described in algorithm 1. The inputs to
this function are the training data obtained from the positive and negative
images and the number of weak classifiers T to include in the final strong
classifier. The output is then the structure representing the final classifier.
Remember during training you have to learn the parameters for each weak
classifier (which takes the weight of each training example into account) and
then choose the one with lowest error. So you have to use the array of the
integral images and the appropriate column of fmat to generate the feature
responses for each feature. This whole process is repeated T times.

Sanity Check:
While debugging and writing this function only use a fraction of the features
defined in FTdata.fmat as otherwise things will run very slowly. I suggest
just use the first 1000 features defined in FTdata.fmat to begin with and run
the command

Cparams = BoostingAlg(Fdata, NFdata, FTdata, 3);

Then use the function MakeFeaturePic to display the 3 different features
selected and MakeClassifierPic to display the learned classifier. I got the
results in figure 7.

Once you have written this command and think you have passed the sanity
check then you should do a more exact check. Remember this is just using
the first 1000 features defined in FTdata.fmat.

Debug Point: To check the output of your code, run the following com-
mands

>> dinfo6 = load(’DebugInfo/debuginfo6.mat’);

>> T = dinfo6.T;

>> Cparams = BoostingAlg(Fdata, NFdata, FTdata, T);

>> sum(abs(dinfo6.alphas - Cparams.alphas)>eps)

>> sum(abs(dinfo6.Thetas(:) - Cparams.Thetas(:))>eps)

If you have successfully passed this latest check then update BoostingAlg

to use all the features defined in FTdata.fmat. Before you run this function
on all this data try and optimize your code slightly so that it runs relatively
efficiently in the inner most loop. Now just run BoostingAlg with T set to
1. The feature my code selected is shown in figure 8. If this seems to be
working then run this debug check and go get yourself a cup of coffee! It
may take from 10-30 minutes to run depending on your machine and the
efficiency of your code.

20

Figure 7: The initial 3 features chosen by boosting (left to right) and

the final strong classifier. The final strong classifier in this example consists of

3 features and is the rightmost figure. The first feature chosen by boosting is the

leftmost one. These are the features chosen when you use a very small pool features

for training.

>> dinfo7 = load(’DebugInfo/debuginfo7.mat’);

>> T = dinfo7.T;

>> Cparams = BoostingAlg(Fdata, NFdata, FTdata, T);

>> sum(abs(dinfo7.alphas - Cparams.alphas)>eps)

>> sum(abs(dinfo7.Thetas(:) - Cparams.Thetas(:))>eps)

Once you have computed Cparams, save it using the command save.

Figure 8: The initial features chosen by boosting (left to right) and the

final strong classifier. The final strong classifier in this example consists of 10

features and is the rightmost figure. The first feature chosen by boosting is the

leftmost one.

If you have successfully reached this point then you are ready to get this part
of the lab, Check II, signed off by one of the Teaching Assistants (TA). See
the accompanying form to see what the TA will expect you to demonstrate
and answer questions on.

Task III - Classifier evaluation

Congratulations you have constructed your first boosted face detector! But
is it any good? In this part of the lab you will investigate how good it is.
You will do this via the ROC-curve (Receiver Operator Characteristic).

However, before computing the ROC-curve you have to write a funtion that
can apply your strong classifier.

21

Program 20: function sc = ApplyDetector(Cparams, ii im)

This function applies your strong classifier to a test image of size 19×19. It
takes as input the parameters of your classifier Cparams and the integral image,
ii im, computed from a normalized version of your test image. It extracts each
feature used in the strong classifier from the test image and then computes a
weighted sum of the weak classifier outputs. That is the function returns the
score

T∑
t=1

αt h(f ; Θt)

Sanity Check:
Run your new function on the image face00001.bmp. I got a score of around
9.1409.

Now we introduce some concepts which are used in the definition of the
ROC-curve. Look at table 1 to review the definitions of true-positive, false-
positive etc. From these definitions the definition of false positive rate and

Label Predicted Class True Class

true-positive (tp) Positive Postive
false-positive (fp) Positive Negative
true-negative (tn) Negative Negative
false-negative (fn) Negative Positive

Table 1: A classifier predicts the class of a test example. If the true class is known

then the test example can be labelled according to the above table.

true positive rate are based

true positive rate = tpr =
ntp

ntp + nfn
(13)

false positive rate = fpr =
nfp

ntn + nfp
(14)

where ntp is the number of true-positives etc. The number of true-positives
and false-positives will vary depending on the threshold applied to the final
strong classifier. The ROC-curve is a way to summarize this variation. It
is a curve that plots fpr Vs tpr as the threshold varies from −∞ to +∞.
(NOTE the default AdaBoost threshold is designed to yield a low error
rate on the training data.) From this curve you can ascertain what loss in
classifier specifity you will have to endure for a required accuracy. With this

22

knowledge you can write the function to compute the ROC curve on the
training data you didn’t use when learning your classifier.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fpr

tp
r

Figure 9: ROC curve computed from the images omitted from training.

The classifier usesd consisted of 10 weak classifiers.

Program 21: function ComputeROC(Cparams, Fdata, NFdata)

Get test images: From Fdata and NFdata list the images that were used for
training. Given this information then you can choose the face and non-face
images that were not used for training as those to be used for testing. The
command setdiff may help.

Apply detector to each test image: Run the learnt detector, using
ApplyDetector, on each test image. Keep a record of the score of each image
and its label (face/non-face).

Compute true and false positive rates: Choose a threshold to ap-
ply to the recorded scores. This predicts a labelling for each image. Check
how this corresponds with the ground truth and from this compute the true
positive rate and the false positive rate.

Plot the ROC curve: Let the threshold vary at fixed intervals from
the minimum score value to the largest. For each threshold value keep a
record of the true positive rate and the false positive rate. Then plot the false
positive rate values Vs the true positive rate values.

Sanity Check:
Values of fpr and tpr for large threshold values ?

Values of fpr and tpr for small threshold values ?

Check the shape of the ROC curve. Run your function. The
ROC curve you plot should look something like the one in figure 9.

23

Debug Point: You have created the ROC-curve for your detector. Now
choose the threshold of your detector such that you get a true positive rate
of above 70% on the test examples. This may seem like a low number but
this is to ensure a relatively low false positive rate. This threshold value
should be around 6.5. Add an extra field Cparams.thresh to the Cparams

structure to retain the value of the overall threshold.

If you have successfully reached this point then you are ready to get this
part of the lab, Check III, signed off by one of the Teaching Assistants
(TA). See the accompanying form to see what the TA will expect you to
demonstrate and answer questions on.

Task IV - Face detection in an image

You have now learnt a classifier via boosting that detects faces. The next
step is to apply this classifier to an image and see if it detects the faces
it may or may not contain. Now the function ApplyDetector.m will only
classify faces occupying subwindows of size 19 × 19 whose pixel data has
been normalized to have mean 0 and standard deviation 1. However, even
if an image contains a face of size 19 × 19 you will have to try every, or
almost every, possible subwindow of the image to detect the face, see figure
10. You now have to write such a function ScanImageFixedSize.m whose
inputs are the parameters of the detector and the pixel data of the image
to be processed. The output will be the parameters of the bounding boxes
(sub-windows) classified as faces. This will be an array of size nd×4 where
nd will be the number of face detections.

x
y

Figure 10: The sliding window of ScanImageFixedSize.m will traverse different

locations in the large image.

It is important to note that the variance and the mean pixel intensity of the
sub-window defined by (x, y, L, L) can be computed quickly using a pair of

24

integral images as

µ =
1

L2

x+L−1∑
x′=x

y+L−1∑
y′=y

I(x′, y′), σ2 =
1

L2 − 1

x+L−1∑
x′=x

y+L−1∑
y′=y

I2(x′, y′)− L2 µ2

So the mean of the sub-window can be computed from the integral image of
im while the sum of squared pixel values can be computed using the integral
image of the image squared (i.e. im .* im). Remember if you calculate
the sum of pixel intensities in an rectangular region where the pixel values
have not been normalized then

B(x, y, w, h) =

x+w−1∑
x′=x

y+h−1∑
y′=y

I(x′, y′)

while this sum if the pixel data has been normalized is

Bn(x, y, w, h) =

x+w−1∑
x′=x

y+h−1∑
y′=y

[
I(x′, y′)− µ

σ

]
=

1

σ
B(x, y, w, h)− wh

σ
µ

We introduce the superscript n to signify a quantity has been computed
from normalized data. Thus for features of type I

Fn
1 (x, y, w, h) = Bn(x, y, w, h)−Bn(x, y + h,w, h)

=
1

σ
(B(x, y, w, h)−B(x, y + h,w, h)) =

1

σ
F1(x, y, w, h)

Repeat these calculations for the other feature types and write down the
expression for each one. With this in mind you can adjust you features
extracted from a non-normalized image very easily. You must do this or the
weak classifiers you learnt cannot be applied sensibly to your image.

25

Program 22: function dets = ScanImageFixedSize(Cparams, im)

Do image processing: If necessary convert im to grayscale. Compute its
square and compute the two necessary integral images.

Adapt ApplyDetector.m: We want to apply the detector to an arbi-
trary sub-window of size 19×19 of the large image. Remember the pixel data
in the sub-window is not necessarily normalized thus you have to compensate
for this fact as described in the text. Also remember that the top-left corner
of the sub-window is now not necessarily at (1, 1).

Search the image Write nested for loops to vary the top-left corner
of the sub-window to be classified and keep a record of the sub-windows
classified as faces in the array dets which has size nd×4. Each row contains
the parameters of the face sub-window.

Sanity Checks:
Is the normalization correct?

Does this function replicate previous performance? If you run
this function on one of the small training images you should get the same
result as when you run LoadIm and then the original ApplyDetector.

5.1 Display the detection results

From the TestImages subdirectory load the image one chris.png and scan
the image for faces of size 19×19 using your newly written function.

>> im = ’TestImages/one chris.png’;

>> dets = ScanImageFixedSize(Cparams, im);

Now, of course, you would like to see the output of your detector. Thus you
have to write a function that takes the bounding box information contained
in dets and displays the rectangles on top of the image. The Matlab function
rect can be used for this purpose.

26

Program 23: function DisplayDetections(im, dets)

Use Matlab’s plotting and image display functions to show the bounding
boxes of the face detections.

Sanity Check:
Running this function after ScanImageFixedSize on the image
one chris.png you should get something similar the results in figure
11 (a).

−20 −10 0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

−20 0 20 40 60 80 100 120

20

40

60

80

100

120

(a) search over one scale (b) search over multiple scales

Figure 11: Results of face detection using the learnt strong classifier
The left image shows the results of the original strong classifier applied to
an image. Every 19 × 19 patch is examined labelled as face or non-face. A
threshold of 6.5 was used. While the right image, which is bigger than the
left one, is searched over a range of scales. A threshold of 8 was applied.

5.2 Integration of multiple detections (Optional)

As you’ve probably noticed your detector is insensitive to small changes in
translation and thus multiple detections occur around each face and false
positive. However, you would probably like to have only one final detection
per face (and per false positive). Therefore, it is useful to prune the de-
tected sub-windows so that overlapping detections are summarized by one
detection.

This can be achieved in many different ways and there is no obvious one
correct solution. One solution is to partition the detections into disjoint
subsets. Two detections are in the same subset if their regions intersect
significantly. Frequently, what significantly means is the following. Let A
and B correspond to the bounding boxes of two face detections then they
are considered as being generated by the same face if

area(A ∩B)

area(A ∪B)
> ρ (15)

27

where 0 < ρ < 1 and usually ρ is set relatively high. After computing these
partitions each partition yields a single final detection. The corners of the
final bounding regions are the average of the corners of all detections in the
set or it is the corners of the bounding box with the highest response.

Program 24: function fdets = PruneDetections(dets)

Find overlapping detections: Let nd be the number of detetections.
Create a matrix D of zeros of size nd×nd. Then set D(i,j) = 1 if the ith
detection overlaps the jth detection according to equation (15) (the function
rectint may be of use).

Find the connected components: Use the Matlab function graphconncomp

to partition the detections into those that overlap. With this information it
is possible, as described in the text, to reduce overlapping detections into one
detection.

Sanity Check:
Check before and after pictures: Display the detections before you
run this function and then afterwards. Visually inspect if the function has
performed the expected task.

5.3 Face detection over multiple scales

Obviously, not all faces in images are of size 19×19. Thus the detector needs
to be scanned across an image at multiple scales in addition to multiple
locations. Scaling can be achieved in two ways. Option one is to scale the
image and look for 19×19 faces in the re-scaled image, see figure 12(a).
While the second option is to scale the detector, rather than scaling the
image, see figure 12(b). Features for the latter detector can be computed
with the same cost at any scale. Remember though, in this case, you have
to normalize the feature value calculated with respect to the scale change
so the learned thresholds of the weak detectors are meaningful. Write the
function ScanImageOverScale.m which takes as input the parameters of the
detector, the image, the minimum and maximum value of the scale factor
and the step size defining which intermediary scale factors will be searched
over. The output will be the bounding boxes corresponding to the final face
detections.

28

x
y

x
y

x
y

x
y

(a) Multi-scale search option one

x
y

x
y

x

y
x

y

(b) Multi-scale search option two

Figure 12: Options for performing the multi-scale search. (a) Keep the
size of the detector constant and apply it to scaled versions of the image.
(b) Keep the size of the image constant and scale the classifiers’s window.

Program 25: function dets =

ScanImageOverScale(Cparams, im, min s, max s, step s)

Implement a multi-scale search: Decide how you’ll implement the
multi-scale and then write the appropriate code. I would suggest you
resize the image using imresize for each scale you check as then you
can re-use the function ScanImageFixedSize on each of these rescaled
images as the size of your classifier window remains constant. The other
option would probably require more work to implement. Also remember
when you find a detection, at a certain location and scale, record and save
what this bounding would correspond to in the original size of the input image.

Combine detections: If necessary adapt the function PruneDetections.m

to ensure that overlapping detections are combined into one detection.

Sanity Check:
Create images with large faces: Use the Matlab function imresize to
upscale the image one chris.png by a factor of 1.2. Then run your new
function and check if you can still detect the face it contains.

Debug Point: Run your function ScanImageOverScale on the image big one chris.png

and plot the detections. I used the following settings min s=.6, max s = 1.3

and step s = .06. Your results should be similar to those in figure 11(b).

If you have successfully reached this point then you are ready to get this
part of the lab, Check IV, signed off by one of the Teaching Assistants
(TA). See the accompanying form to see what the TA will expect you to

29

demonstrate and answer questions on.

Task V

Now you should build an accurate strong classifier. This task involves involve
running the function BoostingAlg with T set to say around 100. As you
know BoostingAlg can be slow to run. Thus before calling it with T≈100
you may need to optimize your code. You can you use the Matlab command
profile to analyse how much time is spent by Matlab on each part of your
code.

Some ideas for speeding up your boosting algorithm

• There is an overhead associated with function calls to user-defined
functions. Thus for instance when calling FeatureTypeI 1,000,000
times, the majority of the time will be spent on function call overheads
as opposed to the calculations executed in FeatureTypeI. Thus you
can remove function calls and paste them into the main function. This
is, in general, not good programming practice, but in the world of
Matlab....

• You can turn fmat into a sparse matrix. Using this representation
will speed up the matrix multiplication you have to perform when
computing the feature responses.

Once you have built an accurate classifier the next task will be to run it on
the images contained in the directory TestImages.

If you have successfully reached this point then you are ready to get this part
of the lab, Check V, signed off by one of the Teaching Assistants (TA). See
the accompanying form to see what the TA will expect you to demonstrate
and answer questions on.

Task VI - Train and Test for Real

Now it’s over to you! You now have an implementation which you have
debugged pretty thoroughly. And you have passed the lab. However, you
have not thrown a lot of data at the training process and it is pretty slow to
run due to the just-in-time compilation of Matlab. You ran a detector that
was trained using ≈4000 positive examples and ≈8000 negative examples
using the very simple classifier described in the notes. The list of possible
issues to be investigated or improved are endless. Here are some suggestions:

30

• Use all the images in the database for training. If you do this, do you
get better performance on images with lots of clutter?

• Continuing in the same theme, you could potentially artificially gen-
erate more training examples by perturbing the existing training ex-
amples with random rotations, scalings and translations. If you do
this and then train your classifier including these new images, what
happens to the performance? Also it is very easy to extend the set of
non-face training images. Find pictures with no faces and take random
19×19 patches from these images.

• There are many databases of faces publicly available. You could exploit
these for training and testing. It is also very easy to collect a very large
of negative training examples. A common approach is to apply your
face detector to lots of images that do not contain faces. Record all
the false positive hits and add these patches to your negative set, then
retrain your classifier using this new training data.

• A better weak classifier Gambs et al. [2007]; Rasolzadeh et al. [2006].
You could use a decision tree of depth > 1 as the weak classifier, see
the reference for more ideas Benenson et al. [2013].

• Speed up the training process Pham and Cham [2007].

• There is a great correlation amongst the responses from similar fea-
tures. Could this be potentially exploited to speed up training?

• Speeding up the training process could allow you to add extra feature
types to your set of weak classifiers. You could test if widening your
feature pool improves your classification rate. And you could also
apply these features to not just the grayscale intensity image but also
the gradient magnitude image. For some inspiration check out the
paper by Dollar et al. [2009].

• You could perhaps use some of the functions, coded in VLFeat, to
compute different image patch descriptors - such as SIFT, HOG - and
build weak classifiers based on these descriptors.

• What would be really fun would be to investigate if you could either
integrate the OverFeat deep convolutional neural network that is avail-
able for download into your face detector or just compare its perfor-
mance to the performance of your detector. At the OverFeat website
you can download both parameters for a huge convolutional neural
network as well as the code to run it on images. The details of what
information you can extract via the code is summarized on the web-
page, as is information on how the network was trained. I should just
say that it is not entirely obvious to me how to integrate the features

31

http://www.face-rec.org/databases/
http://www.vlfeat.org/
http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

extracted from OverFeat in an efficient way into our sliding window
regime because we train on 19×19 image patches and OverFeat was
trained for image patches of size 220×220. But you guys are probably
much smarter and more creative than me....

Please note I don’t expect you to investigate all of the issues in the list or
those you do at any great length. To have an initial investigation into one
of these issues would be interesting to hear about at the poster session. At
the very least run your learnt detector on a range of images containing faces
and look and record its output. And, of course, this list is by no means
exhaustive. You could potentially come up with your own ideas.

References

R. Benenson, M. Mathias, T. Tuytelaars, and L. V. Gool. Seeking the
Strongest Rigid Detector. In Proceedings of the Conference on Computer
vision and Pattern Recognition, 2013.

P. Dollar, Z. Tu, P. Perona, and S. Belongie. Integral Channel Features. In
Proceedings of the British Machine Vision Conference, 2009.

S. Gambs, B. Kégl, and E. Aı̈meur. Privacy-preserving boosting. Data
Mining and Knowledge Discovery, 14(1):131–170, 2007.

R. Lienhart and J. Maydt. An extended set of Haar-like features for rapid
object detection. In Proceedings International Conference on Image Pro-
cessing, volume 1, pages 900–903, 2002.

B. Menser. Segmentation of human faces in color images using connected
operators. In Proceedings International Conference on Image Processing,
pages III:632–636, 1999.

P. Peer and F. Solina. An automatic human face detection method. In
Proceedings of the Computer Vision Winter Workshop, pages 122–130,
1999.

M.-T. Pham and T.-J. Cham. Fast training and selection of Haar features
using statistics in boosting-based face detection. In Proceedings of the
International Conference on Computer Vision, October 2007.

B. Rasolzadeh, L. Petersson, and N. Pettersson. Response binning: Im-
proved weak classifiers for boosting. In IEEE Intelligent Vehicles Sympo-
sium, Tokyo, Japan, June 2006.

D. Roth, M.-H. Yang, and N. Ahuja. A SNoW-based face detector. In
Advances in Neural Information Processing Systems 12, pages 855–861,
2000.

32

http://rodrigob.github.io/documents/2013_cvpr_roerei_with_supplementary_material.pdf
http://rodrigob.github.io/documents/2013_cvpr_roerei_with_supplementary_material.pdf
http://www.vision.caltech.edu/publications/dollarBMVC09ChnFtrs.pdf

H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:22–
38, 1998.

E. Saber and A. M. Tekalp. Frontal-view face detection and facial feature
extraction using color, shape and symmetry based cost functions. Pattern
Recognition Letters, 19(8):669–680, 1998.

J.-I. Shin, H.-S. Kim, W.-S. Kang, and S.-H. Park. Face detection using
template matching and ellipse fitting. IEICE Transactions on Information
and Systems, E83-D(11):2008–2011, 2000.

J. Tang, S. Kawato, and J. Ohya. A face recognition system based on
wavelet transform and neural network. In Proceedings of the International
Conference on Wavelet Analysis and its Applications, 1999.

P. Viola and M. Jones. Robust real-time object detection. In Second Inter-
national Workshop on Statistical Learning and Computational Theories
of Vision Modeling, Learning, Computing and Sampling, July 2001a.

P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In Proceedings of the Conference on Computer vision and
Pattern Recognition, 2001b.

33

	Initial image processing
	Computation of the Haar-like features
	Sum of pixel values within a rectangular region
	Feature computations

	Enumerate all features
	Vectorize your code
	Extract features and training data
	Defining & learning a weak classifier
	Display functions
	Implement the Boosting algorithm
	Display the detection results
	Integration of multiple detections (Optional)
	Face detection over multiple scales

