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Bayesian Reasoning - a New
Way of Thinking
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Classification Revisited
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Sources of Noise
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Feature Space
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Problem 1: Large Feature
Space
• Size of feature space exponential in number of features

|x|.

• More features mean better description of the objects, but
also larger feature space:

Difficult to model likelihood P(v|x) in a large=highdim space.

• One solution is to look at parts of the feature space:

Naive Bayes: Each feature separately
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Problem 2: Non-Separable
Classes
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Problem 2: Non-Separable
Classes
• One solution is to combine classifiers:
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Coping with High

Dimensionality
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Naive Bayes Classifier

• One of the most common learning methods together with
decision trees, neural networks and nearest neighbor.

• When to use:

Moderate or large training set available

Attributes xi of a data instance x are conditionally independent
given classification (or at least reasonably independent,

works with a little dependence)

• Successful applications:

Medical diagnoses (symptoms independent)

Classification of text documents (words independent)
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Naive Bayes Classifier

• An instance x is described by attributes <x1,x2,…,xk>.

• As before, let V be the set of possible classes. The MAP
estimate of v is:

vMAP = arg maxvi!V P(vi|x1,x2,…,xk)

                          P(x1,x2,…,xk|vi) P(vi) 
     = arg maxvi!V  """""""""" 

                                              P(x1,x2,…,xk)

     = arg maxvi!V P(x1,x2,…,xk|vi) P(vi)

• Naive Bayes assumption: P(x1,x2,…,xk|vi) = #j P(xj|vi)

• This gives a naive Bayes estimate:

vMAP = arg maxvi!V P(vi) #j P(xj|vi) 

12

Example: Play Tennis?

• Task: To tell whether I should go for tennis given the forecast.

• An instance x has attributes 
<outlook ! {sunny, overcast, rainy}, 

  temp. ! {hot, mild, cool}, 
  humidity ! {high, normal}, 
  windy ! {false, true}>.

• Its class label v is the variable play ! {yes, no}.
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Example: Play Tennis?
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Example: Play Tennis?

• New instance x = <outlook=sunny, temp.=cool,
humidity=high, windy=true>:

vMAP = arg maxvi!V P(vi) #j P(xj|vi)

P(yes) P(sunny|yes) P(cool|yes) P(high|yes) P(true|yes) =

 9/14          2/9              3/9            3/9             3/9      = 0.005

P(no) P(sunny|no) P(cool|no) P(high|no) P(true|no) =

 5/14        3/5            1/5           4/5           3/5      = 0.021

' vMAP = no
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Naive Bayes: Independence
Violation
• Conditional independence assumption: 

P(x1,x2,…,xk|vi) = #j P(xj|vi)  

often violated - but it works surprisingly well anyway!

• Note: Do not need the posterior estimates &(vi|x) to be
correct, need only correct vMAP = arg maxvi!V &(vi|x).

• Since dependencies ignored, naive Bayes posteriors often
unrealistically close to 0 or 1. (Different attributes say the
same thing to a higher degree than we expect, since they
are correlated in reality.)
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Naive Bayes: Estimating
Probabilities
• What if non of the training instances with target value vi

have attribute Dj  = xj? Then:

&(xj|vi) = 0   and &(vi) #j &(xj|vi) = 0

• A solution is to add as prior knowledge that &(xj|vi) must

be larger than 0 - m-estimate of probability: 
    nv + mp

&(xj|vi) $  """"

     n + m
where

n = total number of training samples with v = vi

nv = total number of training samples with v = vi and Dj = xj

p = prior estimate of &(xj|vi)      (set to 1/k if no other info)

m = weight given to prior estimate (in relation to data)
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Example: Spam Detection

• Instances x are emails, that are classified as spam
(v1 = +) or not spam (v2 = -). (The random vector Email
is denoted D.)

• Email is represented by vector of words:

One attribute xj per word position in email.

• Assumptions:

P(D = x|vi) = #j P(Dj = xj |vi)  (Naive Bayes)

P(Di = xm|vi) = P(Dj = xm|vi) % i,j  (Word order insignificant)
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Example: Spam Detection

• Learn the probability terms P(vi) and P(xm|vi):

LearnNaiveBayesText (Examples, V)

Vocabulary $ all distinct words and tokens from dataset

For each class vi ! V

Emails(i) $ subset of Examples classified as vi

P(vi) $ |Emails(i)| / |Examples|

text(i) $ concatenation of all members of Emails(i)

n $ number of words in text(i)

For each word xm ! Vocabulary

   nm $ number of times word occurs in text(i)

   P(xm|vi ) $ (nm + 1) /  (n + [Vocabulary])

End

End

End
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Example: Spam Detection

• Classify a new email instance Email as spam (v1) or not
(v2):

ClassifyNaiveBayesText (Email)

Positions $ all words and token positions in Email found in
Vocabulary

Email is a vector of words xj, j ! Positions

vNB $ arg maxvi!V P(vi) #j!Positions P(xj|vi)

End
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Combination of Classifiers:

Bayes Optimal and Gibbs
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Combination of Classifiers

How weigh together the votes from the

discriminant functions?
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Bayes Optimal Classifier

• Weigh the votes according to the reliability P(hi|D) of
each node hi.

• Let H be the set of node outputs, and V be the set of all
possible classifications from the Bayes optimal classifier:

P(vj|D) = (i P(vj|hi) P(hi|D)

• Bayes optimal classification:

vMAP = arg maxvj!V P(vj|D)  
       = arg maxvj!V (i P(vj|hi) P(hi|D)
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Example from Mitchell

• Task: Predict the class v ! {+,-} for a new instance x.

• Three possible hypotheses:
P(h1|D) = 0.4 
P(h2|D) = 0.3 

P(h3|D) = 0.3

• Given a, the nodes return:
h1(x) = +     '     P(+|h1) = 1, P(-|h1) = 0 
h2(x) = -      '     P(+|h2) = 0, P(-|h2) = 1 
h3(x) = -      '     P(+|h3) = 0, P(-|h3) = 1

• Since:
P(+|x) = (i P(+|hi) P(hi|x) = 0.4
P(-|x) = (i P(-|hi) P(hi|x) = 0.6

the Bayes optimal classification of x is -.

• Different from just choosing the most reliable node.
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Gibbs Classifier

• Bayes optimal classifier returns the best result, but
expensive with many hypotheses.

• Gibbs classifier:

Choose one hypothesis hi at random, by Monte Carlo sampling
according to reliability P(hi|D).

Use this hypothesis so that v = hi.

• Surprising fact: The expected error is equal to or less

than twice the Bayes optimal error!

E[errorGibbs] ) 2E[errorBayesOptimal]
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Combination of Classifiers:

Bagging and Boosting

26

Bagging and Boosting

• Bagging and Boosting aggregate multiple hypotheses
generated by instances of the same learning algorithm,
trained with different selections of training data [Breiman
1996, Freund and Shapire 1995].

• Bagging and Boosting generate a classifier with small
error by combining many weak (but easily computable)
classifiers, each with large error individually.
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Bagging and Boosting

• Bagging generates different training sets St by sampling
with replacement from the original training set.

• Boosting uses all instances in S but weigh them in
different ways for different classifiers.

• Classifiers are combined by voting:

Bagging: classifiers have same votes.

Boosting: vote dependent on classifiers’ accuracy.
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Bagging
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Boosting

• Goes one step further than Bagging - uses performance of
classifier Ct to improve classifier Ct+1.

• Maintains weight wi
t for each training instance xi.

• The higher the weight wi
t, the more xi influences the

learning of Ct.

• At each trial t, weights are increased or decreased
depending on if they are correctly or wrongly classified by

Ct.
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Boosting

• AdaBoost:

Given: A training set S = <(x1,y1),…,(xN,yN)>, yi ! {-1, +1}

Initialize weights wi
1 = 1/N

For trial t = 1,…,T

Train weak classifier Ct using weighted distribution wi
t

Compute error *t = share of xi wrongly classified by Ct

Compute weight +t = 0.5 ln((1 - *t)/ *t)

Compute weights wi
t+1 ~ wi

t , exp(+t) if xi wrongly classified

          - exp(-+t) if xi correctly classified

(Weight distribution is always normalized to sum to 1.)

End

Combined classifier: C*(x) = sign((t +t Ct(x))
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Boosting

• For the more general multiclass case:
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Toy Example

33

Toy Example
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Bayes MAP Hypothesis

• Bayes MAP Hypothesis for two classes x and o.

• Red = wrongly classified instances.
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Boosted Bayes MAP Hypothesis

• More complex decision surface than individual hypothesis
alone.
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Convergence and
Generalization
• Bagging:

No proven convergence bound. (Heuristically, the classifier
must be reasonably ”unstable” and dependent on the
dataset, so that the T weak classifiers are different from
each other.)

No proven generalization error bound. (That is, nothing can be
promised about how the classifier handles previously unseen
data.)

• Boosting:

Combined classifier error decreases exponentially in AdaBoost

for weak classifier errors *t < 0.5 (i.e. better than chance).

Generalization error is bounded by the training error with high
probability. (That is, the final classifier will with high
probability perform well on any pattern the classifier has not
seen before.)
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Summary

• Naive Bayes classifier: Treat all features/dimensions as
independent conditioned on class.

• Bayes Optimal classifier: Combine different classifiers
according to their prior reliability.

• Gibbs classifier: Probabilistic variant of BO where one of
the classifiers are selected randomly.

• Bagging: Combine instances of the same (weak)
classifier, trained with slightly different datasets.

• Boosting: Combine instances of the same (weak)
classifier, trained with the same dataset but with different
weights

Key idea: Iteratively select weights according to how ”hard”
instances are to classify.


