International Journal of Neural Systems, Vol. 4, No. 3 (September, 1993) 257—267

© Warld Scientific Publishing Company

A FLEXIBLE AND FAULT TOLERANT QUERY-REPLY
SYSTEM BASED ON A BAYESIAN NEURAL NETWORK

ANDERS HOLST* and ANDERS LANSNER!
SANS — Studies of Artificial Neural Systems
Department of Numerical Analysis and Computing Science, Royal Institute of Technology
S-100 44 Stockholm, Sweden

Received 8 January 1993
Revised 29 July 1993
Accepted 17 August 1993

A query-reply system based on a Bayesian neural network is described. Strategies for generating questions
which make the system both efficient and highly fault tolerant are presented. This involves having one
phase of question generation intended to quickly reach a hypothesis followed by a phase where verification
of the hypothesis is attempted. In addition, both phases have strategies for detecting and removing
inconsistencies in the replies from the user. Also described is an explanatory mechanism which gives
information related to why a certain hypotheses is reached or question asked. Specific examples of the
systems behavior as well as the results of a statistical evaluation are presented.

1. Imtroduction

In many applications, we need to classify something
we have observed or make a diagnosis from some
symptoms, e.g. to identify a disease from blood tests,
a car engine fault from its symptoms, or a plant
species from its appearance (as can for example
be done with a search key for plants). Various
methods for automatic diagnosis and classification
have been tried out over the years. Perhaps the
most dominant approach has been rule-based expert
systems which use if-then rules, supplied by the
designer, to make diagnoses.! There are also ways
to generate such rules automatically as in inductive
systems.? Another approach is to use artificial neural
networks3® sometimes in combination with a rule-
based system.” The reason to use neural networks
for these tasks is that they have some nice properties
such as learning capability and fault tolerance.

Here such a classification system based on a neu-
ral network is described. Instead of taking all evi-
dence at once and finding the most likely hypothesis
from that, it is designed as a query-reply system,
i.e. given some information not sufficient for estab-
lishing a diagnosis, the system asks the user about

* Email: aho@sans kth.se
t Email: ala@sans.kth.se

257

features one at a time and generates a hypothesis or
bases a classification on this information. This step-
wise procedure has some advantages. Often it might
not be clear from the start what to look for or it may
be time-consuming or in other ways costly to make
the necessary measurements or tests. If the system
asks questions, only the evidence necessary to reach
a conclusion needs to be given. A main goal here
has been to provide this diagnosis system with an
efficient and robust question generation capability.

The system is also augmented with an explana-
tory mechanism which from the state of the net-
work finds the strongest evidence for or against an
attribute in the network. This can be used to
generate simple explanations as to why a certain
hypothesis is reached (or not reached) or why a cer-
tain question is asked by the system. To account for
the conclusion reached is an important component in
an interactive classification system.

To set up the system, the network is trained
with examples from some domain. Thereafter the
question generation is started. It consists of a set of
simple algorithms for deciding from the state of the
network the “best” question in the current context.
The questions are all of the form: “Does the object
have the feature z?” The answers (real numbers
between 0 and 1) are fed directly into the network.

- as a sum’

258 A. Holst & A. Lansner

2. The Bayesian Neural Network Model

The neural network model used here is a one-layer
fully-connected Bayesian neural network.® In this
network the activities of units are related to prob-
abilities of stochastic events. The model is based
on Bayes rule for conditioned probabilities. Ac-
cording to this rule the probability of an event
¢ (e.g a class) given a set of independent events
A = {zi, zj, zx,...} (e.g. features), can be calcu-
lated as

P(q) 3 P(.’B", Zj, Ik,...lq)

P(z;, zj, x,...)

=P I P,f(’;"’)

T€EA

P(q|z;, =5, x,...) =

By taking the logarithm of (1), it may be rewritten
9

log(P(QIzi') ZTjy Tk -))

P(q,1)) @

—log(P('l))+zlog (P(q)P(')

where 0; = 1 if z; € A and 0 otherwise.

Let us now identify events (both evidence z; and
classes ¢) with units in a neural network that sum
their inputs according to

8¢ = ﬂq + E Wqi04 , (3)

where s, is the support for unit ¢, o; is the output
from unit ¢ and the biases 8, and weights wy; are
chosen as

= log(P(q)) 4)

ws = log (%%) .)

By using an exponential transfer function of the
support s,, we get the posterior probability of the
event. Since the independence assumption often
is only approximately fulfilled, these equations give
only an approximation of the probability. Therefore
it is also necessary with a threshold in the transfer
function to prevent probability estimations larger

than 1,
1 >0,
7rq={ % = . (6)

exp s, otherwise.

The measure m; of the posterior probability of ¢ is
also called the belief value of the unit.

To use a Bayesian neural network, the units
corresponding to observed features are stimulated
in such a way that their outputs o; are set to 1.
The activity is then spread through the weights to
all other units which sum their inputs according
to (3). This sum or support value of each unit is
then fed to the transfer function (6), the result of
which is returned as an estimation of the posterior
probability of the corresponding feature or class.
Note that here the activity is propagated only “one
step” through the network. The alternative is to
let the probability estimations from the first step
be input to the next step and iterate until a stable
state is reached, i.e. relaxation. This is an important
aspect of the Bayesian neural network with many
useful applications.® However, the best estimation of
probabilities is achieved already after the first step
and since we are interested in the probabilities in
this application, we have here used only one step
iteration.

The model also includes negation units (i.e. each
attribute has one unit for its existence and one for
its nonexistence) in order to make it possible to
explicitly represent that an attribute has not been
observed. Due to the use of negation units, the be-
lief value of an attribute is calculated as the average
between the belief values given by the positive and
the negative unit for that attribute (since the inde-
pendence assumption is only approximately fulfilled,
it is not certain that the belief values of the positive
and negative units sum to 1):

ﬁ.-z——————-""“;_"?). (M)

The databases used to train this system consist of
a set of examples of the objects to classify where each
example consists of the name of the class it belongs
to together with a list of (categorical) features. The
five databases used below to evaluate the system
all contain only one example per class (so-called
prototypes) but in Sec. 6 we will treat databases
from more realistic situations. The animal database
is given in the Appendix since it is the one used in
most of the following examples.

Training of the network is done in one pass over
the training set during which the probabilities P(i)
and P(i, j) are estimated from the training exam-
ples. These estimations are then used to set biases
and weights according to (4) and (5). Correlated
units thus get positive connections between them,
anti-correlated units get negative connections and
uncorrelated units get zero connections.

The details of the model and its mathematical
background are more thoroughly examined in Refs. 8
and 10. Similar neural network models based on
probabilities have been studied by e.g. Kononenko?
and Orponen et al.l!

The Bayesian neural network can in itself be used
as a classifier. Some observed features are input
to the network and the resulting activity of class
units is interpreted as the probability of different
classes given the observed features. If the class
with the highest probability is chosen, we have an
optimal Bayesian classifier.!?> Here, we will augment
this network with first an explanatory mechanism
and then a question generating system.

3. An Explanatory Mechanism

An important feature of an interactive classification
system is the capability to give some explanation
of the systems result. If the system is not able
to account for its conclusions, it will be harder for
people to trust it. In rule based systems, it is
possible to achieve simple explanations by showing
the user which rules were used for the deduction.
In contrast, this is often considered as a problem in
neural networks which do not deal with explicit rules.

In the Bayesian neural network model, the
units represent external events and the weights
between units correlations between these events.
Kononenko!® has shown that it is possible to imple-
ment a simple explanatory mechanism for a Bayesian
neural network by considering the signals in the net-
work as information gains. Goodman et al.® presents
a methiod for extracting rules from a Bayesian net-
work also using an information theoretical measure.

Here we will take a similar approach by intro-
ducing the significance of one event (or unit) for an-
other. We want the significance to be an additive
measure such that the total significance for an event
from a set of (independent) events is the sum of the
significances of the individual events. We also want
it to be normalized to 1, in the sense that when a
set of independent events make another event com-
pletely certain, then their significances for the latter
event should sum to 1. A significance of 0 means
that an event doeés not say anything about another.
Also, we consider only positive significances. Evi-
dence against a certain event is instead handled as a
significance for the negation of the event.

To find such a measure, we note that the support
value (3) consists of a sum of the supports from other
units. If the support value is transformed to the

Query-Reply System Based on Bayesian Neural Network 259

interval [0,1], we get

g =By _ 5 waioi
D Dy o ®)

From this we can immediately pick out the expres-
sion for the significance gj; from unit i to unit j with
the above properties:

Wii0;
gii = —_’E— (9)

After having stimulated a set of features and
received posterior probabilities of the classes, the
significance measure can be used to find out which
features are most supportive of or contradictory to
a certain class, i.e. why a certain class has a high or
low probability. Further it is possible to find out the
possible future effect of different features, i.e. which
features would support a certain class if they were
observed, by setting all o; in (9) to 1 (the conditional
significance).

The significance measure is used both directly by
some of the question generation strategies presented
below and in interactive use of the system to allow
the user to gain insight into why the current state of
the network is reached.

4. Question Generation

When the network is stimulated with information
insufficient for a classification, the purpose of the
question generation is to find a (not yet stimulated)
feature the value of which can add relevant new in-
formation for the classification. The neural network
together with the question generation can then be
used as a query-reply system. Starting with no or

- very few known features, the question generation

decides from the state of the network the best ques-
tion to ask in the current situation. The reply of
the question is then fed into the network (together
with all previously known facts) and the question
generation is run again on the resulting state of the
network. This continues until enough evidence for a
reasonably certain classification has been collected.
Since it may be costly to find out the answers, it
is preferable that the number of questions required
to reach a classification or hypothesis is minimized.
Let us therefore first consider the subject of reaching
a hypothesis as fast as possible. There is a theoret-
ical lower limit on the average number of questions
required (if we want the hypothesis to be correct).
This is logz of the number of classes which yields
exactly if each question can divide the remaining

260 A. Holst & A, Lansner

alternatives in two equally large groups (one that
has the feature and one that does not).

Intuitively, in the network this corresponds to
asking about a feature with a belief value as close
as possible to 0.5. More formally and assuming that
each class either has a feature or not, what is to be
minimized for each question is the expectancy of the
ratio r of the number of possible classes after the
question to the number of possible classes before it,
i.e. the sum of the ratio of possible classes if the user
says “yes” times the probability of the answer “yes”
and the ratio of possible classes if the user says “no”
times the probability of a negative answer:

E(r)=m; -mi+(1—m;) - (1——1r;):21r?—27r,-+1 , (10)

which has a minimum at m; = 0.5 and increases from
there symmetrically on both sides.

This strategy gave the best results when com-
pared to several other strategies.!* Figure 1 shows

Number of questions
w
-

Databases

Theoretical minimum
Actual average number of questions

Fig. 1. This diagram shows the average number of
questions required to reach a hypothesis for the initial
strategy tested on five databases. This is compared to
the theoretical minimum, logz of the number of classes
in each database. The databases are (number of classes
in parenthesis): Animals (32), Mushrooms (28), Bumble-
bees (48), Tree (39) and Random (23). In general, the
difference between the theoretical limit and the actual
number is less than one question (but for “Tree”, the
patterns of which are generated from an unbalanced
hierarchical tree which makes the logz-limit impossible
to reach).

(] Value of land-living? 1

[] Value of eats-grass? 1

(0.1439: rabbit pig kangaroo horse
giraffe elephant camel antelope)

[] Value of pair-toed? 0

(0.1582: rabbit kangaroo horse elephant)

[] value of big? 0

(0.2091: rabbit kangaroo elephant)

[] Value of medium? 0

(0.2451: rabbit elephant)

[]1 Value of small? 1

(0.645: rabbit)

The answer must be rabbit.

Fig. 2. This is an example of what a query session
might look like with the initial strategy and the animal
database. The user is thinking of a rabbit and replies
accordingly. “1” means that the animal has the feature,
“0” that it does not. The animals which have the highest
belief value at a certain stage are shown in parenthesis.
Initially nothing in the network is stimulated. About half
of the animals in the database are land-living so that is
a good initial question. About half of those land-living
eats grass and so on. After six questions, “rabbit” has
the single highest probability.

how close to the theoretical limit logs the number
of questions is when this strategy is tried on five
different databases. Figure 2 gives an example of
what a query-reply session can look like when this
approach is used.

In a real application, it might be the case that
questions are differently hard or costly to answer.
What actually ought to be minimized then is the
sum of “costs” of the questions. In such a case,
a good strategy is to ask about a feature with as
high as possible a value of ’—'c;‘"z where c; is the cost
to find out about that feature. This is actually an
approximation of the formula:

log(E(r;)) _ —log(2n? — 2mi +1)
[Ci ’

(11)

The justification of this formula comes from the fact
that it is equally good to make two questions with
costs = ¢ and E(r;) = r as one question with
cost = 2c and E(r;) = rl. Also note that both
this formula and its approximation yields the same
strategy as without costs when all the costs are equal.

There is, however, a serious drawback with a
strategy that only tries to minimize the number
of questions. Due to the lack of redundancy in
the questions, it has a very limited fault tolerance.

Usually, each sequence of answers leads to a unique
class, so one erroneous input will cause an incorrect
classification. Not only is some robustness important
to reduce the effect of mistakes in the replies from the
user but even more so to make the system robust to
ambiguities and uncertainties.

There are plenty of ways to improve the fault tol-
erance of this system. We have concentrated on two
of them, hypothesis verification and inconsistency
checking. The idea behind the former is to divide
the query session into two phases, hypothesis gener-
ation and hypothesis verification. During hypothests
generation, questions are chosen as described above,
i.e. toreach a hypothesis as fast as possible. The net-
work is considered to have a hypothesis when there
is only one leading hypothesis and this has a belief
value higher than 0.5.

When a hypothesis has been produced, the sys-
tem will generate verificalion questions. Here, a good
strategy is to ask about the most specific feature of
the hypothesis, i.e. one possessed by as few as pos-
sible of the other classes. This strategy uses the
significance g;; defined in the previous section. It
asks about the feature that if answered would be
most significant for the current hypothesis. If the
reply is in accordance with the current hypothesis,
this strengthens the network’s belief in the hypothe-
sis. If instead the reply does not support the current
hypothesis, the network is likely to abandon it and
return to the first phase in order to find a better
hypothesis.

The dialogue is terminated when a predetermined
number (here two) of consecutive verification ques-
tions have been answered in accordance with the
hypothesis.

Inconsistency checking is also crucial for improv-
ing robustness. The purpose is to detect and remove
dubious inputs as soon as possible after they have
occurred. This is achieved by repeating questions on
features for which the user input conflicts with the
state of the network and thus may be erroneous. In-
consistency checking is done in both phases although
it is more critical in the first where inconsistencies
tend to suppress all network activity and therefore
may prolong the sequence of questions required to
reach a hypothesis.

The search for inconsistencies is done differently
in the two phases. Before there is any hypothesis,
the strategy looks for contradictory input in general.
In this case, an inconsistency is defined as a large
difference between the belief value of a feature and

Query-Reply System Based on Bayesian Newral Network 261

what the user has replied on that feature (in these
investigations the limit for this difference was 0.3 but
this is a completely empirical value).

When the system has a hypothesis, the incon-
sistency strategy searches for inconsistencies with
respect to the specific hypothesis. This is done by
searching for strong significances from the user input
to the negation of the current hypothesis, i.e. features
that contradict the hypothesis.

To sum up, after each new input to the network
and calculation of new belief values, the question
generation strategies are run as follows. If there
is no hypothesis in the network, its state is first
searched for a general inconsistency and if none is
found, a hypothesis reaching question is generated. If
on the other hand, the network has a hypothesis, it is
first checked for an inconsistency with respect to the
current hypothesis and if none is found a verification
question is generated.

It is important to note that all question genera-
tion strategies presented here look at the local states
of the units in the network and select the unit with
maximum value of some function of its state. Some
also use the significance presented above which is also
a local calculation from the signals in the network.
This means that no global calculation has to be done
except for the last step which is similar to a “winner-
take-all” operation.

5. Empirical Evaluation

We now turn to the performance of these algorithms.
First let us look at an example of a query session
where the question generation strategies and the
explanatory mechanism are used.

We train the network with the animal database
and start the system from the beginning without
providing any initial information. Say that we see
a walrus on the shore and we at first do not realize
that it is water-living, i.e. we make a mistake on the
very first question:

[]1 Value of land-living? 1
[] Value of eats-grass? 0
[]1 value of tail? o
[] value of short-tail? 0
[] Inconsistency:
Value of land-living again?

The system has detected a possible inconsistency.
Before we answer this question, let us see what

262 A. Holst & A. Lansner

supports or contradicts “land-living” (a minus in
front of an attribute denotes the negation of the
attribute):

Evidence for land-living:
Evidence against land-living:
0.57060: -tail

0.26141: -eats-grass

0.22423: -short-tail

The values shown are the significances. (Although
in the interval [0, 1] they are not to be confused with
probabilities.) All the answers so far speak against
“land-living”. The strongest evidence against “land-
living” is that it has no tail. Suppose that we
continue and correct our erroneous answer:

[] Inconsistency:
Value of land-living again? O
[] Value of biting? 0
[] Value of water-living? 1
[] Value of two-legged? O
[] Value of brown? 1
[walrus] Value of tusked?

Now the system has reached the hypothesis “walrus”.
Let us see what supports this hypothesis:

Evidence for walrus:

0.53561: water-living
0.36601: brown

0.21862: -land-living
0.16602: -tail
Evidence against walrus:

To find out why “tusked” is a good verification
question, we must know how significant it would be
if we answered it. Let us find out the conditional
significance for “walrus” from different features:

Potential evidence for walrus:
0.80000: tusked

.80000: very-big

.53561: water-living
.48301: eats—animals
.36601: brown

.21862: -land-living
.16602: fur

.16602: living-offspring
.16602: -tail

.16602: -eggs

W HE E K H R
0O O 0O 00O O 0O 0 o0

Most significant for “walrus” would be “tusked”
and “very-big” which are therefore good verification

questions. We continue:

[walrus] Value of tusked? 1
[walrus] Value of very-big? 1
The answer must be walrus!

Finally we check what supports this conclusion:

Evidence for walrus:

0.80000: tusked

0.80000: very-big

0.53561: water-living
0.36601: brown

0.21862: -land-living

0.16602: -tail
Evidence against walrus:

Most important for the conclusion “walrus” is in this
case “tusked” and “very-big” as expected but also
“water-living” and “brown” are quite significant.

In Fig. 3 is shown the average number of
questions required as well as the fraction of false

15

Databases

Average number of questions
Jl Fraction of incorrect classifications

Fig. 3. The average number of questions and the fraction
of incorrect classifications (in parts of ten) when all of
the question strategies described are used and 10% of
the user inputs are disturbed. The databases are the
same as in Fig. 1. The fraction of faults is dependent on
the structure of the database. “Tree” is a hierarchical
tree which is difficult for the system. “Random” is
more evenly distributed and the system makes almost
no misclassifications. “Animals” and “Mushrooms” are
somewhere in between.

T

T
Cocicil

{ A

0 1 2 3 4 5
Number of disturbed stimuli

Number of correct classifications
I Number of wrong classifications
D Fraction of wrong classifications (in %)

Fig. 4 The grey and black bars show the number of
correct and incorrect classifications respectively in our
tests, given the corresponding number of disturbances in
the reply sequence (the last column contains all cases
with six or more disturbances). More interesting is the
white bars showing the fraction of incorrect classifications
in percent dependent on the number of disturbed inputs.
Note that this is not monotonically increasing but seem
to have a peak around 3—4 disturbances.

classifications when all the strategies above are used.
The network was trained with the whole database
and then tested with each pattern five times, with
10% of the inputs disturbed.

What is interesting to see is how these two mea-
sures, the number of questions and the fraction of
faults, depend on the actual number of disturbed
inputs. Figure 4 shows for the animal database the
number of correct and incorrect classifications to-
gether with the fraction of incorrect classifications
to the total number. Figure 5 shows the average
number of questions for correct and incorrect classi-
fications for the same database. The data for both
figures were acquired by testing the animal database
ten times, half of them with an average of 10% distur-
bances and half with an average of 20% disturbances
in the inputs.

A more detailed account for the above algorithms
and their evaluation can be found in Refs. 15 and 6.

Query-Reply System Based on Bayesian Neural Network 263

50 1

40 1

n w
o o
" L

Number of questions

-
[=]
L

0 1 2 3 4 5 6—
Number of disturbed stimuli

No. of questions, correct classifications

I No. of questions, wrong classifications

Fig. 5. The average number of questions depending on
the number of disturbed inputs, for incorrect and cor-
rect classifications separately. When no disturbances
are given, the number of questions is about two more
than in Fig. 1 corresponding to the two verification ques-
tions required. Thereafter every additional disturbance
causes about four extra questions, i.e. every question
erroneously answered requires three more questions to
settle. (Note that the last column contains all cases with
six or more disturbances).

6. More Realistic Databases

The databases used up to this point are all quite sim-
ple in their design. Each class has only one exam-
ple in the training set which means that all objects
from the same class have identical features. This
is generally not the case in real applications where
instead objects from the same class may vary in
appearance (i.e. have “fuzzy” features). Further-
more, some features may- not be easy to distinguish
from each other. As an example, this holds specifi-
cally for sizes and colors in the animal database used
here. In reality, there are no absolute borders be-
tween e.g. “brown”, “light brown” and “dark brown”
but the neural network does not know about the
relations between different colors so if the database
states that an antelope is light brown, then it is false
to say that it is brown.

One way to handle this, is to associate a real
value between 0 and 1 with each feature in each
class prototype to reflect how frequent (or how

264 A. Holst & A. Lansner

“certain”) that feature is for that class. This will also
introduce the relation between features without dis-
tinct borders such as colors or sizes in a natural way.
An animal that is usually brown might sometimes be
light brown and sometimes dark brown (which can
be represented in the database by giving “brown”
the strength e.g. 0.8, “light brown” 0.2 and “dark
brown” 0.2).

In one experiment, the animal database was
changed according to this scheme (regarding colors
and sizes) and the system tested with it. As can
be seen from Fig. 6 the results are nearly identical to
those for the original animal database. This indicates
that the algorithms proposed are directly applicable
to databases of this type as well.

The system has also been tested on some more
realistic tasks such as diagnosis of car engines and
telephone exchange computers. In the latter case,
one malfunctioning circuit card out of 36 is to be
identified from an error vector of 122 bits. The
database, consisting of 442 examples, is not com-
pletely unambiguous (malfunctioning of different
cards could give rise to the same symptoms) and in
general there are only small differences between the

15

13.58 13.44

Average number of questions

[l Fraction of incorrect classifications

Fig. 6. Results for the “fuzzy” database (denoted by “Z)
compared to the results for the normal animal database
(“A”). The difference is minimal both for the number of
questions and for the fraction of misclassifications.

vectors from different fault classes. A system based
on a traditional approach manages to classify about
half of the examples correctly. The Bayesian neural
network manages 75% given all bits in the vector at
once. The query-reply system classifies 76% correctly
after having asked for, in average, only 36 bits (about
30%) per example. This shows that the system is
quite good at picking out just those questions that
are relevant for diagnosis.

7. Discussion and Conclusions

This study shows that it is possible to achieve an
efficient, robust and flexible query-reply system
based on a Bayesian artificial neural network. We
claim that a system of the kind presented may be a
powerful alternative to rule-based expert systems for
classification and diagnosis tasks.

One example of an advantage of this solution over
a traditional rule-based one is the natural format
of the training sets. Instead of trying to extract
some, often artificial, rules that represent the expert
knowledge, we just show the neural network a set of
examples of the objects to classify together with their
labels. Because the artificial neural network does not
work with explicit rules, it does not have the same
problem as rule-based systems with inconsistencies
in the data. Exceptions and ambiguities are handled
in a natural way. Further, in spite of not using
the rule-based approach, it is possible to get simple
explanations from the system in terms of the primary
causes for the system’s conclusions.

There are a few advantages with the extremely
simple interface between the network and the ques-
tion generation. At each step, all currently known
facts are fed into the network after which the ques-
tion generating strategies decide from the resulting
state of the network which is the best question. This
means that it is possible to avoid answering a ques-
tion, to supply some other information not at all
related to the question posed, or to change a previous
reply. Further, initially providing some known facts
makes the query session start from there. In each
case, the system will generate the best hypothesis
and the best question given the information currently
available. This dynamic adaptation of questions to
known facts together with the capacity to handle
uncertain user input as well as “fuzzy” features in
the training set makes the system very flexible.

Here we have only considered attributes in the
database that are categorical (even though they
may have graded input in terms of probabilities).

However, a natural extension of the model is to al-
low continuous valued attributes. This can be done
via a finite mixture of density functions implement-
ing a kind of soft “interval coding”.!®*16 Since in
many applications there are both continuous valued
and categorical attributes, this possibility makes the
system interesting for a broader set of tasks.

There are also problems with a one-layer ar-
chitecture. The one-layer Bayesian neural network
model is derived with the assumption of independent
attributes. If this assumption is violated, the sys-
tem may still find the best hypothesis (due to the
fault tolerance) but since the estimation of proba-
bilities gets less accurate, the generated questions
will be less effective. To overcome this, more layers
(“hidden layers”) are required in the network. Al-
though not treated here, it is possible to extend
the one-layer Bayesian neural network in a natural

Appendix: The Animal Database

Query-Reply System Based on Bayesian Neural Network 265

way to a multilayer architecture.!”1% This gives the
system the capability to efficiently handle situations
where the attributes are correlated.

We believe that the approach demonstrated here
has a considerable potential for use in many practical
applications. Especially the high fault tolerance
gives the system the possibility to move out from
toy domains to real and noisy environments.

Acknowledgements

This work has been supported by Ellemtel Tele-
communication Systems Laboratories (Ellemtel
Utvecklings AB) and the Swedish National Board
for Industrial and Technical Development (STU-87-
01224P). We also want to thank Magnus Stensmo
together with whom much of the evaluation of
strategies was done.

This is the animal database which is used in the examples (listed in its usual lisp-format).

((bat oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
land-living four-legged flying eats-flies very-small grey tail)

(rat oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living~offspring
gnav-teeth tail land-living four-legged eats-garbage small brown)

(rabbit oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
land-living four-legged jumping short-tail eats-grass gnaw-teeth very-long-ears small white)
(elephant oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring

four-legged land-living eats-grass robust big-ears proboscis tusked tail very-big grey)
(horse oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged hoofs eats-grass land-living odd-toed running big brown tail)

(antelope oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged hoofs short-tail eats-grass pair-toed land-living ruminanting lissom antlered running
medium light-brown)

(giraffe oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged hoofs eats-grass pair-toed land-living ruminanting long-neck tail big yellow)

(camel oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged hoofs eats-grass pair-toed land-living gibbous tail big yellow)

(pig oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged hoofs big eats-grass pair-toed land-living digging tail curl-tail pink)

(valrus oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged eats-animals water-living tusked very-big brown)

(skunk oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged land-living eats-carrion tail smells-terrible medium black)

(hyena oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged land-living long-nosed short-tail eats-carrion medium brown)

(dog oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged eats-animals land-living long-nosed tail lissom medium brown barks)

(bear oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged short-tail eats-animals land-living long-nosed robust big brown)

(lion oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged eats-animals land-living short-nosed tail lissom climbing big yellow)

266 A. Holst & A. Lansner

(cat oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
four-legged eats-animals land-living short-nosed tail lissom climbing small black)

(ape oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur living-offspring
land-living short-tail eats-anything two-legged short-nosed human-like big black)

(kangaroo oxygen-consuming moving nervous-system spine CNS blood warm-blooded fur land-living
four-legged living-offspring pouch jumping eats-grass medium tail light-brown)

(duck oxygen-consuming moving nervous-system spine CNS blood warm-blooded wings nib two-legged
feathers eggs flying eats-grass small white)

(pelican oxygen-consuming moving nervous-system spine CKS blood varm-blooded wings nib two-legged
feathers eggs flying eats-fish medium white)

(penguin oxygen-consuming moving nervous-system spine CHS blood warm-blooded wings nib two-legged
feathers eggs not-flying eats-fish water-living small black)

(ostrich oxygen—consuming moving nervous-system spine CNS blood warm-blooded wings nib two-legged
feathers eggs not-flying eats-grass running big black)

(crocodile oxygen-consuming moving nervous-system spine CNS blood cold-blooded eggs tail vater-living
four-legged plates eats—animals brown big tail)

(sea-turtle oxygen-consuming moving nervous-system spine CNS blood cold-blooded eggs tail shell
four-legged eats-grass water-living big brown)

(frog oxygen-consuming moving nervous-system spine CNS blood cold-blooded water-living four-legged
eggs very-small jumping eats-flies green)

(housefly oxygen-consuming moving nervous-system exoskeleton articulations eggs extremely-small
trakeas feelers six-legged wings flying proboscis two-winged fat-body black)

(mosquito oxygen-consuming moving nervous-system exoskeleton articulations eggs extremely-small
trakeas feelers six-legged wings flying proboscis two-winged thin-body light-brown)

(butterfly oxygen-consuming moving nervous-system exoskeleton articulations eggs extremely-small
trakeas feelers six-legged wings flying proboscis four-winged fat-body yellow)

(beetle oxygen-consuming moving nervous-system exoskeleton articulations eggs extremely-small
trakeas feelers six-legged wings flying biting four-winged fat-body black shell)

(dragonfly oxygen-consuming moving nervous-system exoskeleton articulations eggs extremely-small
trakeas feelers six-legged wings flying biting four-winged thin-body brown)

(grasshopper oxygen-consuming moving nervous-system exoskeleton articulations eggs extremely-small
trakeas feelers six-legged wings four-winged flying biting jumping fat-body green)

(spider oxygen-consuming moving nervous-system exoskeleton articulations eggs extremely-small
vingless pipe-trakeas feeler-less eight-legged fat-body black))

References 7. F. Kozato and Ph. de Wilde, “How neural networks

1. R. Davis and D. B. Lenat, K. ledge-Based Systems help rule-based problem solv-in‘g,” in Proc‘. ICANN-
in Artificial Intelligence (McGraw-Hill, New York, 91, eds. T. Kohonen, K. Mikisara, O. Simula and
1982). J. Kangas (North-Holland, 1991) pp. 465-470.

2. 1. R. Quinlan, “Induction of decision trees,” Machine 8. A. Lansner and O. Ekeberg, “A one-layer feedback,
Learning 1, 81-106 (1986). artificial neural network with a Bayesian learning

3. I. Kononenko, “Bayesian neural networks,” Biol. rule,” Int. J. Neural Syst. 1:1, 77-87 (1989).
Cybern. 61, 361370 (1989). 9. M. L. Minsky and S. A. Papert, Perceptrons (MIT

4. H. G. C. Trivén, “A neural network approach to Press, 1988).
statistical pattern classification by “semiparametric” 10. A. Holst and A. Lansner, “A Bayesian neural net-
estimation of probability density functions,” IEEE work with extensions,” Technical Report TRITA-
Trans. Neural Networks 2:3, 366-377 (1991). NA-9325, Department of Numerical Analysis and

5. R. M. Goodman, C. M. Higgins, J. W. Miller and
P. Smyth, “Rule-based neural networks for classifi-
cation and probability estimation,” Neural Comput.
4:6, 781-804 (1992).

6. M. Stensmo, “A query-reply classification system

Stockholm, Sweden (1993).
11. P. Orponen, P. Floréen, P. Myllymiki and H. Tirri,

based on an artificial neural network,” Technical with Bayesian reasoning,” Technical Report, Depart-
Report TRITA-NA-9107, Department of Numerical ment of Computer Science, University of Helsinki,
Analysis and Computing Science, Royal Institute of Finland (1990).

Technology, Stockholm, Sweden (1991). Licentiate 12. R. O. Duda and P. E. Hart, Pattern Classification

degree thesis. and Scene Analysis (Wiley, New York, 1973).

Computing Science, Royal Institute of Technology,

“A neural implementation of conceptual hierarchies

13. 1. Kononenko, “Bayesian neural network-based ex-

pert system shell,” Int. J. Neural Networks 2:1,
43-47 (1991).

14. A. Holst, “A comparison between question genera-

tion strategies in a query-reply system based on a
one-layer neural network,” Master’s thesis, Depart-
ment of Numerical Analysis and Computing Science,
Royal Institute of Technology, Stockholm, Sweden
(1990). In Swedish, TRITA-NA-E9063.

15. A. Holst, “Further question generation strategies in

a query-reply system based on a one-layer neural
network,” Technical Report TRITA-NA-E9206, De-

Query-Reply System Based on Bayesian Neural Network 267

16.

17.

partment of Numerical Analysis and Computing
Science, Royal Institute of Technology, Stockholm,
Sweden (1992). In Swedish.

H. G. C. Trivén, “On pattern recognition appli-
cations of artificial neural networks,” PhD thesis,
Department of Numerical Analysis and Computing
Science, Royal Institute of Technology, Stockholm,
Sweden (1993). _

A. Lansner and O. Ekeberg, “An associative network
solving the “4-Bit ADDER problem,” in Proc. IEEE
First Annual Int. Conf. on Neural Networks (1987)
pp. 11-549-11-556.

