
The Radial Basis Function Network

March 5, 2006

Radial Basis Functions (RBFs)

I Three layers of nodes in the network.

I It firs a curve to the data using a statistical measure for the
quality of fit. Unlike BP which uses stochastic approximation.

I Hidden unit activation is determined by the distance between
the input vector and a prototype. Distance from a prototype
is a form of clustering.

Training

I There are two stages to training:

I 1.) Parameters of the bias functions (hidden units) are
determined using unsupervised learning. The first layer of
weights are trained using input data only.

I 2.) Calculate the second weight layer values. Create a linear
mapping from hidden layer activations to the target output
patterns.

I Both steps are relatively fast when compared to BP.

High Dimensionality Mapping

I The rationale for the two processing steps, the first is
non-linear and the second linear, is attributed to Cover
(1965). This work states that a pattern classification problem
which is cast into a high dimensional space is more likely to
be linearly separable.

I The hidden units in the RBF represent the dimensionality into
which the input pattern is transformed. This is why RBF
networks normally have “large” numbers of hidden units.
Input patterns are transformed into a high dimensional space
in the hidden layer and they are then linearly separated to
classify the results.

I Also related to the dimensionality of the hidden unit space is
the ability of the network to approximate a smooth
input-output mapping. Higher dimensionl implies a more
accurate and smoother mapping.

Exact Interpolation

I Exact Interpolation is a technique for interpolating a set of
data points such that every input point is mapped onto a
target. Every input point must appear as part of the system
used to model the data without any averaging or smoothing.

I This is not what is desired in Radial Basis Function networks.

The RBF represented by the solid line hasn N data points and N
basis functions (one per dot).

Exact Interpolation Activation

I The input vectors are labeled xn.

I The activation function is:

h(x) =
∑
n

wnθ(||x − xn||)

where
∑

n wn is a linear combination of basis functions, θ are
the basis functions which are described using ||x − xn|| the
distance between input vector x and training pattern xn.

I Where θ(x) is often a Gaussian:

θ(x) = exp(− x2

2σ2
)

and σ is a smoothing parameter.

I Other functions for θ(x) can be used.

I For Exact Interpolation, only one value of σ is used.

I More than one value for σ can be used in an RBF. The
quantity of smoothing may be consistent or vary over the
curve. Variable smoothing values are useful for data which has
more noise or variation within the samples and require more
smoothing.

Problems with Exact Interpolation

I Interpolating every point is not desirable. Noisy data will
often produce oscillations in the functions leading them to be
unsmooth.

I A better generalization can be produced and a smoother curve
can be produced if the noise is averaged.

I We would also like to reduce the number of basis functions to
less than the number of input patterns.

Radial Basis Function Networks

I Changes to the Exact Interpolation algorithm which create an
RBF.

I 1.) The number of basis functions M is much less than the
number of input patterns N.

I 2.) The centres of the basis functions are not constrained to
those given by the input vectors. Determining centres
becomes part of the training process.

I 3.) Instead of using a common with parameter σ, each basis
function has its own with σj whose value is determined during
training.

I 4.) A Bias parameter is included in the linear sum. This
compensates for differences between the average of the basis
function activations and the average of the targets.

RBF Activation

I The equations for RBF activation is:

yk(x) =
M∑

j=1

wkjθj(x) + wko

where:

θj(x) = exp(−
||x − uj ||2

2σ2
j

)

and x is the d dimensional input vector with elements xi , and uj is
the vector determining the centre of the basis function θj .

Network Training

I There are two stages to training:

1. determining the parameters of the basis functions through
unsupervised training using only the input data set

2. once basis functions have been determined and their
parameters are set then the second layer weights wkj are
determined using both input and output data (hidden units are
activated using an input pattern and the weights to the output
layer are then modified to produce the desired output for the
given input)

Output Error Calculation

I Training step 2 is the easier of the two steps as it involves
solving a set of linear equations.

I The error at the output is normally calculated using a
sum-of-squares function:

E =
1

2

∑
n

∑
k

yk(xn) − tn
k

2

where n is the number of input patterns, k is the sum of the
values for each output node k, yk(xn) is the achieved output
for node k given input xn and tn

k is the desired output for
node k given input n. This calculates the difference between
the desired and achieved outputs for all output patterns and
for all output nodes.

Output Layer Notes

I The output weight layer is normally solved using singular
value decomposition.

I Other non-linear activation functions applied to the outputs
and other choices for error functions are possible are possible
but generally not used. This would lead to determining the
second weight layer as a non-linear problem and would be a
much more difficult non-linear optimization.

Basis Function Optimization (First Layer Training)

I The operations performed can be described in terms of several
different techniques including:

I regularization theory
I noisy interpolation theory
I kernel regression
I function approximation
I estimation of posterior class probabilities

I All of these methods suggest that basis functions parameters
should be chosen to represent the probability density of the
input data.

I The training procedure which results is an unsupervised
optimization of the basis function parameters. The basis
function centres uj can be regarded as prototypes for the
input vectors.

I Large amounts of labeled data can be difficult to obtain. The
RBF can use large amounts of unlabeled data to train the first
layer and a relatively small amount of labeled data to train the
second layer.

Problems with Full Problems Spaces

I A problem occurs is the basis functions are required to fill the
problem space. In this case, the number of basis functions
increases exponentially with the dimension of the problem.
This situation requires long training times and a large number
of training patterns.

I The RBF performs better if it isn’t required to represent the
entire problem space and only needs to work in a small subset
of it.

I The cost of this problem is particularly high when there are
input variables which have a high variance but which have
little effect in determining the output. Input variables with
this property are not uncommon.

I When basis functions are selected using only input data there
is no way to identify if the patterns are relevant.

Density Function Drawbacks

I The optimal choice for basis function parameters using density
estimation may not be optimal for creating the mapping to
the output values. This occurs when the density estimation
doesn’t represent the real density and centres.

Determining Basis Function Centres (uj)

Random Selection

I Select a random subset of input vectors from the training set.

I Doesn’t attempt to provide an optimal density estimation.
Can require an overly large number of basis functions to
achieve the desired performance.

I Often used to provide a set of starting values which can be
iteratively adapted to produce a better solution.

All Data

I Use all data points as basis function centres and selectively
remove centres which have the least disruption on
performance.

I Both of these methods provide only the centres uj but not the
width parameter σJ . This is often set equal to a multiple of
the average distance between the centres. This causes the
functions to overlap and therefore provides a relatively smooth
representation of the distribution of the training data. As all
widths are equal, this may not be the best solution.

I These methods do no supply optimal parameters but they are
very fast.

Determining Basis Function Centres (uj)

Orthogonal Least Squares

I Involves starting with one basis function and adding more
which are selected to create the greatest reduction of error.

I Basis functions centres are taken from data points. Centres
are selected by constructing a set of orthogonal vectors in the
space spanned by the hidden unit activations for each training
pattern.

I This allows the choice of the next centre which will produces
the greatest reduction in error. Orthogonal vectors are those
which are most “different” from those already chosen which
should reduce error by the largest amount.

I If the algorithm is allowed to run to completion then it will
select all data points. Good generalization requires that it
stop before this occurs.

Determining Basis Function Centres (uj)

Clustering Algorithms

I Instead of selecting a subset of data points for the centres we
can find a set of clusters which better represent the
distribution.

I Data points for centres may not be the best choice. Cluster
centres are not required to be data points.

I K-means clustering provides K centres where K must be
decided in advance. The algorithm divides the data into K
subsets so that the distance between cluster centres and
points is minimized.

I Selecting a value for K may not be obvious.

I An alternative to K-means clustering is to use a neural
network which performs a similar function. The Kohonen
Self-Organizing Feature map generates a set of prototypes
vectors which represent input vector-space values. These
prototypes can be used to create basis function centres.

Determining Basis Function Centres (uj)

Gaussian Mixture Models

I The problem is one of density estimation where the basis
functions are the components of a mixture of density model
whose parameters are optimized by maximum likelihood.

I A purely statistical technique using no heuristics.

I Density is modeled using:

p(x) =
M∑

j=1

P(j)θj(x)

where P(j) is the prior probabilities for data points to have
been generated by the j th component and θj(x) are the basis
functions.

I The likelihood function is maximized with respect to P(j) and
the parameters of θj(x). This is done by computing the
derivatives of the likelihood function with respect to the
parameters and then optimizing them.

I Parameters can also be found using re-estimation methods
based on expected maximization procedures.

Comparing RBFs and Back-Propagation (Multi-Layer
Perceptron)

I Both approximate arbitrary non-linear functional mappings of
multidimensional spaces.

I Mappings are created through combinations of multiple
functions.

I Hidden units in BP are the sum of inputs transformed through
a threshold function. Hidden unit activation in an RBF uses a
distance to a prototype followed by a local transformation.

I BP uses a distributed representation where many hidden units
contribute to a solution for a given input. The training
process is highly non-linear and there are problems with local
solutions. This can lead to slow convergence. RBFs use
localized basis functions and typically only a few hidden units
have significant activations.

I BP networks can have multiple layers of weights which can
vary in many ways. RBFs have a simple three layer structure
which does not change.

I BP generally uses one training method where RBFs can
determine the basis functions through many methods.

I All parameters in BP are determined simultaneously using a
single global supervised training strategy. RBFs are training in
two stages, the first of which is unsupervised and the second
is a linear supervised method.

