Alternatives to BackProp

BackPropagation Basic Principle

Faster Alternatives

The Problem The Solution

Measuring Performance

Generalization

Regularization

Limiting the Complexity Punishing Large Weights Optimal Pruning Örjan Ekeberg BackPropagation Faster Alternatives Measuring Performance

gularizatio

ANN fk

BackPropagation Basic Principle

Faster Alternatives The Problem The Solution

Measuring Performance Generalization

Regularization

Limiting the Complexity Punishing Large Weights Optimal Pruning Örjan Ekeberg

ANN fk

BackPropagation

Measuring Performance

ANN fk

Örjan Ekeberg

BackPropagation Basic Principle

Faster Alternatives

Measuring Performance

Regularizatio

ANN fk Örjan Ekeberg

BackPropagation Basic Principle Faster Alternatives

> suring formance

- Multilayer feedforward network
- Arbitrary decision boundaries/functions

- Classification
- Function approximation
- Trained with prescribed outputs
- ► Batch or Incremental learning

- ► All computation can be performed locally
- Slow convergence
- Requires short step lengths

ANN fk Örjan Ekeberg

Basic Principle

Faster Alternatives

Learning:

Minimize the error (*E*) as a function of all weights (\vec{w})

- 1. Compute the direction in weight space where the error increases most: $\operatorname{grad}_{\vec{w}}(E)$
- 2. Change the weights in the opposite direction

 $w_i \leftarrow w_i - \eta \frac{\partial E}{\partial w_i}$

BackPropagation Basic Principle

Faster Alternatives The Problem The Solution

Aeasuring Performance Generalization

Regularizatio

Limiting the Complexity Punishing Large Weights Optimal Pruning

ANN fk

Örjan Ekeberg

BackPropagation Faster Alternatives The Problem The Solution Measuring Performance

Regularization

ANN fk

Örjan Ekeberg

BackPropagation Basic Principle Faster Alternative:

Measuring Performance

Regularizatio

Does the gradient point in the right direction?

- Incremental learning
- ► Large steps
- High-dimensional space

Idéa: Make use of the second derivative too

Ordinary gradient following

$$\Delta w = -\eta \frac{\partial E}{\partial w}$$

Newtons method

$$\Delta w = \left(\frac{\partial^2 E}{\partial w^2}\right)^{-1} \frac{\partial E}{\partial w}$$

Makes it necessary to invert a very large matrix!

ANN fk Örjan Ekeberg BackPropagation Faster Alternatives The Problem The Solution Measuring Performance Regularization

ANN fk

Örjan Ekeberg

aster Alternative

The Solution

- Normalization
- De-correlation

These techniques only help on the global scale

Works for "toy-problems" but not when there is a lot of structure in the task

Conjugate Gradient Method

- Established numerical method
- Incremental updates are made in directions where they do not counteract each other
- Does not require explicit computation of the second derivative

ANN fk

Örjan Ekeberg

BackPropagation Faster Alternative The Problem The Solution Measuring Performance

ANN fk

Örjan Ekeberg

BackPropagation Faster Alternativ The Problem **The Solution** Measuring Performance Conjugate Gradient Method:

- Initiate:
 - $\vec{r} \leftarrow -\frac{\partial E}{\partial \vec{w}}$ $\vec{s} \leftarrow \vec{r}$
- Repeat:
 - Find η which minimizes $E(\vec{w} + \eta \vec{s})$
 - $\vec{w} \leftarrow \vec{w} + \eta \vec{s}$ $\vec{r} \leftarrow -\frac{\partial E}{\partial \vec{w}}$ $\beta = \max\left[\frac{\vec{r}^T \cdot (\vec{r} - \vec{r}_{old})}{\vec{r}_{old}^T \cdot \vec{r}_{old}}, 0\right]$ $\vec{s} \leftarrow \vec{r} + \beta \vec{s}$

BackPropagation Basic Principle

Faster Alternatives The Problem The Solution

Measuring Performance Generalization

Regularization

data set

Limiting the Complexity Punishing Large Weights Optimal Pruning

Separation of training and testing data

Training

Performance should always be measured on a separate test

Testing

Örjan Ekeberg

ANN fk

BackPropagation

Measuring Performance Generalization

ANN fk

Örjan Ekeberg

ackPropagation aster Alternatives

Measuring Performance Generalization Regularization

ANN fk Örjan Ekeberg

BackPropagation Faster Alternatives Measuring Performance Generalization

How can one measure the performance of a neural network?

- Evaluation of a classifier
- Positive and negative errors
- The error for evaluation does not have to be the same as the error minimized during learning

How large should the test data set be?

The Problem The Solution

Regularization

Limiting the Complexity Punishing Large Weights **Optimal Pruning**

ANN fk Örjan Ekeberg Faster Alternatives Generalization

ANN fk

Örjan Ekeberg

Faster Alternatives

Performance

Regularization

Limiting the Complexity Punishing Large Weights Optimal Pruning

Maximal utilization of available data

Average over different partitionings

Many weights \Rightarrow Bad generalization

Risk of making errors

- $\triangleright \mathcal{E}_s$ Empirical risk (measurable)
- $\triangleright \mathcal{E}_c$ Structural risk

$$R(\vec{w}) = \mathcal{E}_{s}(\vec{w}) + \lambda \mathcal{E}_{c}(\vec{w})$$

λ — regularization parameter

ANN fk

Örjan Ekeberg

Measuring Performance Generalization

ANN fk

Örjan Ekeberg

Measuring Performance

Limiting the Complexity

Augment the cost function with a complexity term Weight Decay (Hinton, 1989):

 $\mathcal{E}_c = \sum_i w_i^2$

Weight Elimination (Weigend et al., 1991):

$$\mathcal{E}_{c} = \sum_{i} \frac{(w_{i}/w_{0})^{2}}{1 + (w_{i}/w_{0})^{2}}$$

Optimal Brain Surgeon

(Hassibi et al., 1992)

- Improved version of Optimal Brain Damage
- ▶ Takes into account that other weights may need readjustment
- Requires an estimate of mixed second derivatives (Hessian-matrix)
- ► Can be efficiently estimated using the errors of the individual patterns

ANN fk

Örjan Ekeberg

aster Alternative

Punishing Large Weights

Optimal Pruning

Alternative technique

Remove "unnecessary" weights after training

Optimal Brain Damage (LeCun et al., 1990)

Idéa: Remove the least important weight

- Estimate how much the error increases when a weight is set to zero
- $\blacktriangleright \Delta w_i = -w_i$
- Error increase $-w_i \cdot \frac{\partial \mathcal{E}}{\partial w_i} = 0$ (since BP has converged) Oops
- Second derivative $\frac{w_i^2}{2} \cdot \frac{\partial^2 \mathcal{E}}{\partial w_i^2}$

ANN fk

Örjan Ekeberg

Faster Alternative

Optimal Pruning