Mixture of Experts

Committee Machines Averaging

Specialized Experts

Mixture of Experts Expectation Maximization

ANN fk Örjan Ekeberg Committee Machines Averaging Specialized Experts Mixture of Experts Expectation Maximization

ANN fk Örjan Ekeberg

Specialized Experts

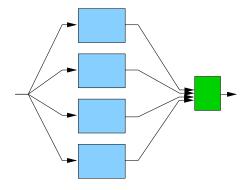
Committee Machines

Committee Machines Averaging

Specialized Experts

Mixture of Experts Expectation Maximization

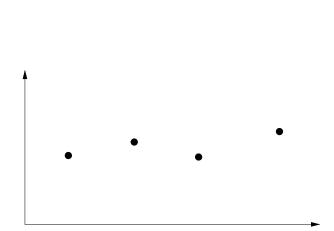
Örjan Ekeberg


Committee Machines Averaging Specialized Experts Mixture of Experts Expectation

ANN fk

ANN fk

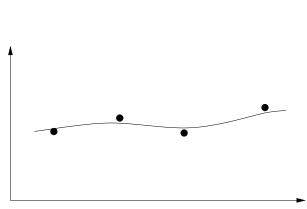
Örjan Ekeberg


Committee Machines Averaging Specialized Experts Mixture of Experts Expectation Maximization

- Multiple networks
- Output averaging

Two ways of utilizing multiple networks

- Smoothen peculiarities of individual nets
- ► Make the networks specialize


ANN fk Örjan Ekeberg

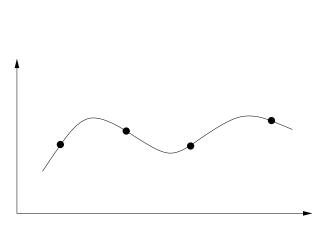
Specialized Experts

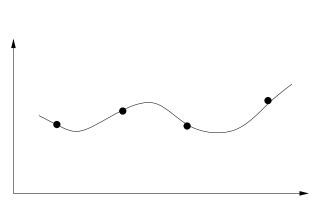
Averaging

How does over-training affect a network?

- Over-training can be avoided by early stopping
- ► Results in systematic errors
- Over-trained networks have less error but large variance
- Averaging can reduce this variance

ANN fk

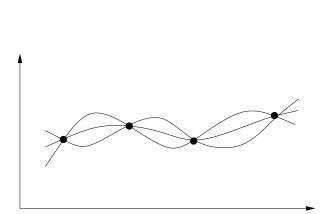

Örjan Ekeberg


Committee Machines Averaging Specialized Experts Mixture of Experts Expectation Maximization

ANN fk

Örjan Ekeberg

Committee Machines Averaging Specialized Experts Mixture of Experts Expertation


ANN fk

Örjan Ekeberg

Committee Machines Averaging Specialized Experts

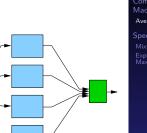
ANN fk Örjan Ekeberg

Averaging Specialized Experts

ANN fk Örjan Ekeberg

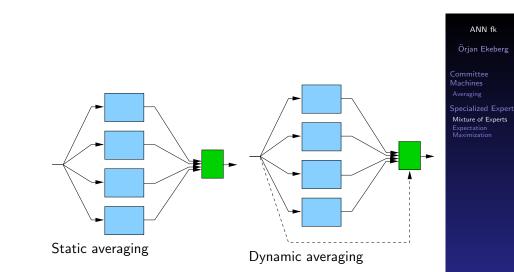
ANN fk

Örjan Ekeberg


Specialized Experts

Averaging

Averaging Specialized Experts


Ensemble Averaging

- ► Train several networks
 - Same topology
 - Same training data
 - Different initial weights
- ► Train until convergence
- Average any output over all networks
- ► The networks tend to fall in different local minima
- Averaging smoothens the variations out

Committee Machines Averaging

Specialized Experts Mixture of Experts Expectation Maximization

ANN fk

Örjan Ekeberg

Committee Machines Averaging Specialized Expert Mixture of Experts Expectation Maximization

ANN fk Örjan Ekeberg

ANN fk

Örjan Ekeberg

Specialized Experts

Expectation Maximization

Machines Averaging Specialized Experts Mixture of Experts

World Model

- ► Data comes from several sources
- Each source generates data with a simple distribution
- Different sources have different probabilities for generating data

Idéa:

- Each network should be an expert of one source
- ▶ The gate network chooses which expert to trust

Simple Mixture-of-Experts Network

Expert Network — Single layer, Linear

 $y_k = \vec{w}_k^T \vec{x}$

Gate Network — Weighted according to SoftMax

$$y = \sum_{k} y_k \phi(\vec{a}_k^T \vec{x})$$
 där $\phi(u_k) = \frac{e^{u_k}}{\sum_i e^{u_i}}$

Training a Mixtures-of-Experts network

- ► Gradient Decent
- Expectation Maximization

Regard the source of the data as unobservable variables

Expectation Maximization

Repeat

- 1. Estimate the probability for each source having generated each pattern
- 2. Update the source model parameters to match these estimates

Gradient Decent

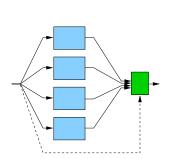
ANN fk

Örjan Ekeberg

Specialized Expert

Mixture of Experts

ANN fk


Örjan Ekeberg

Specialized Expert

Expectation Maximization

Expectation Maximization

- Maximize Log-Likelihood for observed data
- ► Function of the weights

- Each expert is updated in proportion to the trust from the gate network
- ▶ The gate is updated so that the expert weighting better captures how well the experts are actually doing

E-step

Calculate the probability that a pattern x comes from source u given the source model parameters $\hat{\Theta}$

$$P(u|x, \hat{\Theta})$$

► M-step

Compute new parameters Θ that maximizes expected likelihood

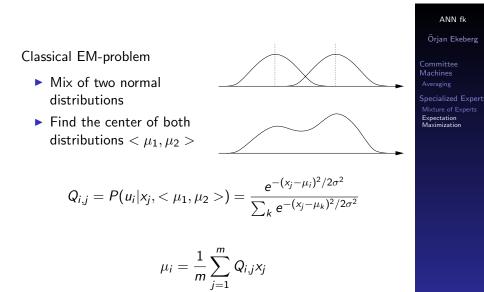
$$\Theta = \operatorname*{argmax}_{\Theta} \sum_{u} P(u|x, \hat{\Theta}) \log P(x, u|\Theta)$$

ANN fk

Örjan Ekeberg

Specialized Expert Expectation Maximization

ANN fk


Örjan Ekeberg

pecialized Expert

Mixture of Experts

Aachines

Expectation Maximizatio

