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I Multiple networks

I Output averaging
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I Smoothen peculiarities of individual nets

I Make the networks specialize
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Örjan Ekeberg

Committee
Machines

Averaging

Specialized Experts

Mixture of Experts

Expectation
Maximization

How does over-training affect a network?

I Over-training can be avoided by early stopping

I Results in systematic errors

I Over-trained networks have less error but large variance

I Averaging can reduce this variance
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Örjan Ekeberg

Committee
Machines

Averaging

Specialized Experts

Mixture of Experts

Expectation
Maximization

ANN fk
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Ensemble Averaging

I Train several networks
I Same topology
I Same training data
I Different initial weights

I Train until convergence

I Average any output over all
networks

I The networks tend to fall in different local minima

I Averaging smoothens the variations out
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Static averaging
Dynamic averaging
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World Model

I Data comes from several sources

I Each source generates data with a simple distribution

I Different sources have different probabilities for
generating data

Idéa:

I Each network should be an expert of one source

I The gate network chooses which expert to trust
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Simple Mixture-of-Experts Network

Expert Network — Single layer, Linear

yk = ~wT
k ~x

Gate Network — Weighted according to SoftMax

y =
∑
k

ykφ(~aT
k ~x) där φ(uk) =

euk∑
i e

ui
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I Gradient Decent

I Expectation Maximization
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Gradient Decent

I Maximize Log-Likelihood for
observed data

I Function of the weights

I Each expert is updated in proportion to the trust from
the gate network

I The gate is updated so that the expert weighting better
captures how well the experts are actually doing
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Regard the source of the data as unobservable variables

Expectation Maximization

Repeat

1. Estimate the probability for each source having
generated each pattern

2. Update the source model parameters to match these
estimates
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I E-step
Calculate the probability that a pattern x comes from
source u given the source model parameters Θ̂

P(u|x , Θ̂)

I M-step
Compute new parameters Θ that maximizes expected
likelihood

Θ = argmax
Θ

∑
u

P(u|x , Θ̂) log P(x , u|Θ)
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Classical EM-problem

I Mix of two normal
distributions

I Find the center of both
distributions < µ1, µ2 >

Qi ,j = P(ui |xj , < µ1, µ2 >) =
e−(xj−µi )

2/2σ2∑
k e−(xj−µk )2/2σ2

µi =
1

m

m∑
j=1

Qi ,jxj
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