
Arti�cial neural networks, advanced course, DD2433

Lab 1: Accelerated Back Propagation

and Regularisation via Pruning

March 23, 2008

1 Objectives

The primary objective of this exercise is to give you some experience with the
Neural Network Toolbox for Matlab. You will have to look in the on-line doc-
umentation to �nd out how to organise the data, use the di�erent algorithms
and to access the results.

Your task will be to design a multi-layer perceptron for a non-trivial clas-
si�cation task. In doing so, you should also get some experience with back-
propagation and related methods. In particular, you should �nd out:

• How back-propagation learning time scales with problem size

• How much faster learning is with an accelerated method

• How automatic regularisation helps

2 Dataset

All initial experiments will be done using the �wine� dataset. This dataset
consists of 178 samples of wine, each comprising 13 real valued attributes cor-
responding to the outcome of various chemical analyses. Each sample belongs
to one of three classes, depending on where the grapes were growing. More
detailed information about the dataset is available in the �le wine.names in the
course directory. The actual sample values are available in the �le wine.data

in a format which can be loaded directly into Matlab with the load command.
When loaded into Matlab, the data is represented as a 178×14 matrix where

each row corresponds to one sample. The �rst column contains the classi�cation;
numbered 1, 2 and 3. The remaining columns contain the 13 attribute values.
Note that the rows are ordered according to class so it is necessary to randomly
permute the rows before separating the training and test sets.

We will regard this as a classi�cation task. Use three output nodes; one for
eash class. You need to transform the class number in the �rst column into a
properly formatted target matrix.

1



3 Tasks

All the tasks will be done using a two-layered feedforward network. You will
have to experiment with the parameters of the algorithms in order to obtain a
network which performs well on both the training set and the testing set.

You will compare the generalization performance using di�erent learning
strategies and di�erent numbers of hidden units. Design your Matlab script so
that you get a scalar measure of the generalization performance as a result. The
natural measure is to calculate the percentage of correctly classi�ed samples in
the test set.

3.1 Training with BackProp

Use the newff, train and sim functions from the NN toolbox to, respectively,
build, train and evaluate the network. Use the built in documentation to �nd
out how to organize the data and call these functions. Start by using the default
parameters, but be prepared to adjust some parameters if necessary.

Try to �nd an optimal number of hidden units where generalisation perfor-
mance is good.

3.2 Conjugate Gradient Method

The Conjugate Gradient Method is a numerical technique which automatically
selects the optimal step length, separately in eash direction in the weight space.
This means that you will have fewer parameters to set manually. In theory, the
Conjugate Gradient Method should converge faster than the ordinary BackProp
algorithm. Use the trainscg function from the NN toolbox to see how much
speedup you get in this case.

Since the algorithm now runs faster, you can a�ord to make a systematic
search to �nd the optimal number of hidden units. Plot the performance (on
the test set) as a function of the number of hidden units.

3.3 Weight Pruning

Pruning is a way of automatically reducing the risk of generating unnecessarily
complex networks. The easiest way to accomplish this is to add a penalty term
to the cost function which penalises large weights. The idea is that large weights
should only be used when absolutely necessary.

In theory, using this kind of regularisation should reduce the problems of
overtraining with a too powerful network, e.g. a network with unnecessarily
many hidden units. Check if this is true in this case. Use the performance
function msereg and analyze the generalisation performance as a function of
the number of hidden units again.

3.4 Generalization performance

We will now switch to a somewhat larger dataset, known as the Protein Lo-

calization Sites database, though it has been modi�ed here by removing the
mitochondrial location (MIT). The database contains attributes giving di�erent
scores obtained in various experimental tests and bioinformatics assays, along

2



with information about the coded localization of the protein. We will use this
information to build a classi�er that, given protein attributes, will tell us what
it believes about the protein's localization in the cell. The data set is available
in the �le yeast.data, which can be loaded directly into Matlab. There are
1022 data points, one per row. The �rst eight columns in each row hold the
input attributes, the last column contains the code for localization.

In this case, you should try the cases with one output node coding local-
ization in its output value, as well one output node per localization (nine).
Which setup works best? Show this in a graph where you have run a network,
with some di�erent number of hidden nodes, but one and nine output nodes
respectively.

Select a reasonable network and network parameters and use the training
method of your choice to train on 876 datapoints. Use the remaining points
as test data to get an estimate of the generalization performance. Repeat this
procedure, each time with di�erent points as test data. Note that you should
have no overlap between the di�erent test sets, which means that you can only
repeat this ten times. Calculate the average and standard deviation of the
performance you get from these seven runs. What can these two values tell us?
Try to disable Matlab's validation and see if you can increase performance, or
if you see e�ects of overtraining.

Good luck!

3


