
Arti�cial neural networks, advanced course, 2D1433

Lab 2: Support Vector Machines

March 13, 2007

1 Background

Support vector machines, when used for classi�cation, �nd a hyperplane 〈w,x〉+
b = 0 that separates two classes of data. Here w and b are parameters specifying
the hyperplane and x are points in space. If the data to be classi�ed is written
as a set of points xi along with class labels yi ∈ {−1,+1} the condition that
the data is correctly classi�ed becomes yi(〈w,xi〉+ b) ≥ 0.

1.1 Primal formulation

Of many potential hyperplanes that might ful�l this basic separation criterion,
we would like to select one such that the distance between the hyperplane and

any data point is as large as possible. This distance is known as the margin.
When the hyperplane is put on a canonical form (more than one parameter set
w, b may describe the same hyperplane) this gives the following optimisation
problem. Since we will later derive a �dual� version, we refer to this as the
primal problem.

minimise: 〈w,w〉 (1)

when: yi(〈w,xi〉+ b) ≥ 1 i ∈ {1..m} (2)

The data points xi closest to the separating hyperplane will be precisely the
ones where equation 2 is satis�ed with equality. Those data points are known
as support vectors. In the non-degenerate case they will be the only data points
directly determining the location of the separating hyperplane, in the sense that
a small displacement of these points would shift the separating hyperplane. The
resulting hard classi�er is:

f(x) = sgn(〈w,x〉+ b) (3)

1.2 Dual formulation

Equivalently, we may write the dual problem. We arrive at the dual problem
by assigning positive Lagrange multipliers αi to the inequality constraints in

1

equation 2. The dual problem becomes:

maximise:
∑m

i=1 αi − 1
2

∑m
i=1

∑m
j=1 αiαjyiyj 〈xi,xj〉 (4)

when:
∑m

i=1 αiyi = 0 (5)

0 ≤ αi i ∈ {1..m} (6)

We may recognise the support vectors also in the dual formulation. They are
the data points for which αi > 0. Once the dual problem has been solved, the
primary variables are retrieved as

w =
m∑

i=1

αiyixi (7)

b = −1
2
〈w,xp + xn〉 (8)

where xp is a positive support vector, having αp > 0 and yp = +1 and xn is a
negative support vector, having αn > 0 and yn = −1. Alternatively, for better
numerical precision, all support vectors may be used to calculate the bias;

b =
1

|{i : αi 6= 0}|
∑

i: αi 6=0

(yi − 〈w,xi〉) (9)

where the denominator in the �rst factor is the count of support vectors.

2 Build your own SVM

In this part of the lab, you will build your own support vector machine, by
directly solving the above optimisation problems. You will be doing this twice,
once using the primal formulation, once using the dual formulation.

The data you will be working on is linearly separable, available in Matlab

format in the �le linsep.mat. The data �le contains two classes. The posi-
tive instances are listed in the data structure classA, the negative instances in
classB. For your convenience, there are also ready-made data structures x and
y. They contain all of the data points and class labels, respectively. The vector
permute describes how they were created from classA and classB.

2.1 Primal formulation

You will perform a constrained optimisation in the variables [w, b]. You may
use the Matlab function fmincon for this. This function takes as arguments
an objective function and the applicable constraints. You should not have any
problem passing the objective function 〈w,w〉 = wT w to fmincon. Just de�ne
it in a separate myfun.m �le and pass it as @myfun. Remember that the elements
of the vector w make up the �rst part of the variable X, in which you are
optimising, the bias b is the �nal element. The constraints (equation 2) are
linear. Therefore, they may be expressed as a matrix A and a vector B; the
second and third parameters to fmincon. (Hint: The vector B can be made to
have all its elements equal −1.) When the optimisation has �nished, you may
�nd which inequality constraints are active in the return value LAMBDA.ineqlin.

2

Task: Plot the data points for the two classes along with the optimal
separating hyperplane. Mark the support vectors in the plot, e.g.
by circles; plot(x,y,'o'). Make sure that your plot is readable in
black and white. You may use the below code to do some of the
plotting.

Question: What is the dimension of the w vector?

Question: How many support vectors do you get?

In the code below, myfunction is your classi�er function, which is equation 3,
without the thresholding �sgn� part. It should accept an x vector as its �rst
argument. Other arguments that your function requires, such as the w vector
and the bias b, can be listed last in the call to meshapply, as indicated. The
function �le meshapply.m is found in the lab directory.

clf; hold on;

[X,Y] = meshgrid(min(x(:,1)):.1:max(x(:,1)), ...

min(x(:,2)):.1:max(x(:,2)));

Z = meshapply(@myfunction, X, Y, [other args]);
contour(X, Y, Z, [-1 0 1]);

plot (classA(:,1), classA(:,2), 'r*')

plot (classB(:,1), classB(:,2), 'b+')

2.2 Dual formulation

This time, the optimisation happens over the Lagrangian vector α. What is
its dimension? Again, the Matlab function fmincon may be useful to solve the
problem. If you would like, you can calculate the matrix Kij := 〈xi,xj〉 (or even
Mij := yiyjKij) in advance and have the objective function FUN access K or M
as a global variable. Note that you need linear equality constraints in addition
to inequality constraints. You can accomplish this by using the parameters Aeq
and Beq of fmincon.

Task: Again plot the data points, the separating hyperplane and
mark the support vectors.

Question: How many support vectors do you get this time?

Question: Is the separating hyperplane di�erent from what you
got using the primal formulation? Can you see from looking at the
geometry of the problem (the data points near the border between
classes) if there is a unique maximal margin hyperplane in this case?

3 Linearly non-separable data

The above methods only work for linearly separable data.

Task: Redo the above experiments using the data set nlinsep.mat.
Do not attempt to �x your code, just run it naively for the new data.

Question: What happens when you try to apply the primal and
dual approaches, respectively?

3

When data are not linearly separable, some data points will necessarily be mis-
classi�ed. We loosen the bounds in equation 2 to allow for this, but any deviation
is penalised in a new objective function (equation 10). The primal problem now
reads

minimise: 〈w,w〉+ C
∑m

i=1 ξµ
i (10)

when: yi(〈w,xi〉+ b) ≥ 1− ξi i ∈ {1..m} (11)

ξi ≥ 0 (12)

The ξi measure the degree of misclassi�cation for each data point. Note that
they are new variables in the problem. They will be zero for data points that
are correctly classi�ed and outside of the margin. C (a coe�cient) and µ (an
exponent) are positive parameters that determine how misclassi�cations are
penalised.

The dual formulation becomes particularly simple when the parameter µ =
1, so for simplicity we will constrain ourselves to this case for the lab. When
µ = 1, the dual problem is the same as before, except for the constraints on the
dual variables. These are now also bounded from above:

0 ≤ αi ≤ C i ∈ {1..m} (13)

In addition, we have to restrict the set of data points over which we compute
the bias to those with ξi = 0, meaning αi ≤ C1. We replace equation 9 with
the following:

b =
1

|{i : 0 < αi < C}|
∑

i: 0<αi<C

(yi − 〈w,xi〉) (14)

3.1 Classify linearly non-separable data

Modify the dual version of your algorithm according to equation 13. You will
have to introduce the new constraints involving C from equation 13 and modify
the way the bias is calculated according to equation 14.

Task: Classify the linearly non-separable data using your modi�ed
algorithm. Plot the data points and the separating hyperplane as
before. Based on your visual impression of how the separating hy-
perplane is positioned, �nd your favourite value for the parameter
C.

Question (optional): How does changing the value of C alter the
placement of the separating hyperplane and the number of support
vectors? Show a representative result. (It may be hard to see what
is happening to the hyperplane; it will be easier in the next section.)

4 The kernel trick

It is often advantageous to map data into a higher-dimensional space, since a
problem that was not linearly separable in the original space, can often be made

1If there are no data points 0 ≤ αi ≤ C we could in principle still compute the bias from

equation 11, but for this lab we will just give up in that case.

4

so in higher dimensional space. The real power of support vector machines comes
from the following realisation: If the data points are mapped to a di�erent space;
x 7→ φ(x) before �nding a hyperplane to separate them, the only operation that
needs to be carried out in the new space is the computation of the inner product
〈φ(x1), φ(x2)〉.

We denote the inner product in the new space φ(<m) as Kφ(x1,x2) :=
〈φ(x1), φ(x2)〉 and refer to it as a kernel function. For every transformation
φ(x) there exists, by this de�nition, a kernel Kφ(x1,x2).

Question (optional): Not every function f(x1,x2) : <m ×<m 7→
< is a kernel. There are many functions that cannot be expressed
as f(x1,x2) = 〈φ(x1), φ(x2)〉 for any transformation φ(x). Can you
�nd an example of a function that cannot be?

4.1 Disposing of w

We now proceed to implement the above claim; that we can express the linear
classi�er in φ-space without any geometric concepts except for the inner product.
To do this, we insert equation 7 into equation 3 and 14, moving scalars out of
the inner product brackets:

f(x) = sgn(
∑

i: αi 6=0

(αiyi 〈xi,x〉) + b) (15)

b =
1

|{i : 0 < αi < C}|
∑

i: 0<αi<C

yi −
∑

j: αj 6=0

αjyj 〈xj ,xi〉

 (16)

Now, we are free to do the separation in any space, without explicit reference
to that space. Just replace the inner product brackets in equations 4, 15 and
16 by the kernel function of your choice and the support vector machine will
automatically carry out its job in the corresponding space.

4.2 Popular kernels

One common family of kernel functions is the polynomial kernels; K(x1,x2) =
(〈x1,x2〉+ 1)d

. Another is radial basis kernels; K(x1,x2) = e−‖x1−x2‖2/(2σ2).
Linear separation in the original space is of course expressed by the kernel
K(x1,x2) = 〈x1,x2〉. Which kernel to choose, and how to set the kernel pa-
rameters, depends on characteristics of the problem data.

4.3 Change your kernel

Rewrite your algorithm again, starting from the last version, the one that solved
the dual problem relaxed to linearly non-separable data (section 3.1). Change
the algorithm so that it uses the kernelised versions of equations 4, 15 and 16.
Don't forget to substitute the kernel function K(x1,x2) for every inner product
bracket 〈x1,x2〉. When you have found the αi you will no longer calculate
an explicit w vector; this vector now lives �hidden� in φ-space. Instead, your
classi�er will be derived from equation 15. As you can see, the computation

5

of this function requires passing the data points xi as well as the Lagrange
multipliers αi and the bias b.

Use a polynomial kernel of low degree. You may pass a value for the degree
parameter d to the kernel function as a global variable, if you like. (Hint: The
implementation becomes easier if you pre-compute the matrix K as suggested
in section 2.2.)

Task: Apply your algorithm to the linearly non-separable data.
Find values for the parameters C and d that give you reasonable
performance on the data set.

Task: Illustrate how your classi�er divides up the plane using a
contour plot, as before. Use equation 15 (without the sgn) for the
contour plot. Also plot the training examples, and mark the support
vectors.

Question (optional): Tweak the C and d parameters. Report on
how the two parameters a�ect classi�cation performance, the num-
ber of support vectors (αi 6= 0) and the way the plane is subdivided.
For what values would you expect good generalisation performance?

5 Use the osu-svm library

The osu-svm library is a set of ready-made tools for support vector machines.
To use the library, which is free software, add it to your Matlab path;

addpath /info/annfk07/labs/lab2/osu-svm

or download it from http://sourceforge.net/projects/svm/ if you are work-
ing on your own computer.

5.1 Breast cancer data

You will be working with the Wisconsin Prognostic Breast Cancer database.
The database contains attributes describing cells, along with information about
whether a particular cell was taken from a cancer or not. We would like to
use this information to build a classi�er that, given cell attributes, would tell
us whether it believes a cell to be cancerous. The data set is available in the
�le bcw.asc, which can be loaded directly into Matlab. There are 699 data
points in the �le, one per row. The �rst nine columns in each row describe cell
parameters, the �nal column contains the class labels.

To begin with, you will divide the available data into training and test sets.
Randomise the order of the data points, then designate 400 of them as the
training set and the remainder as the test set. Save the two sets into new �les
and keep them �xed for the duration of this lab, in order to make the comparison
between di�erent methods as fair as possible.

Task: Create a linear support vector machine based on your training
set. Use the osu-svm function LinearSVC. Test your support vector
machine on both the training and the test sets.

Question: What are the classi�cation error rates for the training
and test sets? How many support vectors were found?

6

Question (optional): Print out the cell attributes for the support
vectors, along with their class labels. Does it make sense somehow
that those particular cells were chosen as support vectors? Browse
through the data �le and try to �gure out yourself what characterises
a cancerous cell to answer this.

5.2 Optimising the classi�er

You will now work on improving the performance of the classi�er you just built.
What is important is of course the behaviour on the test set. You will experiment
with the following parameters and try to get the best performance out of the
classi�er;

• Preprocessing

• Choice of kernel

• Kernel parameters

You will select which combinations of preprocessing methods and kernel family
to try from the table below. Make at least two selections, by checking boxes
in the table, in addition to the already chosen combination (�Normalisation +
Polynomial kernel�). If you select �other� as the preprocessing method, you
should yourself come up with a way to pre-process the data, before applying
the support vector technique. The rest of the methods correspond directly to
functions in the osu-svm package; try �help osu-svm�.

Kernel \ Pre-processing Scaling Normalisation Other
Linear
RBF

Polynomial X

Task: Choose reasonable parameters for each kernel. State for each
chosen combination of pre-processing and kernel type the classi�ca-
tion error rate on each of the training and test sets.

5.2.1 Tuning the kernel (optional part)

Above you chose kernel parameters rather arbitrarily. To tune the parameters
for your chosen kernels, you will use a validation method. The simplest way to do
this is to further divide the training set into one set used for actual training and
one set used for �validation�. This means that you use the validation set, which
is really part of the training set, as a kind of internal test set for the training
phase. Performance on the validation set determines which kernel parameters
you choose.

Divide o� the validation set from the training set, as you did the test set
before.2 Train your support vector machine, for di�erent kernel parameters, on
the remaining part of the training set, then test it on the validation set. Finally,
for the best parameter combination, as measured by validation set performance,
calculate the prediction error for the test set.

2You may instead choose to use a cross-validation technique if you are familiar with such.

7

Question: Why should you never use the test set for tuning the
kernel parameters? If you try this anyway, you will �nd that it in
fact leads to smaller prediction errors on the test set. Why is it still
not a good idea?

Task: Find the best kernel parameters for each preprocessing/kernel
combination that you chose above. (Again don't use the test set
for the parameter search.) State for each case the best parameter
choices that you could �nd and the corresponding errors on each of
the training, validation and test sets.

You may use manual search to �nd the best parameter combinations, or wrap
your entire program in a Matlab function and use fmincon to automatically
�nd the optimal parameters. Note that polynomial kernels may be harder to
optimise, since they have more parameters in osu-svm.

Good luck!

8

