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Exercise 3
III: Pattern Formation in

Reaction-Diffusion Systems

The goal of this exercise is to develop an intuition about simple reaction-diffusion
systems and explore how they behave.
We will study the following reaction diffusion system:

% =cia+ b —r.a® + D, Va (1)
db 3 5
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a and b are the deviation from the equilibrium concentration of two chemicals
A and B in the tissue. We will assume that A is an autocatalytic activator
and B an inhibitor. The constants ¢; represent their interaction; we will use
c1 =c3=1,co =cy4 = —1 as a starting point: A catalyses its own production
and is inhibited by B, B is produced when A is present but inhibited by itself.
rq and r, represent nonlinear breakdown of A and B. D, and D, are their
respective diffusion coefficients, which are assumed to be different.

1 Part 1: simulation in one dimension

Simulate the above system for a one-dimensional closed chain of cells. Set
ci=c3=1,c0=c4=-1,r, =1, =0.1, D, =1 and Dy = 3.

The reaction-diffusion equations can be approximately solved using Euler’s
method: u'(t,z) = f(z) is replaced with u(t + h,z) = u(t,x) + hf(t,z), with a
small h. Diffusion can be handled with the discretization

V2u(t,r) =~ u(t,z — h) +u(t,z + h) — 2u(t, )
in 1D and

V2ul(t,z,y) ~ u(t,z — h,y) + u(t,z + h,y) + u(t,z,y — h) + u(t,z,y + h)
- 4U(t,1’,y)

in 2D. This way the differential equation is turned into a difference equation that
can be solved iteratively. People with a background in numerical analysis might
want to do it properly using a more exact or stable method; for the purposes of
this exercise it is enough to study the rough qualitative behavior of the system.



1.1 Matlab Implementation

This exercise is best done in Matlab, although you can implement it in any
software you like as long as you can visualise the results.
A simple matlab framework to solve a similar kind of differential equation

% = ksin(u) + D, V?u for a random initial state might look like:

N=50; % Number of cells

Du=1; % Diffusion coefficient

k=2.3; % Constant

u=zeros(N,1)+.01*xrand(N,1); % Random initial state

f£=[1; % History

for t=0:3000
udi=[u(2:N)’> u(1)]’; % u(x+1) with wraparound
ud2=[u(N) u(1:(N-1))’]17; % u(x-1) with wraparound
deltau=k*sin(u) + Du*(udl+ud2-2*u); % Calculate du/dt
u=u+tdeltaux*.1; % Update value of u
ff=[ff; u’l; % Store new value
imagesc(ff); % Plot the values
drawnow

end

This creates 50 cells, whose levels u are set on the third line to random values
in the interval 0 — 0.01. The fourth line introduces a variable £f to hold previous
values of u, making it possible to plot the evolution over time. Inside the loop a
bit of Matlab trickery creates two helper variables ud1 and ud2, which are the
values of u translated one cell to the left or right. This is then used to calculate
the time derivative, which in turn updates the values u with a timestep of 0.1.
Afterwards, the resulting values are stored and plotted as a colored field with
the time direction vertically and the space direction horizontally.

It is worth noting that imagesc(u) plots values with colors, selected so that
the maximum value is red (assuming you have the default colormap) and the
minimum blue. At the start, most values are near zero so pixels that were once
red or blue will during the run turn green as the scale changes. If you find this
plot confusing, try mesh(£f) or plot(u) instead. The speed of the program is
vastly increased if you do not plot every timestep.

Adapting the above code for the reaction-diffusion system should be fairly
simple.

1.2 Questions

Implement the 1D system described in equations (1) and (2), and then answer
the following questions:

Question 1: Start the simulation with a = b = 0 for all cells, except for one
where you set a = 0.14. What happens over time?

Question 2: What happens if you add some noise to all cells in the initial
state? Is the period of the pattern altered?



Question 3: Change D, and D,. What happens with the period of the
pattern? Under what circumstances do you not get any patterns at all? (Note
that too large values will make the simulation numerically unstable)

Question 4: Try changing the value of ¢» from —1 to —2. What happens?
Why? Try intermediate values and watch the behavior - does there exist any
intermediate state?

Question 5: What happens when you increase ¢;?

Question 6: Sketch a “phase-portrait” of the behavior of the system in the
c1 — ¢ plane with values between 0 and 2. There are a number of qualitatively
different behaviors. What are they, and are they sharply delimited from each
other? It might be useful to extend the program to walk through different
combinations and plot them.

2 2D Simulation

Set up the same simulation in 2D. What you mainly need to change is the
initialisation of the variables, the calculation of V? to the 2D version and the
way of plotting. Start with a square region, perhaps 50x50.

Question 7: Start from a random state. What pattern emerges?

Question 8: Why does not the pattern behave in the same regular way as
in the 1D case? Try using a fairly narrow rectangular region (such as 50x20 or
50x10) instead of a square region.

Question 8: What happens if you start with a single cell with high A? With
two cells some distance from each other?

3 Own experiments (optional)

Try what happens when the various parameters are different for different cells.
What happens if you make them activity dependent?

More complex patterns can be created when one pair of reaction-diffusion
equations control another. For example, the value of one activator might de-
termine the values of the constants in the second activator-inhibitor pair (for
example ¢;, ¢ or the diffusion constants) of the other, creating regions with dif-
ferent dynamics or driving oscillations in the second activator. For even more
complexity, the second pair can be allowed to influence the first. The possibili-
ties with just two pairs of activator-inhibitors are nearly endless.

What happens if the region is not rectangular but has some other shape?

What happens if the domain grows over time? Can this make previously
stable patterns unstable?

Instead of using a system of an activator and inhibitor, what happens if you
use an activator and a depleted substrate? The activator is autocatalytic and
depletes the substrate, which is replenished at a slow rate. Does this change
anything? Start again with a 1D system and then try out what happens in 2D
as well. What happens if the interaction is nonlinear (e.g. has ab terms)?



