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Chapter 1

Introduction

The aim of the course ”Advanced Algorithms” is at least twofold. One aim is
to describe a couple of the classical algorithms which are not taught in a first
algorithms course. The second is to give a general understanding of efficient
algorithms and to give the student a better understanding for how to design and
analyze efficient algorithms. The overall approach of the course is theoretical,
we work with pencil and paper. The main emphasis of the course is to get an
algorithm with a good asymptotic running time. In most cases this coincides
with efficient in practice and the most notable example where this is not true
is matrix multiplication where the implied constants are too large to make the
algorithms be of practical value.

Although the lectures are theoretical, students are asked to implement some
basic algorithms in the homework sets. Our hope is that this gives at least some
balance between practice and theory.

The current set of lecture notes include all topics covered in the course
in its past four appearances in spring 1995, spring 1997, fall 1997, and fall
1998. The course in 1995 was mostly taken by graduate student while the later
courses were mostly taken by undergraduate students. Thus some of the more
advanced topics, like matrix multiplication, lattice basis reduction and provable
polynomial time for integer polynomial factorization, was only covered in 1995
and may not be covered in coming years. However, for the interested reader we
have kept those sections in these notes. Also when it comes to the rest of the
material we do not expect to cover all algorithms each time the course is given.
The choice of which algorithms to cover is done at the beginning of a course
to make it possible for the participants to influence this decision. The choice is
not limited to the algorithms included in these notes and I would be happy to
include any desired new topic that would be on a topic agreeing with the course
philosophy.

The present set of notes is partly based on lecture notes taken by partici-
pants in earlier courses. Many things to Lars Arvestad, Ann Bengtsson, Chris-
ter Berg, Marcus Better, Johnny Bigert, Lars Engebretsen, Mikael Goldmann,
Daniel Hegner, Anders Holst, Peter Karpinski, Marcus Lagergren, Mikael Lars-
son, Christer Liedholm, Per Lindberger, Joakim Meldahl, Mats Näslund, Henrik
St̊ahl, Claes Thornberg, Anders Törlind, Staffan Ulfberg, Bengt Werner, and
Douglas Wikstrm for taking such notes. I am also indebted to later students as
well as Kousha Etessami for pointing out errors. Of such later students Anna
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8 CHAPTER 1. INTRODUCTION

Redz deserves special credit for many comments on essentially all the chapters.
Special thanks also to Staffan Ulfberg for completely rewriting the chapter on
quantum computation. Of course, I must myself take full responsibility for any
errors remaining in the notes. I hope to update these lecture notes every year
to decrease the number of misprints and to clarify bad explanations. Any new
topics covered will also be added to the notes.

We ask the reader to treat these notes for what they are, namely lecture
notes. The standard of the text is likely to remain uneven (but will hopefully
improve over time) and this is in particular true for the academic strictness. We
try our best to be correct everywhere, but one definite shortcoming is given by
the references. For some topics accurate references are given while for others the
material is presented without due credit. We apologize for this but our aim is
to improve the quality also in this respect and we feel that an uneven standard
is better than essentially no references anywhere.



Chapter 2

Notation and basics

Most of the time we will not worry too much about our model of computation
and one should best think of a machine that can do “standard operations” (like
arithmetic operations and comparisons) on computer words of “reasonable size”.
In theory, we allow O(log n) size words and in practice most of our algorithms
will only need arithmetic on 64 bit words. We say that an algorithm runs in
time O(f(n)) when, for some absolute constant c, it uses at most cf(n) such
standard operations on inputs of length n. We say that an algorithm runs in
time Ω(f(n)) if, for some absolute constant c, for infinitely many n there is some
input for which it does cf(n) operations.

2.1 A couple of basic algorithms

Before we enter the discussion of more advanced algorithms let us remind the
reader of two basic algorithms. Computing the greatest common divisor by
the Euclidean algorithm and solving systems of linear equations by Gaussian
elimination.

2.1.1 Greatest common divisor

The greatest common divisor of two numbers a and b is usually denoted by
gcd(a, b) and is defined to be the largest integer that divides both a and b. The
most famous algorithm for computing gcd(a, b) is the Euclidean algorithm and
it proceeds as follows. For simplicity assume that a > b ≥ 0.

Euclid(a, b) =
While b �= 0 do
d := �a/b�
tmp = b
b = a− b ∗ d
a = tmp

od
Return a

Here, �a/b� denotes the largest integer not greater than a/b.

9



10 CHAPTER 2. NOTATION AND BASICS

Example 2.1. Consider the following example computing gcd(518, 721) where
we display the numbers a and b that appear during the calculation without keep-
ing track of which number is which

721 = 518 + 203
518 = 2 · 203 + 112
203 = 112 + 91
112 = 91 + 21
91 = 4 · 21 + 7
21 = 3 · 7

and thus gcd(518, 721) = 7. In some situations, more information that just the
greatest common divisor is needed and an important extension is the extended
Euclidean algorithm which apart from computing gcd(a, b) also finds two integers
x and y such that ax + by = gcd(a, b). We describe this algorithm simply by
running it in the above example.

7 = 91− 4 · 21 = 91− 4 · (112− 91) =
= 5 · 91− 4 · 112 = 5 · (203− 112)− 4 · 112 =
= 5 · 203− 9 · 112 = 5 · 203− 9 · (518− 2 · 203) =
= 23 · 203− 9 · 518 = 23 · (721− 518)− 9 · 588 =
= 23 · 721− 32 · 518

The efficiency of the Euclidean depends on the implementation, but even
the most naive implementation is rather efficient. If a and b are n-bit numbers
it is hot hard to prove that the algorithm terminates after O(n) iterations.
Furthermore, the cost of one iteration is dominated by the cost of the division
and the multiplication. Both these operations can be done in time O(n2) and
thus the total running time of the algorithm is bounded by O(n3). This analysis
also applies to the extended Euclidean algorithm and we state this as a theorem.

Theorem 2.2. The extended Euclidean algorithm applied to n-bit integers and
implemented in a naive way runs in time O(n3).

Apart from computations over integers we are also be interested in doing the
same operations on polynomials with coefficients in different domains. In this
situation, the algorithm is, in one sense, even simpler. We can simply choose the
multiplier d to be a suitable monomial which decreases the degree of one of the
polynomials by at least one. It is then easy to see that the number of iterations
is O(n) (as before) and moreover that each iteration can be implemented inO(n)
operations over the domain in question. Thus the estimate for the running time
can, in this case, be improved to O(n2) operations. We state this as a theorem.

Theorem 2.3. The extended Euclidean algorithm applied to polynomials of
degree n over any field runs in O(n2) field operations.

It is not hard to improve also the running time of the Euclidean algorithm
over the integers, but we ignore this since it just complicates the description
and this improvement is not essential for us.
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2.1.2 Systems of linear equations

We assume that the reader is familiar with the method of Gaussian elimination
for solving systems of linear equations. The method is usually presented for
equations over rational numbers but the method works equally well over finite
fields (if you do not know what these are, just think of the integers modulo
p where p is a prime). We illustrate this by solving the following system of
equations: 


x1+ x2+ x3+ x4 = 1
x1+ x3 = 0

x2+ x3+ x4 = 0
x1+ x2+ = 1

over the finite field of two elements, (i. e. the integers mod 2) where variables
take values 0 or 1 and addition is defined as exclusive-or. We add the first
equation to equations 2 and 4 obtaining:


x1+ x2+ x3+ x4 = 1

x2+ x4 = 1
x2+ x3+ x4 = 0

x3+ x4 = 0

We proceed by adding equation 2 to equations 1 and 3 obtaining:


x1+ x3 = 0
x2+ x4 = 1

x3 = 1
x3+ x4 = 0

Adding equation 3 to equations 1 and 4 gives:


x1+ = 1
x2+ x4 = 1

x3 = 1
x4 = 1

and finally adding equation 4 to equation 2 gives the complete solution (x1, x2, x3, x4) =
(1, 0, 1, 1). For a system of n equations in n unknowns we have n iterations in
which we add a single equation to at most n other equations. Since each ad-
dition of two equations can be done in time O(n) the overall running time is
O(n3). For future reference we state this as theorem:

Theorem 2.4. A system of linear equations in n unknowns over a finite field
can be solved in time O(n3) field operations by Gaussian elimination.

Note that in practice the constant in front of n3 in the running time of this
algorithm is very small. In actual implementations we can store the coefficients
as bit-vectors in computer words and thus individual machine instructions can
perform what is counted as 32 (or 64 if the word-size is 64) operations above.

2.1.3 Depth first search

A basic algorithm for searching a graph is depth-first search. Since it is many
times only described for trees we describe it here for general graphs. We have a
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graph with nodes V and edges E. It is best described as a recursive algorithm.
Before the algorithm starts each v ∈ V is marked as ’not visited’. DFS(v) is a
recursive procedure given below.

DFS(v)

For each (v, w) ∈ E do
if w not visited do

mark w visited
DFS(w)

od
od
Return

This algorithm can be used as a subroutine for many tasks. We state the
most simple property of the algorithm.

Theorem 2.5. When started at vertex v, DFS(v) marks exactly the nodes in
the connected component of v as ’visited’ and then halts. If the graph has n
nodes and m edges, it runs in time O(n+m).



Chapter 3

Primality testing

Given an integer, N , how do we find out whether it is prime? We should think
of N as a large integer with at least 100 decimal digits. Assume that N has n
bits, that is, N ≈ 2n and that we are interested in algorithms that run in time
polynomial in n.

The reason for studying this problem is twofold. Firstly, it is a fundamental
problem of computer science and mathematics. Secondly, it has applications in
cryptography through the RSA cryptosystem. For details of the latter see [13].

The naive approach to determine if N is prime is to try to divide N by all
numbers smaller than

√
N . Since there are

√
N ≈ √

2n numbers to try, this
takes time Ω(2n/2), which is infeasible if n is large.

A better idea is to make use of Fermat’s theorem which says that if p is
prime then ap−1 ≡ 1 mod p for all a such that 1 ≤ a ≤ p− 1. However, before
we use this theorem, there are two problems that we have to consider:

1. Is this method efficient?

2. Is the converse of Fermat’s theorem true; does aN−1 ≡ 1 mod N imply
that N is prime?

To begin with the first problem, the question is how many operations do we
need in order to compute aN−1 mod N where N ≈ 2n.

The number aN−1 is enourmous containing at least N digits and thus we
cannot compute this number explicitly. But since we are only interested in the
final answer modulo N , we need only remember partial results modulo N (think
about this fact for a second). This implies that O(n) bits are sufficient for each
number computed.

If we simply keep multiplying by a, computing a, a2, ... aN−1, we do N − 2
multiplications and thus something more efficient is needed. Squaring a number
on the form ai gives a2i and thus we can have exponents that grow exponentially
fast in the number of operations. Squaring and multiplying by a turn out to be
the only operations needed and the general technique, which is called repeated
squaring, is probably best illustrated by an example.

Example 3.1. Suppose we want to compute 2154 mod 155. Writing 154 in
binary we get 10011010. The powers to which we compute 2 are then, written
in binary 1, 10, 100, 1001, 10011, 100110, 1001101, and 10011010 or written

13
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in decimal 1,2,4,9,19,38, 77, and 154. It is done as follows.

21 ≡ 2 · 12 ≡ 2 mod 155
22 ≡ 22 ≡ 4 mod 155
24 ≡ 42 ≡ 16 mod 155
29 ≡ 2 · 162 ≡ 47 mod 155
219 ≡ 2 · 472 ≡ 78 mod 155
238 ≡ 782 ≡ 39 mod 155
277 ≡ 2 · 392 ≡ 97 mod 155
2154 ≡ 972 ≡ 109 mod 155.

From this we can also conclude that 155 is not prime since if it was the answer
would have been 1.

Since N has n binary digits, aN−1 mod N can be computed with 2n mul-
tiplications of n-digit numbers together with n modular reductions. Since one
multiplication and one modular reduction of n-bit numbers can easily be done in
O(n2) operations on numbers of bounded size, the total time for modular expo-
nentiation is O(n3). Hence, the answer to the first question, whether Fermat’s
theorem is efficient, is ’yes’.

We turn to question of whether the condition that aN−1 ≡ 1 mod N implies
that N is prime. If this condition is true for all a between 1 and p − 1 then
N must be prime since gcd(a,N) = 1 for 1 ≤ a ≤ N − 1 which clearly implies
that N is prime. However, checking all these values for a is clearly inefficient
and thus we would like a much stronger converse. In the best of all worlds we
would have hoped that aN−1 ≡ 1 mod N for a small set of a’s implies that N is
prime. This is, unfortunately, not true and even requiring it to be true for all a
that are relatively prime to N is not sufficient. The counterexamples are given
by the so called Carmichael numbers, the smallest of which is 561. From this
it follows that we cannot use Fermat’s theorem as it is to separate primes from
composites, but we shall see that it is possible to change it slightly so that it,
at least for most a’s, reveals composites – even Carmichael numbers. Before we
continue we need to recall the Chinese remainder theorem.

3.1 Chinese remainder theorem

Let N = p1p2 · · · pr where pi are relatively prime, i. e. , gcd(pi, pj) = 1 for i �= j.
Note, in particular that the latter assumption is true when the pi are different
primes. The Chinese remainder theorem states that the equation

x ≡ a1 mod p1,

x ≡ a2 mod p2,

...
x ≡ ar mod pr,

has a unique solution modN .

Example 3.2. Let N = 15 = 3 · 5. Then each number a mod 15 can be repre-
sented as (a mod 3, a mod 5), as follows.
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0 ∼ (0, 0), 5 ∼ (2, 0), 10 ∼ (1, 0),
1 ∼ (1, 1), 6 ∼ (0, 1), 11 ∼ (2, 1),
2 ∼ (2, 2), 7 ∼ (1, 2), 12 ∼ (0, 2),
3 ∼ (0, 3), 8 ∼ (2, 3), 13 ∼ (1, 3),
4 ∼ (1, 4), 9 ∼ (0, 4), 14 ∼ (2, 4).

When computing, for example, 8·14 we can use this representation. Working
component-wise we get

8 · 14 ∼ (2, 3) · (2, 4) = (2 · 2, 3 · 4) = (4, 12) ≡ (1, 2) ∼ 7.

Since 8 · 14 = 112 ≡ 7 mod 15 this is correct and it is not difficult to convince
oneself that this is a correct procedure in general.

From the Chinese remainder theorem it follows that choosing x randomly
in {0, 1 . . .N − 1} where N =

∏r
i=1 pi is be equivalent to, independently for

different i, choosing ai randomly in {0, 1, . . . pi − 1} and then determining x by
requiring x ≡ ai mod pi for i = 1, 2 . . . r.

3.1.1 Chinese remainder theorem in practice

It is sometimes necessary to go back and forth between the representations
x mod N and (a1, a2 . . . ar) where x ≡ ai mod pi. Going from x to the other
representation is easy but going the other direction requires some thought. One
could try all values of x but this is inefficient, hence some other method is
needed. We show how to do this for r = 2. The generalization to more factors
follows from applying the argument repeatedly.

Thus we have {
x ≡ a1 mod p1

x ≡ a2 mod p2

and we want to find x mod p1p2. It turns out that it is sufficient to solve this
for (a1, a2) = (1, 0) and (a1, a2) = (0, 1). Namely, suppose{

U1 ≡ 1 mod p1

U1 ≡ 0 mod p2

and {
U2 ≡ 0 mod p1

U2 ≡ 1 mod p2

Then it is not hard to see that

x ≡ a1U1 + a2U2 mod p1p2,

fulfills the first set the equations above.
One question remains; how do we find U1 and U2? Euclid’s extended algo-

rithm on (p1, p2) gives 1 = ap1 + bp2, and we identify U1 = bp2 and U2 = ap1.
It is not difficult to extend this to larger r (we leave the details as an exercise)
and we state the results as a theorem

Theorem 3.3. (Efficient Chinese remainder theorem) Let N =
∏r

i=1 pi be an
n bit integer where pi are pairwise relatively prime. Then for any (ai)ri=1 there
is a unique x satisfying x ≡ ai mod pi and this x can be found in time O(n3).
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Example 3.4. Let’s say we have the following equations:

x ≡ 4 mod 23
x ≡ 7 mod 15.

Euclid’s extended algorithm gives us

1 = 2 · 23− 3 · 15.

This gives

U1 = −45
U2 = 46

and that
x = 4 · (−45) + 7 · 46 mod 23 · 15 ≡ 142 mod 345.

As with the Euclidean algorithm let us remark that everything works equally
well when considering a polynomial N(x) which is product of relatively prime
polynomials. We omit the details.

3.2 The Miller-Rabin primality test

Let us return to primality and start by describing the new test we will analyze.
It is traditionally called the Miller-Rabin primality test. Gary Miller originally
came up with the test and Michael Rabin realized that the proper setting was
that of a probabilistic algorithm. Let N−1 = 2st where t is odd and s ≥ 1 since
it easy to determine whether an even number is a prime1. Pick a randomly, then
compute

1. u0 ≡ at mod N

2. ui+1 ≡ u2
i mod N , for i = 1, 2, . . . s.

3. Accept, i. e. , declare “probably prime” if u0 is 1 or some ui, 0 ≤ i < s
equals −1.

Note that us ≡ a2st ≡ aN−1 and thus it should take the value 1 modulo N if N
is a prime. Note that this condition is implied by the acceptance criteria, since
if ui ≡ −1 then uj ≡ 1 for i+ 1 ≤ j ≤ s. In a more general test we repeat the
procedure k times with independent values of a and declare N to be “probably
prime” if the result is probably prime each time.

Assume that N is prime. Then we claim we always declare N as “probably
prime”. This follows since we know that us ≡ 1 mod N , so either we have
that u0 ≡ 1 mod N or else there is a last ui such that ui �≡ 1 mod N and
ui+1 ≡ u2

i ≡ 1 mod N . But if N is prime, then the equation x2 ≡ 1 mod N has
only the solutions x ≡ ±1 and so we must have ui ≡ −1 mod N which means
that N is declared as “probably prime”.

On the other hand, if N is not prime, we want to prove that half of the
a’s reveal that N is not prime. The intuition to why this is the case can be

1An even number is prime iff it is 2
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described as follows. Suppose that N = p1p2 · · · pr and that we pick an a mod N
at random. By the Chinese remainder theorem picking a random a mod N is
just independently picking a random a1 mod p1, a random a2 mod p2, and so
on. Now, in order for ui mod N to equal −1 we must, by the Chinese remainder
theorem, have that

ui ≡ −1 mod p1

ui ≡ −1 mod p2

...
ui ≡ −1 mod pr.

When we view the computation modulo N as taking place modulo pi for the
different i we can suspect that this situation is unlikely to occur.

Example 3.5. Suppose N = 73, giving s = 3 and t = 9, and a = 3. Then
u0 = 46, u1 = 72 = −1, u2 = u3 = 1 and the test accepts which it should since
73 is prime.

Example 3.6. A more interesting example is when N is the Carmichael number
561 = 3 · 11 · 17 and a is equal to 2. In this case 561− 1 = 16 · 35 so that s = 4
and t = 35. Since 235 ≡ 263 mod 561 we have the following table.

mod3 mod11 mod17 mod561
u0 −1 −1 8 263
u1 1 1 13 166
u2 1 1 −1 67
u3 1 1 1 1
u4 1 1 1 1

Here, we have that no row consists of only −1 modulo the three primes
in 561. Hence, we never get −1 mod 561 and since also u0 �≡ 1 mod 561 the
Miller-Rabin test correctly says that 561 is composite.

The essential property of the algorithm is now the following.

Theorem 3.7. The Miller-Rabin primality test repeated k times always declares
a prime as “probable prime”. A composite number is declared “probably prime”
only with probability at most 2−k. The algorithm runs in time O(kn3).

Proof. The correctness when N is prime was established above. The bound
on the running time is achieved by the repeated squaring procedure described
earlier. The claim for composite number follows from the claim below.

Claim 3.8. If N is composite, the probability that the Miller-Rabin algorithm
outputs “probably prime” in any single iteration is bounded by 1/2.

Before proving the second part, let us note that if we for instance choose
k = 100, the algorithm answers correctly with an overwhelming probability:
1 − 2−100. This probability is small compared to other error sources such as
error is the program, error in the compiler, error in the operating system or
error in the hardware. Thus it is of small practical significance.
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To prove Claim 3.8 we distinguish two cases:
1. N is a prime power, N = pb, b ≥ 2 and
2. N has at least two distinct prime factors.

Proof. (In case 1.) In this case N will not even pass the criterion in Fermat’s
theorem, i. e. for most a we have aN−1 �≡ 1 mod N . Assume N = pb, b ≥ 2. If
indeed, aN−1 ≡ 1 mod N , we find many ai such that aN−1

i �≡ 1 mod N . This
can be done by noting that if aN−1 ≡ 1 mod N and we set ai = (a+ ip) where
1 ≤ i < p, then:

aN−1
i ≡ (a+ ip)N−1 ≡

N−1∑
j=0

(
N − 1
j

)
aN−1−j(ip)j

≡ aN−1 + (N − 1)ipaN−2 + p2
N−1∑
j=2

(
N − 1
j

)
aj(ip)j−2

≡ aN−1 + (N − 1)ipaN−2

≡ 1 + (N − 1)ipaN−2 mod p2.

But (N−1)ipaN−2 �≡ 0 mod p2 since p � |N−1, p � |i and p � |aN−2. We have thus
for any a that passes the criterion identified p − 1 other a which do not pass
the criterion. Furthermore, different passing a give rise to different non-passing
numbers (this is not completely obvious so please verify this). We can conclude
that the test accept with probability at most 1/p.

To prove Claim 3.8 in case two, i. e. when N is not a prime power, we need
the following two lemmas.

Lemma 3.9. Let p be a prime where p− 1 = 2r′t′ where t′ is odd. Then
Pr
a∈Z∗

p

[a2rt ≡ −1 mod p | a2st ≡ 1 mod p]

where t is odd is bounded by max(2r−r
′
, 2r−s) when r < min(r′, s) and 0 other-

wise.

Lemma 3.10. Let p be a prime where p − 1 = 2r
′
t′ where t′ is odd. Suppose

s < r′ then
Pr
a∈Z∗

p

[a2st ≡ 1 mod p]

where t is odd is bounded by 2s−r
′
.

Proof. (Of Lemma 3.9 and 3.10.) We leave this as an exercise. As a hint, you
might consider the fact that the multiplicative group mod p is isomorphic to the
additive group mod p − 1. In this isomorphism 1 corresponds to 0 and −1 to
(p − 1)/2. Squaring in the multiplicative setting corresponds to multiplication
by 2 in the additive setting and you can then analyze what power of two divides
the numbers in question.

The following intuition (which can be proved) might be of help: If x2l ≡
1 mod p, what was xl mod p? The only roots of 1 mod p are ±1. It seems
natural that half of the roots are 1 and half −1 and this is also the case under
most circumstances.
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We now proceed with the proof of Claim 3.8.

Proof. (In case 2.) Here assume N = p1p2M for some M ∈ Z. As before, let
N − 1 = 2st, t odd. For N to pass the test as “probably prime”, we must have
u0 ≡ 1 mod N or ur ≡ −1 mod N for some r < s. These events are mutually
exclusive.

(i) If u0 ≡ 1 mod N , now by the Chinese remainder theorem, u0 ≡ 1 mod p1

and u0 ≡ 1 mod p2.

(ii) If ur ≡ −1 mod N for some r < s, by the same reasoning, ur ≡ −1 mod p1

and ur ≡ −1 mod p2 which also implies us ≡ 1 mod p1, us ≡ 1 mod p2.

The error probability is at most the sum of the probabilities of the two events
(i) and (ii) above. Let us analyze (ii) first.

If we chose a random a mod N , then we also choose a mod p1, a mod p2

uniformly and independently. Assume p1 − 1 = 2r1t1 and p2 − 1 = 2r2t2 with
t1, t2 odd. Without loss of generality, assume r1 ≥ r2. We distinguish two
separate cases:

(a) s < r1. Then, by Lemma 3.10,

Pr
a∈Z∗

p1

[a2st ≡ 1 mod p1] ≤ 2s−r1 ≤ 1
2

(3.1)

and we are clearly done since this also covers case (i).
(b) s ≥ r1. Suppose a2st ≡ 1 both mod p1 andmod p2. Then, by Lemma 3.9,

the probability of having a2rt ≡ −1 mod p1 and a2rt ≡ −1 mod p2 is, by the
independence, bounded by 2r−r12r−r2 = 22r−r1−r2 if r < r2 and 0 otherwise.
Thus the probability of having −1 simultaneously for some r is at most

r2−1∑
r=0

22r−r1−r2 (3.2)

Finally, let us take into account the other possible event, (i). The probability
that

u0 ≡ 1 mod p1 and u0 ≡ 1 mod p2.

is, by Lemma 3.10, bounded by 2−(r1+r2). We need to bound

2−(r1+r2) +
r2−1∑
r=0

22r−r1−r2 .

Replacing on of the two r’s in the second exponent by its maximal value gives
the upper estimate

2−(r1+r2) +
r2−1∑
r=0

2r−(r1+1).

The sum is equal to 2r2−(r1+1) − 2−(r1+1) and since r1 ≥ r2 ≥ 1 we have the
total estimate

2r2−(r1+1) ≤ 1/2.
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3.2.1 Some notes on the algorithm

If there are many a’s that can be used as witnesses of the compositeness of
N , can we say something about a in advance? Is there some set of a’s that
guarantees revealing the compositeness?

There exists a number theoretic conjecture known as the extended Riemann
hypothesis, ERH. (See [26] for details.)

Theorem 3.11. Under the ERH, there always exists a witness a ≤ 2(logN)2

of the compositeness of N .

Corollary 3.12. Under the ERH, the Miller-Rabin test can be converted to a
deterministic test of primality that runs in time O((logN)5).

Simply try all a ≤ 2(logN)2.

3.3 Other tests for primality

There are several other, more or less practical, tests. We list a few by their
inventors. Below, n equals log2 N .

Solovay & Strassen, [51]. Define the Legendre symbol
(
b
p

)
= 1 if the equation

x2 ≡ b mod p, p being prime, has a solution, −1 otherwise. The Jacobi
symbol

(
b
N

)
when N =

∏
pei

i is defined as the product of the Legendre
symbols

(
b
pi

)ei for each prime factor pi in N . The Jacobi symbol can be
efficiently computed even if the factorization of N is unknown.

It can be shown that if N is prime then

b(N−1)/2 ≡
( b

N

)
mod N (3.3)

but if N is composite then the probability that (3.3) holds for a random
b is at most 1/2. This criterion is in fact stronger than the criterion in
Fermat’s theorem, since there are no analogs of Carmichael numbers with
respect to this test.

Adleman, Pomerance & Rumely, [2]. This is a deterministic algorithm that uses
Gauss-sums and runs in time O(nlog logn). The algorithm is not practical.

Cohen & Lenstra, [11]. This algorithm is based on the same ideas as the one
by Adleman, Pomerance and Rumely, but uses Jacobi sums which makes
it much more efficient in practice.

Goldwasser & Killian, [22]. This is a probabilistic algorithm that always gives
a correct answer. It runs in expected polynomial time. It is provably
correct for “most” p. The basic idea is simple. It can be described as:
“If a has order (N − 1)/2 mod N then: (N − 1)/2 is prime implies N is
prime.” As an example, 4 has order 5 mod 11 so if 5 is a prime then 11 is
prime too! The crux is that it is very unlikely that (N − 1)/2 be prime.
As an example, the statement “If 8 is prime then 17 is prime” is of no
great help. This problem was circumvented by Goldwasser & Killian by
working with elliptic curves instead of the integers mod N .
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Adleman & Huang, [1]. This is a “fix” of Goldwasser & Killian that makes it
work for all N . It uses so called Jacobians of elliptic curves. The idea is
slightly counter-intuitive. It reduces the problem of deciding primality for
a certain number N to the problem of deciding primality for a number N ′

that is larger than N (N ′ ∼ N2). It would seem that nothing is gained by
this, but what happens is that N ′ is somewhat random and it is possible
to run Goldwasser & Killian on this number instead.
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Chapter 4

Factoring integers

So, suppose that we have fed N to some algorithm for primality testing and that
we got the answer “N is composite”. This gives no information on the factors
of N and obtaining these turns out to be a more difficult problem.

The motivation for this problem is the same as for primality. Note here that
for application to the RSA cryptosystem it is important that there are no really
efficient algorithms for factoring while for the primality problem the existence
of efficient algorithm was essential.

4.1 The “naive” algorithm

If N is composite, it must have at least one prime factor p with p ≤ √
N . We

try dividing N by all integers p ≤ √
N . The running time is similar to the size

of the prime factor p found which can be as large as Ω(
√
N) = Ω(2n/2). This is

clearly very inefficient if n is large.

4.2 Pollard’s ρ-method

We start by giving the algorithm first and then discussing it. The algorithm
finds one non-trivial factor d|N . If the factors are not found to be prime by
the methods of the previous section the algorithm is used again until the found
factors are prime numbers.

Pollard(N) =
let x0 ∈U ZN

define the sequence {xi}i≥1 by xi+1 ≡ x2
i + 1 mod N

for i := 1, 2, . . . do
d := gcd(x2i − xi, N)
if d > 1 then
d is a non-trivial factor in N , stop

The big questions are: How can we be sure that we find a non-trivial factor and
if so, how long do we have to wait?

We cannot (and nobody else can for that matter) give a mathematically
exact answer to this question and hence we resort to a heuristic argument.

23
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Figure 4.1: The sequence xi mod p.

Assume that p|N . If the sequence {xi}i≥1 behaves “randomly” so that x2i, xi
can be considered random integers mod N , then one would expect

Pr[p divides x2i − xi] =
1
p

and thus it would take about p steps to find the factor p. This is no better than
the naive trial division algorithm and in fact this intuition is incorrect.

Claim 4.1. If the mapping xi+1 ≡ x2
i + 1 mod N was replaced by a mapping

xi+1 = f(xi) for a random function f mod p the factor p is found after O(
√
p) ∈

O(N1/4) steps.

Although it has not been proved, experience shows that the updating rule
xi+1 ≡ x2

i + 1 also behaves this way.

Proof. Let us study the sequence {xi}i≥1 mod p. We do this graphically, in
Figure 4.11. After the j:th step, the sequence repeats itself! We can look at it
as having two runners, x2i and xi running in a circle, one with twice the speed
of the other. Eventually x2i catch up with xi. It is when this passing occurs
that the factor p falls out; since x2i ≡ xi mod p, p|x2i − xi.

What remains is to estimate the number of steps until this occurs, the “cir-
cumference” of the circle. This follows from the lemma below.

Lemma 4.2. If f : Zp �→ Zp is a random function and we define the sequence
{xi}i≥0 by xi+1 = f(xi) with an arbitrary x0, we have:

Ef [ smallest j s.t. xj ≡ xi mod p, i < j] ∈ O(
√
p),

1The name of this algorithm should be obvious from this figure. The Greek letter ρ is
pronounced “rho”.
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where Ef is the expectation operator with respect to a random f .

Proof. Exercise.

As the algorithm is written it seems like we need to remember all the iterates
between xi and x2i. It is however, much more efficient to only remember two
values and recompute the value of xi whenever it is needed rather than to
remember it.

Could we have chosen f in some other way, say by computing xi+1 =
�N | sin(2πxi/N)|�? The answer is no! Our argument was based on studying xi
mod p and thus we need the property that xi+1 mod p is determined by xi mod
p (and not all of xi). This is not true when xi+1 = �N | sin(2πxi/N)|�.

Why the choice of the specific function x �→ x2 + 1 mod N? The reason
for this is basically heuristic: It works well in practice, and it is also easy to
compute. An essential condition is also that the function is not 1− 1 since such
functions would lead to running times of order p.

Let us end with an example of an execution of the ρ-method.

Example 4.3. Let us factor N = 1387 = 19 · 73. Start by x0 = 0. Let
yi ≡ x2i − xi mod 1387.

i: 1 2 3 4 5 6 7 8 9 10
xi 1 2 5 26 677 620 202 582 297 829
x2i 2 26 620 582 829 · · ·
yi 1 24 615 556 152 · · ·
gcd(yi, 1387) 1 1 1 1 19 · · ·

After step 5, the factor 19 falls out. Observe that (of course, mostly by coinci-
dence)

√
19 ≈ 4.36.

4.3 A method used by Fermat

The basis of this, and many other methods, is to find a solution to the equation
x2 ≡ y2 mod N where x �≡ ±y mod N . The reason this is useful is that if the
equations is satisfied then

0 ≡ x2 − y2 ≡ (x+ y)(x− y) mod N,

and since neither factor is 0 mod N , gcd(x + y,N) is nontrivial and we find a
factor in N .

Fermat’s approach was to find q’s such that q2 was small mod N . The idea
is that it is more likely that a small number is a square. Let us estimate this
probability heuristically. Since the distance between s2 and (s + 1)2 is about
2s the probability that a random number of size roughly x is a square is about

1
2
√
x
.
One approach for getting numbers q with q2 small mod N is choosing an

integer of the form q = �√aN� + b where a and b are small integers. Then
q =

√
aN + b + δ for some real number δ where 0 < δ < 1 and hence

q2 = aN + (b + δ)
√
aN + (b + δ)2 ≡ (b + δ)

√
aN + (b + δ)2 mod N
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This is, for constant size a and b of size O(
√
N). Heuristically the probability

that it is a square is Ω(N−1/4) and thus we get a factoring algorithm that
heuristically runs in time O(N1/4).

Example 4.4. Suppose we want factor 561. We try integers slightly larger than√
561 and get

242 = 576 ≡ 15
252 = 625 ≡ 64.

Numbers slightly larger than
√
2 · 561 give no squares while trying 3 · 561 results

in 422 = 1764 ≡ 81. The relation 252 ≡ 82 tells us to compute gcd(561, 25 −
8) = 17 or gcd(561, 25 + 8) = 33 to get nontrivial factors. In the same way
gcd(561, 42− 9) = 33 and gcd(561, 42 + 9) = 51 gives what we desire.

There is no known general method to, without knowing the factorization of
N , generate Q >

√
N ’s such that Q2 mod N is significantly smaller than

√
N .

4.4 Combining equations

Consider the following. Let N = 4633 be a number to be factored. Then

672 ≡ −144 mod N

and
682 ≡ −9 mod N.

Neither of these equations can be used directly to obtain a factorization of N .
However, they can be combined to yield

(67 · 68)2 ≡ −144 · −9 ≡= (12 · 3)2 mod N.

Since 67 · 68 ≡ (−77) mod N we obtain the factorization 4633 = 41 ∗ 113 since
gcd(−77 + 36, 4633) = 41 and gcd(−77− 36, 4633) = 113.

We want to expand this to a more general approach. Take a number B and
consider all primes smaller than B together with the special “prime” -1. These
primes make up our factor base . We generate a number Q such that Q2 mod
N has a small absolute value and hope that it factors in the factor base. If it
does we remember it and pick a new Q and try again. This way we generate
equations of the form

Q2
i ≡

∏
p<B

pai,p mod N

for some i = 1, 2 . . . s. We want to combine these by choosing a suitable subset
S and multiplying the equations in this subset. This yields an equation of the
form ∏

i∈S
Q2
i ≡

∏
i∈S,p<B

pai,p ≡
∏
p<B

p
P

i∈S ai,p mod N.

The left hand side is always a square while the right hand side is a square if
and only if

∑
i∈S ai,p is even for any p. Thus all that remains is to find such
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a subset S. However this is just linear algebra mod 2. In particular, we start
with the vectors

(a1,−1, a1,2, a1,3, . . . a1,B)
(a2,−1, a2,2, a2,3, . . . a2,B)
(a3,−1, a3,2, a3,3, . . . a3,B)
...

...
...

...
(as,−1, a2,2, as,3, . . . as,B)

where each coefficient is considered a number mod 2 and we want to find a linear
dependence. If there are more vectors than dimensions there is always such a
dependence and it can be found efficiently by Gaussian elimination. Combining
this set of equations gives a relation x2 ≡ y2 mod N as described above. There
is no guarantee that it is nontrivial (i. e. x �≡ ±y) and there is not even a proof
that it is nontrivial with reasonable probability. However, heuristically it should
be nontrivial with probability 1/2 and this turns out to be true in practice.

There are π(B) ≈ B
lnB primes smaller than B and thus we need at least that

many equations. This leads to the following algorithm which is parameterized
by B.

1. Find all primes ≤ B.

2. Find numbers Q of the form �√aN�+ b where a and b are small and see if
Q2 mod N factor in primes ≤ B. Repeat until we have π(B)+2 successes.

3. Find a subset S of equations by Gaussian elimination such that when the
corresponding equations are multiplied we get a relation x2 ≡ y2 mod
N . If this is trivial (i.e. x ≡ ±y mod N) then find another number Q
such that Q2 mod N factors in the factor base and repeat until we get a
nontrivial relation (and hence a successful factorization).

Let us try to analyze this algorithm. One key to performance is the choice of B.
Let S(A,B) be the probability that a random number of size around A factors
in prime factors bounded by B. Then heuristically the second step runs in time
about

B2S(
√
N,B)−1.

This follows since we need to find approximately B numbers that factor and
for each success we expect to examine S(

√
N,B)−1 numbers and to investigate

whether one number factors can be done in time about B. The third step
runs in time O(B3). To balance the factors above B should be chosen around
2c

√
lnN ln lnN for a suitable constant c which gives a running time of e

√
lnN ln lnN .

In practice one has to choose B by experience. In the recent success in factoring
a 129 digit number B was chosen to be around 107.

Example 4.5. Suppose we want to factor 85907 and we choose B = 10 as the
maximal size of primes to be considered. We take integers Q close to

√
a · 85907

for small integers a and try to factor Q2 mod 85907 using the primes -1,2,3,5
and 7. The result is

5012 ≡ −6720 ≡ −1 · 26 · 3 · 5 · 7
5072 ≡ −672 ≡ −1 · 25 · 3 · 7
5082 ≡ 343 ≡ 73

8292 ≡ −15 ≡ −1 · 3 · 5.
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We now find linear relations among the rows of the matrix of exponents mod 2,
i.e., of 


1 0 1 1 1
1 1 1 0 1
0 0 0 0 1
1 0 1 1 0


 .

In general we could not hope for such a relation since we have more variables
than equations, but this time we are lucky and find that the sum of rows 1, 3
and 4 is 0. Of course, in general, we would find such a relation by Gaussian
elimination. We multiply the three equations and obtain

(501 · 508 · 829)2 ≡ (23 · 3 · 5 · 72)2

or 854472 ≡ 58802. We can then find the factors as gcd(85447+5880, 85907) =
271 and the cofactor is 317.

4.4.1 Implementation tricks

To make the given algorithm run fast a number of implementation tricks should
be used and let us mention one. Suppose we fix a. Whether (�√aN�+ b)2 mod
N is divisible by a specific prime p depends only on b mod p. This suggests the
following algorithm

1. Store a floating point approximation of logQb where Qb = (�
√
aN�+ b)2

mod N in cell b of an array.

2. For each p find possible values of b mod p such that Qb is divisible by p.
There are either no such b or two possible values which we call b1 and b2.
In the latter case subtract a floating point approximation of log p from
cells with addresses b1 + ip and b2 + ip for all possible values of i.

3. For cells b that contain a value close to 0 try to factor Qb into small primes.

If p is small we also need to mark the numbers divisible by p2 or higher powers
of p in a similar manner. The key in the above procedure is that the expensive
step 3 is only carried out when we are likely to succeed. The given implemen-
tation is very similar to a sieve and the algorithm which was discovered by
Pomerance is called the quadratic sieve, see [40], [20].

4.5 Other methods

There are a number of other methods for factoring integers and let us mention
their names and a couple of sentences on each method.

1. Elliptic curves, [32], [37]. Generate a random elliptic curve and hope
that the number of points on the curve is a number that only has small
prime factors. This algorithm runs in expected time

ed
√

lnN ln lnN

for some constant d. This algorithm has the property that it finds small
prime factors faster than large prime factors.
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2. Continued fractions, [38]. This algorithm is similar to the quadratic
sieve. It also uses a factor base and the key difference is that it gener-
ates the numbers Q2 mod N to be factored using continued fractions as
described in Section 4.5.1 below. This algorithm also runs in time

ed
√

lnN ln lnN

for some constant d.

3. Number field sieve, [33]. This algorithm was originally designed to
factor numbers N of the form ab + c where a and c are small. Suppose
we want to factor 7200 + 11. Let α = 740. Then α5 = −11 mod N and
thus can be considered as an algebraic number. Also this algorithm has
a factor base. It contains the small standard primes but also numbers of
the form

a0 + a1α+ a2α
2 + a3α

3 + a4α
4

where this is a prime with small norm when considered as an algebraic
integer. The algorithm then generates numbers of the form aα + b and
tries to factor them both as a standard integer and as an algebraic number.
As usual it collects successful factorizations and then finds a dependence
mod 2. Later developments of this algorithm has made it applicable to
general numbers and it is today the most efficient general methods for large
numbers. In 1999 a 151 digit number was factored using this algorithm
and it is currently considered the champion for factoring large numbers.
The expected running time of the algorithm is, by a heuristic argument
showed to be

O(e1.9223(lnN)1/3(ln lnN)2/3

For a more current comparison of the two factoring algorithms we refer to
[41]. Let us give an example below.

Example 4.6. We factor N = 20437 using the number field sieve. When using
NFS we first find a polynomial p(x) together with a number m ∈ Z such that
p(m) = 0 mod N . Let α be a complex number such that p(α) = 0 over the
complex numbers. Suppose p is of degree d and let us study numbers of the form∑d−1

i=0 aiα
i where αi ∈ Z. Since we can use the equation p(α) = 0 to replace αi

for i ≥ d by lower powers of α we can multiply numbers of this form and get
a new number of the same form. They form what is called a ring of algebraic
integers. The point is now that replacing α by m we get a homomorphism from
these algebraic integers into ZN . Note that for this to work it is crucial that
p(m) ≡ 0 mod N .

We can construct p using the base-m method, that is, writing N to the base
m. Let m = �N1/3�− 1 = 26 and write 20437 = 263+ 4 · 262+ 6 · 26+ 1 giving
p(α) = α3 + 6α2 + 4α+ 1 which has the desired property.

We want to factor a lot of algebraic numbers. Just as numbers in Z are
products of primes, the algebraic numbers are products of irreducible2 algebraic

2This is unfortunately only partly true. There is a small problem that there might be units
(numbers invertible in the ring different from ±1) but the large problem is that factorization
on this level might be non-unique for some (or even most) choices of p. We sweep this problem
under the rug. We can get unique factorization by factoring into ideals rather than numbers,
where a number corresponds to a principal ideals. The reader who is not comfortable with
ideals can simply ignore this footnote.
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numbers. The ideas is, for small a and b, to factor a+ bm as a normal integer
and a + bα as an algebraic integer. We get an interesting identity mod N and
we later combine such identities to get a solution to x2 ≡ y2 mod N .

When factoring ordinary integers we use a standard factor base (in our case
of primes upto 13 together with −1, i.e. P1,2,...,7 = {−1, 2, 3, 5, 7, 11, 13}) and
when factoring the algebraic integers we choose a small set of algebraic num-
bers (which we hope are algebraic primes although, in all honesty, we have not
checked this). We have settled for A1,2,...,6 = {−α,−1−α, 2−α+α2,−2+3α+
α2, 3 + α,−5− 3α− α2}.

We now factor numbers of the form a+ bα into algebraic primes and at the
same time we factor a+ bm into ordinary primes.

An example would be

4 + 2α = (−1− α)(−5 − 3α− α2) = A2A6, (4.1)

where we can check the factorization by simply multiplying the factors obtaining

(−1− α)(−5− 3α− α2) =
5 + 3α+ α2 + 5α+ 3α2 + α3 =

5 + 3α+ α2 + 5α+ 3α2 − (1 + 6α+ 4α2) = 4 + 2α

Inserting m = 26 in (4.1) gives (A2A6)(m) = 4+2 ·m = 4+2 ·26 = 56 = 23 ·7.
Note that both factors 2 and 7 is in the prime factor base P. If we were to
find a product with at least one factor outside P it would be rejected. E.g.
A5(m) = 3+m = 3+26 = 29 which is prime but outside P, and thus A5 would
be rejected.

Each accepted product constitutes a row in an exponent matrix. Each element
in the factor base corresponds to one column. In each entry of the row, the
exponent of the corresponding factor is entered. Take A2A6 and (4.1) as an
example: Writing our prime factor base first we get 0300100 since there are
three 2:s and one 7. Writing our algebraic factor base second we get 010001
since A2 = (−1 − α) and A6 = (−5 − 3α − α2) were factors of 4 + 2α. This
gives us a row 0300100 010001 in the matrix. We try to factor many numbers
of the form a+ bα, (and a+ bm) and keeping our successful factorization we get
a matrix of exponents: 



1100001 100000
1030000 010000
1010100 020020
0300100 010001
1120000 030001
0100002 000201
0120000 100011
1220000 011002
0320001 111002
0250000 021002
1322010 301102
0230100 031022
1230100 101032
1320100 021003




Here we find our previous example in the fourth row. Another example would
be 5 − α = (−1 − α)2(3 + α)2 = A2

2 · A2
5. This corresponds to row three:
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1010100 020020, since 5−m = 5− 26 = −21 = −1 · 3 · 7. That is, 1010100 for
−1, 3, 7 and 020020 for (−1− α)2 and (3 + α)2.

From the exponent-matrix we want to find integers x, y such that x2 ≡
y2 mod N . This is done by finding a linear dependency mod 2. When one
such is found, the x is constructed from the prime factor base and the y is cre-
ated in the algebraic factor base. The procedure of the construction is explained
below. First, let us find a dependency.

We create a boolean matrix, taking the exponent-matrix elements mod 2. We
augment the matrix by an identity matrix for later use:



1100001 100000 10000000000000
1010000 010000 01000000000000
1010100 000000 00100000000000
0100100 010001 00010000000000
1100000 010001 00001000000000
0100000 000001 00000100000000
0100000 100011 00000010000000
1000000 011000 00000001000000
0100001 111000 00000000100000
0010000 001000 00000000010000
1100010 101100 00000000001000
0010100 011000 00000000000100
1010100 101010 00000000000010
1100100 001001 00000000000001




Dependencies are found using Gaussian elimination in our matrix. Addition of
rows mod 2 reduces to row-wise exclusive or, yielding



1100001 100000 10000000000000
0110001 110000 11000000000000
0010101 100001 11010000000000
0000100 010000 01100000000000
0000011 001100 10000000001000
0000001 111001 11110001000000
0000000 100010 01110010000000
0000000 001000 01111001000000
0000000 000000 10000001100000
0000000 000000 01000001010000
0000000 000000 01110100000000
0000000 000000 00100001000100
0000000 000000 00101011000010
0000000 000000 00010001000001




We note that the last six rows contains only zeros in the factor base part of the
matrix, that is, even exponents of the factors. The augmented part of the matrix
gives us the information which rows were added to obtain each dependency. For
example, 00010001000001 tells us that the last row is the sum of rows 4, 8 and
14 in the exponent-matrix.

Thus multiplying original rows 4, 8, and 14 gives us both a square integer
and a square algebraic number. The square integer will be our x2. If we call
the algebraic square B2, y will be given by y = B(m) evaluated just as in the
example with (4.1). We do two examples to highlight some different cases.
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First we evaluate our first row of zeros: 10000001100000. This corresponds
to a product of rows 1, 8 and 9:

1 : 1100001 100000
8 : 1220000 011002
9 : 0320001 111002

column sum : 2640002 222004

As expected all sums are even and we have a square integer and a square al-
gebraic number. We divide each exponent in 2640002 by two and get 1320001
giving x = −1 · 23 · 32 · 13 = −936. Half of 222004 is 111002 which in turn
implies B = (−α)(−1− α)(2− α+ α2)(−5− 3α− α2)2 = 36α. Replacing α by
m gives B(m) = 36 ·m = 36 · 26 = 936. In this case we have x = −y mod N
which makes the result useless to factor N .

We now try our third row of zeros: 01110100000000. This tells us that we
should take the product of rows 2, 3, 4 and 6:

2 : 1030000 010000
3 : 1010100 020020
4 : 0300100 010001
6 : 0100002 000201

column sum : 2440202 040222.

Half of 2440202 is 1220101 giving x = −1 · 22 · 32 · 7 · 13 = −3276. Half of
040222 is 020111, yielding B = (−1−α)2(−2+3α+α2)(3+α)(−5−3α−α2) =
26 + 30α+ 16α2.

This time insertion gives B(m) = 26 + 30 ·m+ 16 ·m2 = 26+ 30 · 26 + 16 ·
262 = 11622, and x, y is not on the form x ≡ ±y mod N . We now calculate
gcd(x + y,N) = gcd(−3276 + 11622, 20437) = gcd(8346, 20437) which will be a
nontrivial factor of 20437. The Euclidean algorithm gives

20437 ≡ 3745 mod 8346
8346 ≡ 856 mod 3745
3745 ≡ 321 mod 856
856 ≡ 214 mod 321
321 ≡ 107 mod 214
214 ≡ 0 mod 107,

yielding gcd(8246, 20437) = 107. We also note that gcd(x−y,N) = gcd(−14898, 20437) =
191 and in fact 20437 = 107 · 191. Of course the factor 191 could also have been
obtained by a division.

4.5.1 Continued fractions

Continued fractions is a piece of classical mathematics. It is a basic construct of
efficient computation, since viewed carefully it is very similar to the Euclidean
algorithm (consider what happens when you apply it to a rational number).

Continued fractions is a method for obtaining good rational approximations
to a real number Θ. Suppose Θ > 1, then we write

Θ = a1 +
1
Θ1

(4.2)
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where a1 is the largest integer smaller than Θ and Θ1 is whatever makes the
equation correct. By construction, Θ1 > 1 and hence we can repeat the process
with Θ1 etc

Θ = a1 +
1

a2 + 1
Θ2

= a1 +
1

a2 + 1
a3+

1
Θ3

.

Replacing 1
Θi

by 0 gives a rational number pi

qi
which turns out to be a good

approximation of Θ. For instance the famous approximation 22
7 for π can be

obtained by using

π = 3 +
1

7 + 1
π2

and then ignoring 1
π2
. In general it is true that

|Θ− pi
qi
| ≤ 1

q2
i

. (4.3)

The numbers pi and qi can be obtained very efficiently given a floating point
approximation of Θ. In our case Θ =

√
N and then all Θi can be written on

the form
√
N+b
c making the calculations even simpler.

Let us see how to use this to obtain numbers Q such that Q2 are small. We
use the continued fraction expansion of

√
N and let pi

qi
be one obtained fraction.

Since the derivative of x2 at
√
N is 2

√
N we have by (4.3)

|p
2
i

q2
i

−N | ≈ 2
√
N |pi

qi
−
√
N | ≤ 2

√
N

q2
i

.

This implies that
|p2
i − q2

iN | ≤ 2
√
N

and hence we can use pi as our numbers with small squares mod N .

Example 4.7. Let us do the continued fraction expansion of θ =
√
45. We

have using (4.2) that a1 = 6 and

θ1 =
1√
45− 6 =

√
45 + 6
9

,

where we multiplied both numerator and denominator by
√
45 + 6 and used the

conjugate rule. We get a2 = 1 and

θ1 =
9√
45− 3 =

√
45 + 3
4

,

which gives a3 = 2 and

Θ3 =
4√
45− 5 =

√
45 + 5
5

and hence also a4 = 2. Truncating gives the approximation

6 +
1

1 + 1
2+ 1

2

=
47
7

≈ 6.714

which is a reasonable approximation since
√
45 ≈ 6.708.
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Chapter 5

Discrete Logarithms

Let us start by introducing some notation. Zm is the set of integers mod m and
Z∗
m is the set of invertible elements (i.e. for all a ∈Zm such that there exists

b ∈Zm such that ab ≡ 1 mod m.). It is not hard 1 to see that Z∗
m are all the

elements such that gcd(a,m) = 1. We are primarily interested in the case when
m is a prime p and in this case Z∗

p consists of all the integers 1, 2, . . . , p− 1.
A number g is called a generator if the series g, g2, g3, . . . , gp−1 mod p in-

cludes all numbers 1, . . . , p − 1. It is well known that for each prime p there
exists a generator (we do not prove this). Another way to formulate this is to
say that the multiplicative group Z∗

p is cyclic.

Example 5.1. The multiplicative group with p = 13 is generated by g = 2 since
the powers of 2 are:

2, 4, 8, 16 ≡ 3, 6, 12, 24 ≡ 11, 22 ≡ 9, 18 ≡ 5, 10, 20 ≡ 7, 14 ≡ 1.

With g = 4, only a subgroup is generated.

4, 16 ≡ 3, 12, 48 ≡ 9, 36 ≡ 10, 40 ≡ 1.

There are many generators g, but there is no known way to find such a generator
in deterministic polynomial time. Even worse, even testing whether a given
number is a generator is not known to be in deterministic polynomial time.
Things are not as bad as they seem, however, and in polynomial time one can
find a number that is very likely to be a generator and we assume that we are
given such a number.

The multiplicative group (mod p), Z∗
p, is isomorphic with the additive group

(mod p− 1), Zp−1. The mapping is gx ∈ Z
∗
p ↔ x ∈ Zp−1. Furthermore, Zp−1 is

generated by any number a such that gcd(a, p−1) = 1. Given such an a ∈ Zp−1,
ga is a generator of Z∗

p iff g is a generator of Z∗
p.

Example 5.2. The generators of the additive group Z12 are 1, 5, 7 and 11. We
know, from example 5.1, that 2 is a generator of the multiplicative group Z∗

13.
Therefore, the generators of Z∗

13 are 2
1 ≡ 2, 25 ≡ 6, 27 ≡ 11 and 211 ≡ 7.

Had we known that 11 was a generator, we could have constructed the other
generators of Z∗

13 as, 11
1 ≡ 11, 115 ≡ 7, 117 ≡ 2 and 1111 ≡ 6.

1Think of the extended Euclidean algorithm.

35
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The problem of finding the discrete logarithm can be formulated as follows:
Given the numbers y, g and p, where p is prime and g is a generator of Z∗

p, find
x such that gx ≡ y mod p. This is called the discrete logarithm of y base g
modulo p.

Example 5.3. The discrete logarithm of 11 (base 2 modulo 13) is 7. This can
be seen from the calculations in example 5.1.

It is important to remember that discrete logarithms mod p are numbers
mod p − 1. In particular 219 ≡ 11 mod 13. This is OK since 19 ≡ 7 mod 12.
We could also replace 19 by 31 or 43 without violating the equation.

5.1 A digression

One motivation to study the problem of computing discrete logarithms is given
by the Diffie-Hellman [14] key-exchange algorithm from cryptography. We have
two parties A and B who want to communicate over an open link to determine a
secret common key K. We want K to be secret also to potential eavesdroppers
who have listened to the entire communication. This might seem impossible
since such a person would seem to have complete information. This is indeed
correct but the curious fact is that it might be computationally infeasible to
compute the key K. Diffie and Hellman proposed the following protocol.

First a prime p and a generator g is agreed upon and transmitted on the
link. Then A transmits ga, where a is a random number, to B, and B transmits
gb to A for some random number b. The key K is then formed by A as K ≡
(gb)a ≡ gab, and by B as K ≡ (ga)b ≡ gab. An eavesdropper having only ga

and gb is at a disadvantage and the only known method to compute K from
this information is to compute the discrete logarithm of at least one of them.

5.2 A naive algorithm

A naive algorithm for computing the discrete logarithm of y (base g, modulo
p), is to generate g, g2, . . . until we get y. However, this is very inefficient, its
worst case complexity being O(2n) if p ∼ 2n. That is, in the worst case we have
to generate all the powers g, g2, . . . , gp−1.

5.3 The baby step/giant step algorithm

A somewhat better algorithm for computing the discrete logarithm is the fol-
lowing.

• Let a = �√p�

• Compute L1 = 1, ga, g2a, g3a, . . . , ga
2

• Compute L2 = y, yg, yg2, yg3, . . . , yga−1
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• Look for a number z which appears in both L1 and L2. We then have

z ≡ ygk ≡ gla mod p
y ≡ gla−k ≡ gx mod p
x ≡ la− k mod (p− 1).

The method is called the baby step/giant step algorithm because of the methods
for creating the two lists. However, we need to address two issues.

1. Is there always such a number z in both lists?

2. How do we find z efficiently?

The answer to the first question is yes, since we can write x = x1a + x2 where
0 ≤ x1, x2 < a. We then have y = gx = gx1a+x2 . Multiplying both sides of
the equation by ga−x2 , we get yga−x2 = g(x1+1)a. The left hand side of this
equation is found in L2, and the right hand side in L1.

The answer to the second question is also quite simple. Sort the two lists
in time O(a log a), then proceed as follows: compare the heads of the two lists.
If they are equal, we have found z and we stop, otherwise we throw away the
smallest of the two front elements and continue. An alternative way is to store
L1 in a hash table, then go through L2. With a good hash function, this can be
done in time O(a) (we return to this question in more detail in section 20.2).

Computing all the numbers in the two lists can be done in O(a) multiplica-
tions mod p and since each multiplication can be done in time O(log p)2 we get
the total running time O((log p)2

√
p) which is a substantial improvement over

the naive algorithm that requires p multiplications.

Example 5.4. To solve the equation

2x ≡ 11 mod 13

using the algorithm above, we set a = �√13� = 4 and compute
L1 = 1, 24 ≡ 3, 28 ≡ 9, 212 ≡ 1, 216 ≡ 3

L2 = 11, 11 · 2 ≡ 9, 11 · 22 ≡ 5, 11 · 23 ≡ 10

In the two lists we have 11 · 2 ≡ 28 ≡ 9, which gives us 11 ≡ 27. Thus, the
logarithm of 11 (base 2 modulo 13) is 7.

5.4 Pollard’s ρ-algorithm for discrete logarithms

Pollard also suggested an algorithm for discrete logarithms which uses only a
constant number of elements of memory.

We again want to find x such that gx ≡ y modulo p. The method works as
follows:

1. Divide the elements of G into three sets S1, S2 and S3 of roughly equal
size. For instance Si can be the elements x such that x ≡ i modulo 3.
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2. Define a sequence of group elements {xi} by:
x0 = 1

xi =




yxi−1 if xi−1 ∈ S1

x2
i−1 if xi−1 ∈ S2

gxi−1 if xi−1 ∈ S3

Every element xi has the form xi = gaiybi , where {ai} and {bi} are ex-
plicitly defined by:

a0 = 0

ai ≡



ai−1 if xi−1 ∈ S1

2ai−1 if xi−1 ∈ S2

ai−1 + 1 if xi−1 ∈ S3

mod p− 1

b0 = 0

bi ≡



bi−1 + 1 if xi−1 ∈ S1

2bi−1 if xi−1 ∈ S2

bi−1 if xi−1 ∈ S3

mod p− 1

3. Compute the six tuple (xi, ai, bi, x2i, a2i, b2i) for i = 1, 2, . . . until xi = x2i.
When xi = x2i we have that gaiybi = ga2iyb2i , or equivalently:

gr = ys

r ≡ ai − a2i mod p− 1
s ≡ b2i − bi mod p− 1

This gives us that logg y
s ≡ s logg y ≡ r mod p− 1. It follows that we

have to check at most d = gcd(s, p− 1) values to find the correct value of
logg h. It can be argued heuristically that d is likely to be small, but we
omit the details.

If we assume that xi is a random sequence in G, the running time of the algo-
rithm is by a similar reasoning to that for Pollard’s ρ-algorithm for factorization
heuristically seen to be O(

√
p). The space requirements is obviously a constant.

5.5 The algorithm by Pohlig and Hellman

We now describe an algorithm due to Pohlig and Hellman Suppose p− 1 can be
factored in “small” primes, i. e.

p− 1 =
s∏

i=1

qεi

i .

We assume for notational simplicity that q1 < . . . < qs and that εi = 1, for
1 ≤ i ≤ s. We can then find all qi efficiently by Pollard’s 6-algorithm or by
using the elliptical curve factoring algorithm which also finds small factors fast.
We now compute x “piece by piece”. In particular, we want to find an xi such
that x ≡ xi mod qi and then use the efficient Chinese remainder theorem. Let
us see how this is done
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For q1 we first compute

(gx)
Qs

i=2 qi ≡ y
Qs

i=2 qi
def≡ y1

and
(g)

Qs
i=2 qi

def≡ g1.

The number g1 generates a subgroup of order q1 of Z∗
p. This follows since

g1
q1 ≡ (g

Qs
i=2 qi)q1 ≡ g

Qs
i=1 qi ≡ gp−1 ≡ 1 and since gp−1 is the smallest power

of g that equals 1 no smaller power of g1 can equal 1.
Now, writing x = a1q1 + r1 we have

(gx)
Qs

i=2 qi ≡ (ga1q1+r1)
Qs

i=2 qi ≡
ga1

Qs
i=1 qi+r1

Qs
i=2 qi ≡ ga1(p−1)+r1

Qs
i=2 qi ≡

gr1
Qs

i=2 qi ≡ (g
Qs

i=2 qi)r1 ≡ gr11 mod p.

Thus all we have to do in order to compute x mod q1 is to solve g1
r1 ≡ y1 mod p.

We can do this using ∼ √
q1 operations on numbers mod p by using the algorithm

in Section 5.3 with a = �√q1�.
In the same way, we can determine x mod qi for all qi in time

∑s
i=1

√
qi ∼√

qs. The efficient form of the Chinese remainder theorem, then gives us x mod∏s
i=1 qi = (p− 1) and we are done. Since the running time is dominated by the

calls to the baby step/giant step part we get the following theorem.

Theorem 5.5. Given the factorization of p − 1, discrete logarithms (mod p)
can be computed in time O((log p)2

√
qs), where qs is the largest prime factor in

p− 1.
Given p we can apply Pollard’s ρ-method to obtain the factorization of p−1

in expected time O((log p)2√qs−1) where qs−1 is the second largest prime factor.
Thus finding the factorization of p− 1 is not the bottleneck.
Example 5.6. Suppose we want to compute the discrete logarithm of y = 17
when p = 75539 and g = 2. In other words we want to solve

2x ≡ 17 mod 75539.

We first note that p−1 = 75538 = 2 ·179 ·211 and thus we have q1 = 2, q2 = 179
and q3 = 211. Calculations with respect to q1 are rather trivial. We have

g1 ≡ g75538/2 ≡ g37769 ≡ 75538 ≡ −1

(as expected since −1 is the only possible generator of a subgroup of size 2). We
get

y1 ≡ y37769 ≡ 1

and hence x ≡ 0 mod 2. With q2 the situation gets a little bit more interesting.
We get

g2 ≡ g75538/179 ≡ g422 ≡ 71077

and
y2 ≡ y422 ≡ 74852.
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We compute the two lists as needed in the baby step/giant step algorithm with
a = 14, g = g2 and y = y2. We get

L1 = {1, 53229, 9629, 9926, 31288, 20619, 22620, 23859, 29043, 24212, 9669, 23994, 38753, 39964, 65516}

and

L2 = {74852, 43834, 58702, 40928, 32566, 27544, 625, 6193, 14108, 49630, 31288, 64555, 61336, 72104}.

Noticing that the 11th number in L2 is equal to the fifth number in L1 we
have y2g

10
2 ≡ g14·4

2 mod 75539 and thus we can conclude that x ≡ 14 · 4− 10 ≡
46 mod 179. Continuing in the same way we get

g3 ≡ g75538/211 ≡ g358 ≡ 25883

and
y3 ≡ y358 ≡ 9430

and a similar calculation to the above shows that x ≡ 12 mod 211. Finally we
combine the 3 modular equations to give x ≡ 49808 mod 75538.

5.6 An even faster randomized algorithm

The expected running time of this algorithm is better than for any of the pre-
vious algorithms. It is very much similar to the factoring algorithms that use
factor bases. The idea is to take a random ri, compute gri mod p and hope that
gri ≡ ∏

q<B qai,q mod p, where all q are prime and B is an upper limit on the
size of the primes. This yields the equation

ri ≡
∑
q<B

ai,q log q, mod (p− 1)

where all logarithms are base g, modulo p. Collecting many such relations and
solving the resulting system of equations gives us log q for all q < B. Now we
pick a new random number r, compute ygr and hope that it can be factored so
that

ygr ≡
∏
q<B

qbq mod p.

We now have the solution as

x = log y ≡
∑
q<B

bq log q − r mod (p− 1).

The time to generate all the equation needed is

Pr[numbers ∼ p only have factors ≤ B]−1B2.

To solve an equation system with ∼ B unknown can be done in time ∼ B3.
The algorithm works best with B ∼ 2c

√
log p log log p, which gives an overall cost

of 2c
′√log p log log p. We omit the details.
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Example 5.7. Let us do the calculation as in the previous example, i.e. p =
75539, g = 2 and y = 17. Let us set B = 10 and thus consider the primes
2, 3, 5, 7. Note that for discrete logarithms −1 does not cause any problems
since we know that g(p−1)/2 ≡ −1 mod p is always true. We generate some
random numbers r and obtain

g9607 ≡ 1792 = 28 · 7
g19436 ≡ 19845 = 34 · 5 · 72
g15265 ≡ 10584 = 23 · 33 · 72
g13835 ≡ 2250 = 2 · 32 · 53

with all equations mod 75538. We get the system

8 log 2+ log 7 ≡ 9607

4 log 3+ log 5+ 2 log 7 ≡ 19436
3 log 2+ 3 log 3+ 2 log 7 ≡ 15265
log 2+ 2 log 3+ 3 log 5 ≡ 13835

where the system is mod p− 1 i.e. mod 75538. In general we have to solve this
by Gaussian elimination but here since g = 2 we know that log 2 ≡ 1 and it turns
out that we can solve the system by simply substituting obtained values one by
one. Using the first equation and log 2 ≡ 1 we get log 7 ≡ 9599. Substituting
these two values into the third equation yields

3 log 3 ≡ 15265− 2 · 9599− 3 ≡ 71602

and thus log 3 ≡ 74226. Plugging this into the last equation gives log 5 ≡ 5486.
Having computed the logarithms of the small primes we now generate numbers
of the form ygr = 17 · 2r and hope that it factors into our set of primes. We
obtain

17 · 231397 ≡ 3024 = 42 · 33 · 7
and we get

log 17 ≡ 4 + 3 · 74226 + ·7599− 31397 ≡ 49808

and we are done.

Note that it is much more expensive to find the logarithms of all small
primes than to finally find the discrete logarithm of the number we care about.
In particular, computing two discrete logarithms by this method can be done
essentially the same cost as computing the discrete logarithm of one number.
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Chapter 6

Quantum computation

Classical computers, and classical models of computation, operate using the laws
of classical physics. These models can all be simulated by a probabilistic Turing
machine in only polynomial cost. In an attempt to find a more powerful model,
which could still be physically realizable, it has been suggested to construct a
device that follows the laws of quantum mechanics.

The most important evidence that quantum computers are indeed more pow-
erful than their classical counterparts is that, if physically realizable, they can
do factorization and compute discrete logarithms efficiently [49].

We start this section by giving some quantum mechanical background and
describing the quantum circuit model; we then show how to efficiently perform
classical computations with such devices. Then, we describe, and partly analyze,
the algorithm for integer factorization.

6.1 Some quantum mechanics

A quantum system can be in a number of configurations, called states. Denote
a state by x. The complex valued wave function ϕ(x) for the system has the
following properties.

• ∑
x |ϕ(x)|2 = 1.

• If the system is observed, the probability that we see that it is in the state
x is |ϕ(x)|2.

• When the system is observed, the wave function changes. This is due to
the added knowledge about the system. In particular, if the whole system
is observed to be in the state x, then ϕ(x) = 1 and ϕ(y) = 0, y �= x.

Any interaction of the system with the outside world is counted as an
observation and thus causes at least a partial collapse of the wave function.

The wave function also has a linear structure as illustrated by the following
example.

Example 6.1. An interesting experiment in quantum physics is the double slit
experiment. It consists of an electron source behind a screen. The screen con-
tains two slits, and on its far side is an electron detector. Either slit can be
covered.

43
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If we cover the first slit, the detector registers an electron intensity, f1(x),
for every point x. If the second slit is covered, we similarly get an intensity,
f2(x). However, if both slits are open, the intensity is not, as might first be
expected, proportional to f1(x) + f2(x).

What happens is that we have two complex valued wave functions, φ1 and
φ2, such that f1(x) = |φ1(x)|2 and f2(x) = |φ2(x)|2. The intensity with both
slits open is proportional to |φ1(x) + φ2(x)|2.

In fact, the observed density can not be predicted with knowledge of only
f1(x) and f2(x), since this does not tell the phase difference of φ1(x) and φ2(x).
Thus, the above complex absolute value can be any real number in the range
from (

√
f1(x) −

√
f2(x))2 to (

√
f1(x) +

√
f2(x))2.

In analogue to the binary digits of classical computations, quantum com-
putations rely on qubits (quantum binary digits). We think of qubits as the
memory contents of the quantum computing device. Each qubit may be rep-
resented by, for example, an electron which can have up or down spin, or by a
photon that is in one of two possible planes of polarization. The physical real-
ization, however, is not important for the theoretical consideration we discuss
here.

A system that has m qubits can be in 2m different states. The wave-function
is thus given by 2m complex numbers ϕ(α), for α ∈ {0, 1}m, and we often repre-
sent these numbers as a vector of length 2m. The states themselves are written
in ket notation as |α〉, e.g., |011010〉. As an alternative to vector notation, we
sometimes write the wave function as a linear combination of states. For exam-
ple, (

√
2/2)|0〉− (√2/2)|1〉 describes the same wave function as does the vector

(
√
2/2,−√

2/2)T .
Remember that if we observe the system the probability that we see α is

|ϕ(α)|2. Also, as stated above, if we observe the system at any time to be in
the state α, the wave function collapses, which means that ϕ(α) = 1 while the
other coefficients become zero.

Only the part of the system that we observe breaks down; the rest of the
system is unaffected. This is natural when we think of the entire world as a
quantum system in its own right: just because we observe part of it we do not
affect everything. More exactly, if we, for instance, observe a single bit, then
ϕ(α) either goes to 0 (if α does not agree with the observation) or gets scaled to
maintain

∑
α |ϕ(α)|2 = 1. Observing more than one qubit simultaneously can

be thought of as observing them one at a time.

6.2 Operating on qubits

We “run” the system of qubits by applying different physical events that form
operators on it. An operator is represented by a 2m × 2m matrix, A = (aα,β).
Here, α and β are states, and aα,β is the wave function φ(α) after the application
of the event, given that the system was in state β. If we represent the wave
function of the system by a column vector v of length 2m, the wave function
after the application of an event is described by the matrix multiplication Av.

To make a computation, we repeatedly apply operators to the system in
some predetermined order. After some number of operators have been applied,
the system is measured; the running time of the computation is the number
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of operators applied. Notice that the measurement of the system makes the
wave function collapse. Therefore, a quantum algorithm cannot apply opera-
tors conditionally depending on the state of the system without affecting the
computation.

Since the answer given by the measurement is probabilistic, quantum algo-
rithms are probabilistic in nature; they are designed so that they output the
correct answer with high probability (which often means significantly greater
than 0 or 1/2). Like all probabilistic algorithms, we may of course amplify the
probability of success by repeating the calculation.

One important aspect is what operators are physically realizable; this is
expressed by conditions on the matrix A.

Definition 6.2. A matrix A is unitary if the equation AA! = I holds. I is the
identity matrix and A! is the matrix A both transposed and conjugated.

Nature forces all quantum operators to be unitary. One way to see that this
is a reasonable condition is that being unitary is equivalent to preserving the
condition

∑
α |ϕ(α)|2 = 1 for all ϕ.

Exactly which unitary matrices are allowed depends on the physical real-
ization. We make the bold and rather optimistic assumption that any unitary
matrix that only acts on a constant number of qubits can be realized by a phys-
ical event. By acting only on a certain set of qubits I we simply mean that aα,β
only depends on the restriction of α and β to the set I. (Put another way: If α1

and α2 are equal on all qubits in I, and β1 and β2 are also equal on all qubits
in I, then aα1,β1 = aα2,β2 .)

It should now be clear that we may not, in general, speed up a computation
by combining two operators, A1 and A2, into a new operator A = A1A2, since
A would typically affect too many bits and therefore be physically unrealizable.

The model described above is called the quantum circuit model. We are not
concerned with the much more complicated quantum Turing machines in this
text. It is also believed that a physical quantum computer would have more
resemblance to quantum circuits than to quantum Turing machines. As for
deterministic computation, it has been proved that uniform quantum circuits
are polynomially equivalent to quantum Turing machines, but the proof is much
more complicated [53].

Example 6.3. Suppose that m = 1, i.e., that the quantum system consists of
only one qubit. This means that the system can be in two possible states. Let us
try to define some operators on this single qubit.

A1 =
(
1 0
0 1

)
A2 =

(
0 1
1 0

)
A3 =

(
0 0
1 1

)
A1 is the identity matrix and thus corresponds to “no operation.”
A2 is a standard negation, i.e., the values of ψ(|0〉) and ψ(|1〉) are inter-

changed.
A3 might seem to correspond to the operation “write 1,” a seemingly useful

thing to do. We have a problem with A3, however, in that the matrix is not
unitary. So, this operator is not physically realizable and thus not allowed.

The following Theorem states another important fact about quantum oper-
ators.
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Theorem 6.4. Quantum systems are reversible. If A is a valid operator, then
A−1 is also a valid operator (a unitary matrix that operates on a constant number
of qubits.)

Indirectly, this means that we can not destroy any information: after per-
forming A we can always use the operator A−1 to recover the previous state.
Since classical deterministic computations are not, in general, reversible, it fol-
lows that we cannot directly do normal deterministic calculations. For instance,
in Example 6.3 we see that we cannot do a simple operation like writing a
constant.

We end this section with an example that illustrates that observing a quan-
tum system in the middle of a computation affects the computation’s result.

Example 6.5. Consider a quantum computer with only one qubit (m = 1); the
initial state of the system is |0〉. Let

A =
1
2

(
1 + i 1− i
1− i 1 + i

)
.

Apply the operation A. The system is transformed into the state

A

(
1
0

)
=
(

1+i
2

1−i
2

)
.

If we observed the system, what would we see? We would see the states |0〉
and |1〉 with the same probability, 1/2 (the squares of the magnitudes of the both
components of the vector.)

Now apply A again after having observed the system and read the result. It
is not difficult to see that we get a new random bit independent of the first.

This might not seem very interesting, but what would have happened had we
applied A twice before examining the system? The wave function would then
have been

AA

(
1
0

)
= A

(
1+i
2

1−i
2

)
=
(
0
1

)
,

which means that we always observe |1〉. Apparently the result may change by
observing the system during a calculation.

6.3 Simulating deterministic computations

We can, however, simulate classical deterministic computations by changing the
way we compute.

Example 6.6. We have two bits, x and y, and want to calculate z = x ∧ y.
This is not immediately possible since we have no way of writing the result to z
in a reversible way. To make it reversible we instead update z as z ← (x∧y)⊕z.
In other words, results cannot be written directly, but this way we can use them
to change another bit.

This is the way the operation affects the bits x, y and z:

x ← x

y ← y

z ← z ⊕ (x ∧ y)
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This most definitely is a reversible operation (just repeating it in fact reverses
its effect.) It is easy to conclude that the matrix corresponding to this operation
is unitary. It is of dimension 8× 8 since we have 3 bits |xyz〉:

A =




|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉
|000〉 1 0 0 0 0 0 0 0
|001〉 0 1 0 0 0 0 0 0
|010〉 0 0 1 0 0 0 0 0
|011〉 0 0 0 1 0 0 0 0
|100〉 0 0 0 0 1 0 0 0
|101〉 0 0 0 0 0 1 0 0
|110〉 0 0 0 0 0 0 0 1
|111〉 0 0 0 0 0 0 1 0



.

The gate in the example is referred to as a Toffoli gate. Notice that, if the
third input bit z is set to 1, then after applying the Toffoli gate, z is the NAND
of x and y. Since NAND gates are universal for deterministic computations, we
can in fact simulate all deterministic computations; we describe one way to do
it below.

Start with a classical deterministic circuit consisting of only NAND gates
that computes f(x) (for which we want to find a quantum circuit.) Replace all
gates by Toffoli gates, which are equivalent to the original NAND gates if we
supply a number of extra inputs all set to the constant 1.

This implies that if we have an answer of size k and use l gates, we can
compute (x, 0k, 1l)→ (x, f(x), y), where y are the extra output bits from Toffoli
gates. To remove these bits, we proceed as follows.

Copy the result of the computation so that we have (x, f(x), y, f(x)). Now
reverse the original computation (which is possible since all steps are reversible),
to obtain (x, 0k, 1l, f(x)). The bits that are always the same can be ignored and
the theorem below follows.

Theorem 6.7. If the function x → f(x) can be computed in polynomial time
on an ordinary Turing machine (computer), then we can also compute x →
(x, f(x)) in polynomial time on a quantum computer.

It might seem like there is no important difference between computing only
f(x) and computing (x, f(x)). Classically, there is of course not, but the follow-
ing example shows that for quantum computations such “superfluous” qubits
affect the result even if they are not used.

Example 6.8. Suppose that we are somehow given a single qubit that can be
either in the state (1/

√
2)|0〉 + (1/√2)|1〉 or (1/√2)|0〉 − (1/√2)|1〉. We want

to determine which is the case and apply the operator

A =
1√
2

(
1 1
1 −1

)

to the bit. (This is in fact the discrete Fourier transform on one qubit.) De-
pending on the original state of the qubit the resulting state is

A

(
1/

√
2

1/
√
2

)
=
(
1
0

)
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or

A

(
1/

√
2

−1/√2
)
=
(
0
1

)
,

respectively, so measuring the qubit after this operation directly tells us the orig-
inal state of the qubit.

Now consider what happens if we start out by making a copy of the original
bit before investigating its state. (A way to do this would be to apply the identity
function on the given qubit in the manner given by Theorem 6.7.)

After copying, the system is in the state (1/
√
2)|00〉+(1/√2)|11〉 or (1/√2)|00〉−

(1/
√
2)|11〉. We perform the same operation as above on the first of the two

qubits; the matrix for this operation is

B =
1√
2




|00〉 |01〉 |10〉 |11〉
|00〉 1 0 1 0
|01〉 0 1 0 1
|10〉 1 0 −1 0
|11〉 0 1 0 −1


.

(The effect on the first qubit is exactly as for the operator A, and the second
qubit is left unchanged.) Again, depending on the original state we get

B



1/

√
2

0
0

1/
√
2


 =

1
2



1
1
1
−1




or

B



1/

√
2

0
0

−1/√2


 =

1
2



1
−1
1
1


 ,

respectively. Measuring the first qubit after in this case yields |0〉 and |1〉 with
equal probability and thus does not give any information about the original state
of the original qubit. The extra information given by the copy of the original bit
prevents the cancellation of amplitudes we had in the first situation.

If there is an efficient deterministic algorithm that computes the inverse of f ,
we can get rid of the input from the result to compute just f(x) in the following
way.

We apply Theorem 6.7 to f−1 to obtain a polynomial time quantum al-
gorithm that makes the computation f(x) → (f(x), f−1(f(x)) = (f(x), x).
Since this computation can be reversed, we can also make the computation
(f(x), x)→ f(x). This is exactly the transformation we need.

6.4 Relations to other models of computation

6.4.1 Relation to probabilistic models

The quantum characteristics have similarities to probabilistic computations.
The probabilistic operation of writing a single random bit can be represented
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by the matrix (
1
2

1
2

1
2

1
2

)
in much the same way as we represent quantum operators. The matrix means
that, independent of what the value of the single bit, write a 0 with probability
1
2 or write a 1 with probability

1
2 .

In the same way as with quantum computations, we could for each state α
associate a probability pα of being in that state at a given time.

However, for probabilistic computations it is more efficient to do the random
choices “on-line.” The reason is that, for classical probabilistic computations,
reading the state of the system is possible during the computation without
affecting the state.

6.4.2 Simulating quantum computers

Consider a quantum computation on m qubits involving t operations. How fast
can we deterministically simulate the output of this quantum computation?

Naively, we would just keep track of 2m complex numbers representing the
wave function of the system, and update this representation for each operation.
If the operators are local (i.e., act only on a constant number of qubits), we
can calculate each component of the wave function in constant time for each
operation since they are determined by a constant number of known values. The
time complexity of this approach is O(t2m), which is very inefficient for large
systems.

It is unknown whether one can simulate quantum computers significantly
faster than this. The factoring algorithm in the next section presents some
evidence that it might not be possible (since it is believed that factoring is hard
on a classical computer.) Note that if we could simulate quantum computations
efficiently on a classical computer, this would rule out the possibility of solving
classically hard problems quickly on a quantum computer.

6.5 The factoring algorithm

This section describes a quantum algorithm for integer factorization. For n bit
integer numbers, it requires O(n) qubits and has time complexity O(n3). For
simplicity we omit some details.

To factor the number N , first pick a random number x and compute its
order r. The order of x is the smallest r such that xr ≡ 1 (mod N). We hope
(this is often true, although we do not prove it here) that (1) r is even and (2)
xr/2 �≡ −1 (mod N).

If (1) and (2) hold, the relation (xr/2)2 ≡ 12 (mod N) holds and computing
gcd(xr/2 − 1, N) yields a non-trivial factor.

We need two subroutines:

(1) Pick a random bit The matrix

A =

(
1√
2

1√
2

− 1√
2

1√
2

)

converts a 0 to a random bit.
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(2) DFT The Discrete Fourier Transform.

The quantum DFT can be described as

|a〉 → 2−m/2
2m−1∑
c=0

e
2πiac
2m |c〉.

To understand why this is the Fourier transform of a sequence, we should think
of a as representing a vector with a 1 only at position a, and zeros otherwise.

We can also write the quantum DFT operator as a 2m × 2m matrix whose
entry in row c, column a is 2−m/2e

2πiac
2m ; denote this entry by Ac,a. It is easy

to verify that A is unitary by checking that Ac,aA
!
c,a = 0 for a �= c and that

Aa,aA
!
a,a = 1.

However, changing the value of a single input qubit affects all qubits in the
output, and it follows that the operator is not local. Thus, we need to factor
the matrix into a matrices acting locally. This is accomplished by adapting the
FFT (Fast Fourier Transform—see Section ?) algorithm, and it turns out that
O(m2) operators acting on at most 2 qubits is sufficient.

Now, given the input (x,N) whereN is an n bit number, we want to compute
the order r of x mod N . We also have some extra qubits which are all initially
0. When a bit is not used, we do not write it down when representing the state.
The algorithm looks like this:

1. Pick m = 3n random bits to form a random integer a. The state of the
system is

∑2m−1
a=0 2−m/2|a, x,N〉.

2. Compute xa mod N , which yields the state
∑2m−1

a=0 2−m/2|xa, a, x,N〉.
3. Perform the DFT with respect to a. We get

2−m
2m−1∑
c=0

2m−1∑
a=0

e
2πiac
2m |xa, c, x,N〉.

4. Read c.

5. Deterministically find r given c.

Step 2 preserves the input (a, x,N), so this part of the algorithm can be done
due to Theorem 6.7, and the implementation of step 3 was discussed above. We
need to analyze what properties we can hope of c observed in step 4. The key is
to analyze what different a and c in the sum described in step 3 give the same
state and thus cause positive or negative interference.

Since c is part of the state, different values of c do not interfere with each
other. All a for which xa have the same value interfere: xk, xk+r , xk+2r , . . . all
have the same value (r is the order of x.) Let us look at the corresponding com-
plex numbers. The probability of seeing the state |xk, c, x,N〉 can be calculated
by taking the squared magnitude of the corresponding complex number which
is

|2−m
�2m/r	∑
j=0

e
2πi(k+jr)c

2m |2.
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This is not as hard as one might expect since
∑2m/r

j=0 e
2πi(k+jr)c

2m is a geometric
series with first term s = e

2πikc
2m and quotient k = e

2πirc
2m between consecutive

terms. The well known formula
n∑
i=0

ski = s
1− kn+1

1− k

is used to yield the result

e
2πikc
2m

1− e
2πirc(�2m/r�+1)

2m

1− e
2πirc
2m

.

The absolute value of the factor in front of the fraction is 1 and is disregarded.
Both the numerator and the denominator of the fraction have magnitudes be-
tween 0 and 2. Thus the only way to make this unusually large is by making the
denominator close to 0 and the numerator far from 0. That the denominator is
close to 0 is equivalent to e

2πirc
2m being close to 1 which, in turn, this means that

rc
2m must be very close to an integer. Since we observe c and know 2m while r is
what we want to find it is useful to think of this condition as c2−m being close
to a rational number of the form d

r . It can be shown (we omit the details) that
it is quite likely that we observe a c such that | c

2m − d
r | ≤ 1

2m+1 holds for some
integer d and the key is that this is sufficient to recover r.

We use the continued fraction expansion of c
2m as discussed in Section ?. As

indicated there, the continued fraction expansion of a number Θ gives approxi-
mations pi

qi
such that

|Θ− pi
qi
| ≤ 1

q2
i

,

but there is also a converse to this: any approximation such that

|Θ− p

q
| ≤ 1

2q2

is in fact one of the approximations output by the continued fraction algorithm.
In particular, since 2r2 ≤ 2m+1 the approximation d/r to c/2m is found.

When we finally have a candidate for r, it can be used in the equation
(xr/2)

2
= 12 (mod N) as described in the beginning of this section. If we are

unsuccessful in finding a non-trivial factor, we try again with a new x. For
missing details in the description and the analysis we refer to [49].

6.6 Are quantum computers for real?

Some physicists claim that it is impossible to build large scale quantum com-
puters that work for a large number of steps. One of the largest problems is
that quantum systems tend to interact with their environment so that the state
of the system is lost very quickly. The most sophisticated experimental setups
have been able to implement a few very simple operations on very few qubits
(less than 10).

The factoring algorithm described in the previous section example would of
course require thousands of qubits for many thousands of time steps to factor
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a numbers intractable by classical methods. One direction of research trying to
overcome the difficulties of quantum decoherence is to integrate error correction
techniques into quantum algorithms (see [50]).

The accuracy needed for the operators used by the algorithms may also prove
very hard to achieve physically.

Another area of quantum information processing under development is quan-
tum cryptography. Experimental quantum cryptographic systems have already
been built, and it seems quite likely that such systems will work well in practise
long before quantum computers do. Ironically, since there are classical cryp-
tographic systems that rely on the hardness of integer factorization, there is
no immediate need for quantum cryptography as long as factorization remains
a difficult task, which might be as long as there are no large scale quantum
computers.



Chapter 7

Factoring polynomials in
finite fields

An algorithm for factoring polynomials is a basic component in many computer
algebra packages. It may be surprising but true that factoring polynomials
is much easier than factoring integers and we start by factoring polynomials
modulo small primes p.

Assume that we are given a polynomial g(x) of degree n and we want to
decide if is irreducible or factor it into irreducible factors. An easy case to
handle is when g(x) contains a square factor, i. e. a factor of the form p(x)2.
In this case p(x) divides gcd(g(x), g′(x)) where g′ is the derivative of g. Over a
discrete domain the derivative does not have the same “slope” interpretation as
over the real numbers and we simply form it in a syntactic manner by defining
the derivative of xd to be dxd−1 and extending it by linearity. It is not difficult
to check that all the usual theorems apply and in particular the derivative of
p(x)2h(x) is p(x)2h′(x) + 2p′(x)p(x)h(x). Thus the factor p(x) can be found
efficiently using the Euclidean algorithm applied to polynomials.

Note that over a finite field g′(x) might be identically zero even if g(x) is not
a constant. This happens mod p when g(x) = h(xp) for some polynomial h. In
this case GCD(g(x), g′(x)) = g(x) so we do not get a nontrivial factorization.
However, mod p it is true 1 that h(xp) = h(x)p and thus we simply proceed to
factor h. Let us now concentrate on the case of p = 2 and we later discuss how
to extend the results to general p. Keep in mind that all arithmetic from now
on is done mod 2.

The key to our algorithm is the mapping

f(x) �→ f(x)2 mod g(x)

of polynomials of degree at most n − 1. This is a linear map since (f1(x) +
f2(x))2 = f1(x)2+f2(x)2 whenever we are in characteristic 2. We are interested
in the fix-points of this map, i. e. polynomials f(x) such that

f(x) = f(x)2 mod g(x) (7.1)

1This is established by making the multinomial expansion of h(x)p. All multinomial coef-
ficients except those appearing in front of the terms in h(xp) are divisible by p and hence 0
mod p.
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If g is irreducible, then working mod g(x) is actually working in the finite
field GF [2n] and in any field a quadratic equation has at most 2 solutions and
it is easy to see that the given equation has exactly two solutions namely the
constants 0 and 1.

If g is the product of a number of irreducible polynomials (let us assume
two for concreteness), the situation changes. If g(x) = g1(x)g2(x) then by the
Chinese remainder theorem, each polynomial f mod g can instead be represented
as the pair (f1, f2) where f(x) = fi(x) mod gi(x). Then f solves equation (7.1)
iff f1 solves it mod g1 and f2 solves it mod g2. Since we know the set of solutions
mod irreducible polynomial, this implies that we get 4 solutions mod g(x). These
are (when written as pairs, i. e. the first component is the remainder mod g1

and the second mod g2) (0, 0), (1, 1), (0, 1) and (1, 0). The first two solutions
correspond to the standard roots f(x) being the constants 0 or 1 while the other
two are much more interesting. If f(0,1)(x) is the polynomial corresponding to
the third solution then GCD(g(x), f(0,1)(x)) = g1(x) and our problem is solved.
In general the number of fix-points is given by 2l where l is the number of
irreducible factors in g. Let us see how this works in a couple of examples.

Example 7.1. Let g(x) = x5 + x2 + 1. Then under our mapping

1 �→ 1
x �→ x2

x2 �→ x4

x3 �→ x6 = x3 + x

x4 �→ x8 = x2 · x6 = x5 + x3 = x3 + x2 + 1

Thus in the basis 1, x, x2, x3, x4 our mapping is given by the matrix.

M =



1 0 0 0 1
0 0 0 1 0
0 1 0 0 1
0 0 0 1 1
0 0 1 0 0




Since we are looking for fix-points to the mapping given by M we want to find
the null-space of the mapping given by the matrix M + I where I is the identity
matrix i. e. we want to study the matrix.

M + I =



0 0 0 0 1
0 1 0 1 0
0 1 1 0 1
0 0 0 0 1
0 0 1 0 1




It is easy to check that the null-space of this matrix is given by the only vector
(1, 0, 0, 0, 0) and thus x5 + x2 + 1 is irreducible.
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Example 7.2. Let g(x) = x5 + x+ 1. This time

1 �→ 1
x �→ x2

x2 �→ x4

x3 �→ x6 = x2 + x

x4 �→ x8 = x2 · x6 = x4 + x3

M =



1 0 0 0 0
0 0 0 1 0
0 1 0 1 0
0 0 0 0 1
0 0 1 0 1




which gives

M + I =



0 0 0 0 0
0 1 0 1 0
0 1 1 1 0
0 0 0 1 1
0 0 1 0 0




The null-space of this matrix is spanned by (1, 0, 0, 0, 0) and (0, 1, 0, 1, 1). The
first is the trivial solution, while the second corresponds to the polynomial x4 +
x3 + x. Computing GCD(x5 + x + 1, x4 + x3 + x) by the Euclidean algorithm
gives

x5 + x+ 1 = (x + 1)(x4 + x3 + x) + x3 + x2 + 1
x4 + x3 + x = x(x3 + x2 + 1)

Finally a division gives x5 + x + 1 = (x3 + x2 + 1)(x2 + x + 1) which is the
complete factorization.

Finding the nullspace is just linear algebra and can be done by Gaussian
elimination. Since the gcd can be computed even faster we get.

Theorem 7.3. We can factor degree n polynomials over GF [2] into irreducible
factors in time O(n3).

We have in fact only established how to factor a non-irreducible polynomial
into two factors. We leave the details how to get the complete factorization
within the same time-bound as an exercise. We note, however, that the com-
putation of the nullspace need not be redone and thus the hard part of the
computation can be reused.

7.1 Factoring polynomials in larger fields

Let us see what happens for primes p other than 2. Much of the work transfers
without change and in particular we should study the mapping

f(x) �→ f(x)p = f(xp) mod g(x)
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which is again a linear map. The set of fix-points to this map is a linear subspace
of the polynomials of degree at most n− 1 of dimension l where l is the number
of irreducible factors in g. The fix-points are all polynomials h(x) such that h is
a constant (degree 0 polynomial) mod gi for each irreducible factor gi of g. If g
is not irreducible, then, in the mod 2 case, it was true that for any non-constant
fix-point h, gcd(h, g) was nontrivial. This is not true for larger p, e. g. for p = 3
we can have g(x) = g1(x)g2(x) and h(x) = 1 mod g1(x) and h(x) = 2 mod
g2(x), then h is a fix-point while gcd(g, h) = 1. However, it is always true that
for some i, 0 ≤ i ≤ p−2, gcd(h+i, g) is nontrivial. Thus p−1 gcd computations
is always sufficient to find a nontrivial factor.

Let us analyze the running time of this algorithm. For simplicity let us
count the number of operations that are done on integers mod p rather than
bit-operations. Let us first assume that p ≤ n. Then using xp(i+1) = xp(xpi)
it is easy to see that each column in the matrix M can be computed from
the previous in O(pn) operations. To determine the null-space can be done by
Gaussian elimination in O(n3) operations and finally each GCD can be done in
O(n2) operations giving a total of O(pn2 + n3) = O(n3) operations on integers
mod p.

If p is large then the cost O(pn2) becomes the dominant cost. However
in the first step (constructing the matrix M) we can be more efficient. We
can precompute xp mod g(x) by O(log p) squarings and multiplications2 by x
and this can be done in O(n2 log p) operations. Each successive column can
then be computed O(n2) operations. Thus the first part of the algorithm that
determines the number of irreducible factors in g(x) (and in particular if g is
irreducible) can be made to run in O(n2 log p + n3) operations. However, the
second step (factorization of non-irreducible g) is inefficient for large p.

To get an efficient algorithm for large p we need to make an additional
observation. The inefficiency comes from the fact that if h is a fix-point, then
we know that h(x) mod g1(x) is one of the numbers 0, 1, . . . p− 1 but we do not
know which. We need to narrow the choice. The trick is to consider h(x)(p−1)/2.
Since for any a �= 0 mod p we have a(p−1)/2 = ±1 (half of the a’s giving each
possibility) we are in much better shape. The second step is thus transformed
to

• For a random fix-point h compute GCD(h(p−1)/2 − 1, g(x)).

The polynomial h(p−1)/2 mod g(x) can be computing in O(n2 log p) operations
by the method of repeated squaring. It is possible to show that with probability
at least one half the above GCD is nontrivial. Thus we get a method that runs
in expected time O(n2 log p+n3). Note that the answer we get is always correct
since the part determining the number of irreducible factors is deterministic.
We sum up the conclusions in a theorem.

Theorem 7.4. Factorization of polynomials in GF [p] can be done in O(n3 +
n2 log p) time. Time is counted as the number of field operations. The algorithms
is probabilistic and the running time is only expected time. The answer, however,
is always correct.

2Compare to how we computed ap−1 mod p when we were doing primality tests.
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7.2 Special case of square roots

Let us consider the problem of computing square roots modulo large numbers
p. This is a special case of polynomial factorization since taking the square
root of a is equivalent to factoring x2 − a. Let us first check that our test for
irreducibility works out. With g(x) = x2 − 1 we have a degree polynomial and
we just need to find out to what values 1 and x maps under f(x) �→ f(x)p.
Clearly 1 goes to 1 and x goes to xp = xx2((p−1)/2) = xa(p−1)/2. Thus the
matrix whose nullspace we should find is given by:(

0 0
0 a(p−1)/2 − 1

)

and this has null-space dimension 2 iff a(p−1)/2 = 1 which is just the standard
criteria for a being a square mod p. So far so good!

Now let us try to find the factors. According to our general algorithm
we should take a random polynomial h and then compute GCD(h(x)(p−1)/2 −
1, x2 − a). Since h should be a polynomial from the null-space which is not
a constant the first value that comes to mind is h(x) = x. Let us try this.
We need to consider two cases, when p = 1 mod 4 and p = 3 mod 4. Let us
start with the second. In this case x(p−1)/2 = xx2((p−3)/4) = xa(p−3)/4. Thus
x(p−1)/2 − 1 = xa(p−3)/4 − 1 and it is easy to check that

x2 − a = (xa(p−3)/4 − 1)(xa(p+1)/4 + a)

which implies that we get a solution x = a(3−p)/4 = (since a(p−1)/2 = 1) a(p+1)/4.
That the solutions is correct can be verified directly since

(a(p+1)/4)2 = aa(p−1)/2 = a,

and we state this as a theorem.

Theorem 7.5. It is possible to extract square-roots mod p where p is a prime
which is 3 mod 4 in deterministic time O((log p)3) (counted as bit operations).

Example 7.6. Assume that p = 31 and let us extract the square root of 18. We
know from above that this number is simply 188 and thus we simply compute

188 ≡ (324)4 ≡ 144 ≡ (196)2 ≡ 102 ≡ 7

and in fact 72 = 49 ≡ 18. The other square root of 18 is of course −7 ≡ 24.

Now let us turn to the case when p = 1 mod 4. Then

x(p−1)/2 = x2((p−1)/4) = a(p−1)/4.

This is just a constant (in fact either 1 or -1) and this implies thatGCD(x(p−1)/2−
1, x2 − a) is never a nontrivial factor. Thus in this case we have to try another
h(x). It turns out that in the case p = 1 mod 4, there is no known algorithm
for extracting square roots that run in deterministic polynomial time. We have
to resort to the general procedure of picking a random h.

Theorem 7.7. It is possible to extract square-roots modulo p where p ≡ 1 mod
4 in probabilistic time O((log p)3) (counted as bit operations). The answer is
always correct.
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Example 7.8. Let us extract the square root of 23 modulo 29. We do this by
computing picking h(x) = x+ 1 and computing h′(x) = h(x)14 mod x2 − 23

h(x)2 = x2 + 2x+ 1 ≡ 2x+ 24
h(x)3 = (x + 1)(2x+ 24) = 2x2 + 26x+ 24 ≡ 26x+ 12
h(x)6 = (26x+ 12)2 = 676x2 + 624x+ 144 ≡ 15x+ 3
h(x)7 = (x + 1)(15x+ 3) = 15x2 + 18x+ 3 ≡ 18x
h(x)14 = (18x)2 = 324x2 ≡ 28

and thus we do not get an nontrivial factor for this choice of h. We instead set
h(x) = x+ 2 getting

h(x)2 = x2 + 4x+ 4 ≡ 4x+ 27
h(x)3 = (x+ 2)(4x+ 27) = 4x2 + 35x+ 54 ≡ 6x+ 1
h(x)6 = (6x+ 1)2 = 36x2 + 12x+ 1 ≡ 12x+ 17
h(x)7 = (x+ 1)(12x+ 17) = 12x2 + 41x+ 34 ≡ 12x+ 20
h(x)14 = (12x+ 20)2 = 144x2 + 480x+ 400 ≡ 16x.

In this case gcd(16x − 1, x2 − 23) is simply 16x − 1, or by multiplying by the
constant 20, x− 20 and thus we have that one square root of 23 is 20, the other
square root being −20 ≡ 9.

Thus we have a big difference for extracting square roots depending on p
modulo 4. If one thinks about it for a while it turns out that the reason for the
difference is −1 is a quadratic non-residue modulo p iff p ≡ 3 mod 4, and −1 is
exactly the factor we need to multiply one square root by to get the other. We
invite the interested reader to clarify this remark.

An even bigger difference is given by extracting square roots modulo com-
posite numbers. This in fact turns out to be as hard as factoring. To see this,
note that some of our factoring algorithms depended on our ability to find x and
y such that x �≡ ±y and x2 ≡ y2. If we could extract square roots then such a
pair could be constructed by simple picking a random x computing a ≡ x2 and
then extracting the square root of a. This would give an y that always satisfies
y2 ≡ x2 and it is not hard to see that y �≡ ±x with probability as least 1/2.

Conversely, if we can factor we can also extract square roots. This follows
from the fact that we can extra square roots modulo the prime factors and then
combine the results by efficient Chinese remaindering.



Chapter 8

Factoring polynomials over
integers

We now turn to the factorization of ordinary integer polynomials. using ordinary
arithmetic. We are thus given g(x) =

∑n
i=0 gix

i, where gi ∈ Z. To begin with
we have to consider which domain to allow for the coefficients. The most general
domain would be the complex numbers but this is simply root-finding since

g(x) =
n∏
i=1

(x− xi)

where xi are the roots to g(x) = 0. Root-finding is an important problem but
we do not discuss it here. Since g is a real polynomial the roots comes as real
roots and pairs of conjugated roots and thus the factorization of g over the real
numbers is given by∏

xi real

(x− xi)
∏

(xi,xi) conjugate pair

(x − xi)(x− xi)

since (x − xi)(x − xi) is a real polynomial of degree 2. Thus the interesting
domain for factorization of polynomials with integer coefficients is the domain
of rational numbers. We can clearly assume that the gcd of the coefficients of
g is 1 since otherwise we can simply divide all coefficients by their common
gcd. Furthermore, if the factorization of g is h1h2 then, by multiplying h1 by
suitable rational number and dividing h2 by the same number, we can assume
that also h1 have integer coefficients with gcd 1. In this situation it turns out
(see Lemma 8.1 below) that h2 also has integer coefficients and in fact we need
not leave the domain of integers.

Lemma 8.1. Let g and h1 be integer polynomials such that the greatest common
divisor of the coefficients of either polynomial is 1. Then if g(x) = h1(x)h2(x)
where h2(x) is a polynomial with rational coefficients, the coefficients of h2 are
in fact integral.

Proof. For contradiction, assume h2 does not have integer coefficients and that
the least common denominator of the coefficients in h2 is M . Let p be a prime
factor in M and consider the following equation.

M · g(x) = h1(x) ·Mh2(x)

59
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Mh2(x) is an integer polynomial. If we look at this equation modulo p,Mg(x) ≡
0, but h1(x) �≡ 0 since the greatest common divisor of the coefficients of h1 is 1.
This also applies for Mh2, so we have reached a contradiction. Here, we need
the fact that the product of two nonzero polynomials modulo p is a nonzero
polynomial. This can be seen by considering the leading terms in the three
polynomials.

Another question is how large the coefficients of h1 and h2 can be. They can
be considerably larger than the coefficients in g! We can estimate how large the
coefficients of a polynomial can be in terms of the size of the complex roots of the
polynomial. LetM = max{|g0|, . . . , |gn|} and write g as g(x) = gn

∏n
i=1(x−xi)

where xi is the complex roots of g(x) = 0.
Let us first estimate the magnitude of the roots.

Lemma 8.2. |xi| ≤ 2M/|gn|
Proof. Assume that |x| > 2M/|gn| and we want to prove that g(x) is nonzero.
The idea is that in this case gnxn is the dominant term and cannot be cancelled.

|g(x)| =
∣∣∣∣∣
n∑
i=0

gix
i

∣∣∣∣∣ = |gnxn| −
∣∣∣∣∣
n−1∑
i=0

gix
i

∣∣∣∣∣ ≥ |gn||xn| −M

n−1∑
i=0

|x|i

The sum in the last term is a geometric series with quotient ≥ 2 and hence the
sum is at most twice the last term. Therefore,

|gn||xn| −M

n−1∑
i=0

|x|i > |gn||xn| − 2M |x|n−1 ≥ |x|n−1(|gn||x| − 2M) ≥ 0

and since we had strict inequality in one of the steps g(x) is nonzero.

We can use this estimate to give an upper bound on the sizes of the coef-
ficients of the factors of g. Let h1(x) = hlead1

∏
i∈S(x − xi) where hlead1 is the

leading coefficient in h1 and S is the set of roots of g that also solve h1(x) = 0.
We know that hlead1 divides gn, so |hlead1 | ≤ |gn|.

If h1 has degree m then the coefficient for degree i is bounded by

hlead1

(
m

i

)(
2M
|gn|

)m−i
≤ |gn| · 2m ·

(
2M
|gn|

)m

≤ (4M)m ≤ (4M)n.

Thus we have proved the following lemma.

Lemma 8.3. Let g be an integer polynomial of degree n such that any coefficient
is bounded byM in absolute value. Then any integer factor h of g has coefficients
bounded by (4M)n.

After these preliminaries, let us now turn to the actual problem of factoriza-
tion. Since we already know how to factor in finite fields and any factorization
over the integers immediately gives a factorization modulo p, for any p, it is
natural to try to use these factorization in some way. One idea would be to
factor modulo the upper bound we have. In other words, to do the factorization
modulo a prime p > (4M)n and then test if the factorization actually comes
from a factorization over the integers. If we would obtain a factorization modulo
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p with only two factors then we are done since we just check if this is actually a
factorization over the integers1 and if this is not the case then g is irreducible.

If g is the product of many factors modulo p, say even that g splits into
linear factors g(x) =

∏n
i=1 gi(x) mod p then we are in trouble. The problem

being that a factor of the integers might be a product of many factors modulo
p and thus we need to try the possible factors h(x) =

∏
i∈S qi(x) mod p for any

subset S and in the worst case there are 2n possible S. If this happens we could
simply try a different p and hope for fewer factors. This approach does work
well for a random polynomial and it is the approach we would recommend in
practice. There are bad examples, however, with many factors modulo p for
any p but no factors over the integers and to be theoretically accurate we now
turn to an algorithm that works in polynomial time for all polynomials. It is
probably a bit slow in practice.

8.1 The algorithm

A high level description of our algorithm is as follows.

1. Find factors g(x) = h1(x)h2(x) modulo pk for some p and k. Think of p
as small and k as large. Here h1 is an irreducible polynomial and h2 is
“the rest”.

2. Find a polynomial h(x) = h1(x)z(x) mod pk where deg(h) < deg(g). The
coefficients of h should be small, say less than M1.

3. Compute gcd(g(x), h(x)).

We want the gcd to be non-trivial and a simple condition for this property is
useful. Assume that deg(f) = n and deg(g) = m.

Lemma 8.4. gcd(f(x), g(x)) is non-trivial if and only if there is a non-trivial
solution to f(x)h1(x) + g(x)h2(x) = 0 with deg(h1) < m and deg(h2) < n.

Proof. Say gcd(f(x), g(x)) = d(x). Then h1(x) = g(x)/d(x) and h2(x) =
−f(x)/d(x) satisfy the equation. Conversely, if gcd(f(x), g(x)) = 1 then ev-
ery irreducible factor in g divides h1(x) which in turn means that g(x)|h1(x).
This is a contradiction because deg(h1) < deg(g).

The condition of Lemma 8.4 is a matter of solvability of a homogeneous linear
equation system and we can check this efficiently by looking the appropriate
matrix and its determinant. We call it the Sylvester resultant.

1We are actually cheating slightly since in the modulo p factorization we only know the
factors upto an arbitrary constant multiplier and we need to find this multiplier. This is not
difficult in practice, but we omit the discussion how this is done.
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8.1.1 The Sylvester resultant

Define the matrix S as


f0 f1 f2 . . . fn−1 fn 0 . . . 0
0 f0 f1 . . . fn−2 fn−1 fn . . . 0
...
0 0 0 . . . f0 f1 f2 . . . fn
g0 g1 g2 . . . gm 0 0 . . . 0
0 g0 g1 . . . gm−1 gm 0 . . . 0
...
0 0 0 . . . g0 g1 g2 . . . gm︸ ︷︷ ︸




n+m elements

What we want to check is whether the system

ST




h
(0)
1

h
(1)
1
...

h
(m−1)
1

h
(0)
2

h
(1)
2
...

h
(n−1)
2



=



0
0
...
0




is solvable. The Sylvester resultant R(f, g) is defined as the determinant of S
and the system is solvable by a non-trivial solution if R(f, g) = 0. So by the
above lemma, gcd(f(x), g(x)) is non-trivial if and only if R(f, g) = 0 and this
applies both over the integers, modulo p and modulo pk.

Example 8.5. We are given polynomials f(x) = 1+2x+x3 and g(x) = 5+x2.
Does there exist polynomials h1(x) = h0

1 + h1
1x and h2(x) = h0

2 + h1
2x + h2

2x
2

such that h1(x)f(x) + h2(x)g(x) = 0? We get the linear system

1 0 5 0 0
2 1 0 5 0
0 2 1 0 5
1 0 0 1 0
0 1 0 0 1







h0
1

h1
1

h0
2

h1
2

h2
2


 = 0̄

which is solvable if

R(f, g) =

∣∣∣∣∣∣∣∣∣∣

1 2 0 1 0
0 1 2 0 1
5 0 1 0 0
0 5 0 1 0
0 0 5 0 1

∣∣∣∣∣∣∣∣∣∣
= 0.

In this case, R(f, g) = 46 and the system has therefore no solution except the
zero vector. It does have a solution modulo 23 where we can set h1(x) = 15− x
and h2(x) = −3 + 8x+ x2.
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We can now see that the outlined algorithm should work, because with h1(x)
dividing both h(x) and g(x) modulo pk, the Sylvester resultant equals 0 modulo
pk since gcd(h(x), g(x)) modulo pk is non-trivial. We want that R(h, g) =
0 mod pk together with the fact the coefficients of h are small would imply that
R(h, g) = 0 over the integers. This is in fact not hard to achieve and we state
it as a lemma.

Lemma 8.6. Let h1 be an integer polynomial of degree m with coefficients
bounded by M1 and let g be an integer polynomial of degree n with coefficients
bounded by M . If gcd(h1, g) is nontrivial modulo pk then, provided pk > (n +
m)!MmMn

1 , gcd(h1, g) is nontrivial also over the integers.

Proof. Look at R(h1, g). This number is 0 modulo pk and we need to prove that
it is 0 also over the integers since this is equivalent with the conclusion of the
lemma. Now R(h1, g) is a determinant of size n+m and the first m rows have
elements bounded by M while the last n rows have elements bounded by M1.
The expansion defining the determinant contains (m+ n)! terms where each is
a product of (n+m) factors, one from each row. Thus

|R(h1, g)| ≤ (n+m)!MmMn
1

and thus by the condition on the size of pk and the fact that it is 0 modulo pk

we can conclude that it is 0 over the integers.

8.1.2 Finding a factorization of g(x) modulo pk

The first task in the algorithm is to find factors h1(x) and h2(x) such that
g(x) = h1(x)h2(x) modulo some pk. We can proceed as follows.

(i) Choose p such that g(x) is square free modulo p.

(ii) Factor g(x) modulo p.

(iii) For i := 1 to k − 1, “lift” the factorization modulo pi to modulo pi+1.

We know from the last chapter how to do item (ii). Item (iii) is simplified by
having g(x) square free, which explains why we do item (i). Having g(x) square
free is equivalent to gcd(g, g′) being trivial, which in it’s turn is equivalent to
R(g, g′) �= 0, so we want to choose a p that does not divide R(g, g′). We can use
the fact that R(g, g′) ≤ M2n(2n)! to find such a prime number. If the resultant
would be divisible by every prime up to some x, then R(g, g′) would be in the
order of ex, so there must be a p < log(M2n(2n)!) = 2n logM +2n logn we can
use, and we can find it by simply computing the resultant over the integers and
then trying all small primes. Note that we can assume g(x) to be square free
over the integers, because if that was not the case, we can easily get a factor of
g(x) by computing gcd(g, g′).

The task (iii) can be done with a procedure called Hensel lifting. We have
g(x) = h

(i)
1 (x)h

(i)
2 (x) modulo pi and want g(x) = h

(i+1)
1 (x)h(i+1)

2 (x) modulo
pi+1. Try h(i+1)

1 (x) = h
(i)
1 (x)+ pih′1(x) and h

(i+1)
2 (x) = h

(i)
2 (x)+ pih′2(x). Then

h
(i+1)
1 (x)h(i+1)

2 (x) = h
(i)
1 (x)h

(i)
2 (x)+h(i)

1 (x)p
ih′2(x)+h

(i)
2 (x)p

ih′1(x)+p
2ih′1(x)h

′
2(x)
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would hopefully equal g(x) modulo pi+1. This can be written as the equation

pig′(x) = h
(i)
1 (x)p

ih′2(x) + h
(i)
2 (x)p

ih′1(x) mod p
i+1

if we let pig′(x) = g(x) − h
(i)
1 (x)h

(i)
2 (x). Then we can divide by pi everywhere

and get
h

(i)
1 (x)h

′
2(x) + h′1(x)h

(i)
2 (x) = g′(x) mod p

This is a linear equation system modulo p and if it is solvable, we simply find
the solution by Gaussian elimination. It turns out that this system is always
solvable when g(x) is square free. We omit the details. There are n+2 unknowns
in h′1 and h

′
2 so we can fix one parameter, say the leading coefficient of h

′
1, and

solve.
The whole procedure of finding a factorization of g(x) modulo pk involves k

systems of linear equations modulo p of size n+ 1× n+ 1.

8.1.3 Finding a small polynomial with a factor in common
with g(x)

We now proceed with the second task of the algorithm, i. e. to find a polynomial
h(x) = h1(x)z(x) modulo pk, deg(h) ≤ n− 1, with small coefficients. The tool
here is Lovász’ algorithm for finding a short vector in a lattice. Given a set of
vectors (>bi)ni=1, the corresponding lattice is defined as all integer combinations
of these vectors i. e. all vectors of the form

∑n
i=1 ai

>bi, ai ∈ Z. To use this
notation, we view our polynomials as vectors.

A polynomial f(x) =
∑m

i=0 fix
i has a corresponding vector (f0, f1, . . . , fm, 0, 0, . . . , 0)

in an n-dimensional space. Some consequences:

xf ↔ (0, f0, f1, . . .)
xn−m−1f ↔ (0, 0, . . . , 0, f0, . . . , fm)

In our application, Lh1 is the lattice spanned by the vectors corresponding to
xih1, 0 ≤ i ≤ n −m − 1 and pk>ei, where >ei are the unit vectors. The vectors
in this lattice corresponds exactly to the multiples of h modulo pk. If we can
find a short vector in Lh1 , then we have found the polynomial h with small
coefficients.

Lovász’ algorithm finds a vector of length less than 2(n−1)/2λ in a lattice
where λ is the length of the shortest vector. With input vectors of length B,
the running time is bounded by O(n5 logB) arithmetic operations. The details
of that algorithm is given in Chapter 9

In our case we know that if g is not irreducible, then, by Lemma 8.3, there
is a vector of length at most

√
n(4M)n in the lattice. The length of the output

vector is thus at most 2n/2
√
n(4M)n ≤ (8M)n. This output vector can be

translated into a polynomial h that is a multiple of h1, and with coefficients
bounded by (8M)n. Thus if we choose pk > (n+m)!MmMn

1 ∼ (8M)n
2
we are

guaranteed that gcd(g, h) is non-trivial and this greatest common divisor can of
course be calculated efficiently.

The length of the input vectors is in the order of pk ∼ (8M)n
2
. Therefore,

the running time of Lovász’ algorithm, which also dominates the whole factor-
ization, comes to O(n5 · log((8M)n

2
)) = O(n7 logM). This running time can be

improved with a more careful implementation and analysis.
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We state the last conclusion as a theorem

Theorem 8.7. It is possible to factor polynomials of degree n over the integers
with coefficients bounded by M in O(n7 logM) arithmetic operations.
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Chapter 9

Lovász’s Lattice Basis
Reduction Algorithm

Factorization of integer polynomials required a subroutine for finding a short
vector in a lattice. This subroutine is very useful and has been applied in
a number of contexts, the most publicized possibly being breaking [8, 48] a
number of the public key cryptosystems based on knapsacks. We try to give
most details of this algorithm.

9.1 Definition of lattices and some initial ideas

Given vectors >b1,>b2, . . . ,>bn, we wish to study all vectors in the set

L = {
n∑
i=1

ai>bi | ai ∈ Z},

and find one that isn’t too long. If the >bi form a basis of Rn, L ⊂ Rn is
called a lattice. We assume for simplicity that >b1,>b2, . . . ,>bn ∈ Z

n are linearly
independent and hence form a basis of Rn.

Example 9.1. If n = 2,>b1 = (1, 0),>b2 = (0, 1), then L = {(a, b) | a, b ∈ Z},
which is the set of all integral points in the plane.

Example 9.2. If we instead let >b1 = (2, 0), then L is all integral points whose
first coordinate is even.

Example 9.3. If we let >b1 = (1, 2) and >b2 = (−1, 3) then L consists of all
integral points such that the inner product with the vector (3, 1) is divisible by
5. Note that the two vectors >b′1 = (0, 5) and >b2 = (1, 2) span the same lattice.

Thus a lattice may have many bases and a major problem is choosing the
“best” basis. Let us give a more elaborate example illustrating this point.

Example 9.4. Let n = 2,>b1 = (421, 114) and >b2 = (469, 127). Now suppose
we change this basis by keeping >b1 but changing >b2 to >b′2 = >b2 −>b1 = (48, 13).

67
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Clearly we generate the same lattice this way but the new basis is better in that
at least one of the vectors is shorter. We can continue this process. Set

>b′1 = >b1 − 9>b2 = (−11,−3)

now >b′1 and >b
′
2 is an even better basis. We can continue setting

>b′′2 ← >b′2 + 4>b
′
1 = (4, 1)

>b′′1 ← >b′1 + 3>b
′′
2 = (1, 0)

>b′′′2 ← >b′′2 − 4>b′′1 = (0, 1).
with each pair generating the same lattice. Thus in other words the basis
(421, 114), (469, 127) generates the same points as the simpler-looking (1, 0), (0, 1)
i. e. all integral points.

Let us give some general facts about lattices. With a basis (>bi)ni=1 we as-
sociate a matrix B which has >bi as its i’th row. Since we assume that (>bi)ni=1

are linearly independent over the rational numbers the determinant of B is
nonzero. For any other basis we get a similar matrix B′ and they span the
same lattice if for some integer matrices M and M ′ we have that B = MB′

and B′ =M ′B. Clearly in such a case M ′ =M−1 and since we are considering
integral matrices the determinants ofM andM ′ are both ±1. This implies that
|det(B)| = |det(B′)| and thus this number is independent of the chosen basis.
This number is simply called the determinant of the lattice and is thus defined
by

det(L) = | det




>b1
>b2
...
>bn


 |

for any basis (>bi))ni=1. Since a determinant is equal to the volume of the par-
allelepiped spanned by the row vectors, the determinant of a lattice is in fact
equal to the volume of the fundamental domain of the lattice. It is hence also
the reciprocal of the “density” of L, where density is the number of points per
volume in large spheres. Also, from this characterization it follows that this
number does not depend on the particular choice of basis. In Example 9.3 we
have that the determinant is ∣∣∣∣ 1 2

−1 3

∣∣∣∣ = 5
and thus we expect it to contain a fifth of all points, which is clearly seen from
the other definition of the same lattice (i. e. the definition that the inner product
with (3,1) should be divisible by 5). On the other hand, in Example 9.4∣∣∣∣ 421 114

469 127

∣∣∣∣ = 1.
Since the only integer lattice of density 1 is given by all integral points we can
conclude, without doing any further calculations, that these vectors span all
integral points.
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We now turn to the general problem of finding a good basis for a lattice.
The only change of basis that we use is to replace some >bi by >bi−

∑
j 
=i aj>bj for

some integers aj . These changes preserve the lattice. Let us first look at the
case of dimension 2. The experience from Example 9.4 makes the following a
natural suggestion:

Gauss(>b1,>b2)
repeat
arrange that >b1 is the shorter vector
find k ∈ Z such that >b2 − k>b1 is of minimal
length
>b2 ← >b2 − k>b1

until k = 0
return >b1,>b2

Indeed, the output from Gauss is such that >b1 is the shortest vector in the
lattice and >b2 is roughly orthogonal to >b1. A simple geometric argument reveals
that the angle between the output vectors is in the range 90◦ ± 30◦. We omit
the details. The reason for calling the procedure Gauss is that in fact it was
described by Gauss in the last century.

It is far from clear how to extend the basis reduction to higher dimensions.
Before we try let us just give an small example.

Example 9.5. Now, let n = 3, p = 5, k = 3 and h ≡ x + 57 mod pk be param-
eters used to construct the lattice used in the polynomial factorization chapter.
Then,

h ∼ (57, 1, 0) = >b1,

xh ∼ (0, 57, 1) = >b2,

pke1 ∼ (125, 0, 0) = >b3

happen to form a basis for the needed lattice. After the operations

>b′3 = >b3 − 2>b1 = (11,−2, 0),
>b′1 = >b1 − 5>b′3 = (2, 11, 0),
>b′2 = >b2 − 5>b′1 = (−10, 2, 1)

we have >b′2 +>b′3 = (1, 0, 1) ∼ x2 + 1, which certainly is a multiple of h mod pk

whose coefficients are conveniently small. Note that (x + 57)(x − 57) ≡ x2 +
1 mod 125.

Note the rather ad hoc nature of the reduction steps in the last example.
We are in need of a more general technique.

9.2 General Basis Reduction

To generalize the basis reduction algorithm to any dimension was a great achieve-
ment, but the basic building blocks are simple. The basic idea is more or less the
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expected. We simply use recursion and all we need is to reduce the dimension
of the problem. The latter is achieved by taking orthogonal projections. We
have to be slightly careful, however, to avoid an exponential running time.

Assume we have a basis >b1,>b2, . . . ,>bn to reduce. Define

>b∗1 = >b1,

>b∗i = >bi projected orthogonally to >b1, . . . ,>bi−1, 2 ≤ i ≤ n,

>e∗i = unit vector in the direction of >b∗i ,

βi = |>b∗i |.
What we have done is called a Gram-Schmidt orthogonalization and in the
orthogonal basis e∗ the basis is as follows:

>b1 = (β1, 0, . . . , 0),
>b2 = (µ12, β2, 0, . . . , 0),
...

>bn = (µ1n, µ2n, . . . , µ(n−1)n, βn).

The following lemma shows one importance of the numbers βi.

Lemma 9.6. For any vector >v �= 0n such that >v ∈ L, we have ‖>v‖ ≥ minni=1 βi.

Proof. Assume that >v =
∑n

i=1 ai
>bi and then i0 is the largest coordinate such

that ai �= 0. The then i0’th coordinate of >v in the basis >e∗i is ai0βi0 and hence

‖>v‖ ≥ |ai0βi0 | ≥
n
min
i=1

βi.

We are now ready for the algorithm L3, so called because it first appeared
in a paper by Lenstra, Lenstra and Lovász [34]. This paper gave the first fully
proved polynomial time algorithm for factorization of integer polynomials. The
subroutine for finding a short vector in a lattice is due to Lovász alone and
thus the name L3 is slightly misleading but also firmly established. In view of
Lemma 9.6 and the fact that we want >b1 to be the short vector we output, the
key to the algorithm is to make sure that no βi is much smaller than β1 which is
the length of >b1. It turns out that if β2

i+1 is smaller than
1
2β

2
i we can interchange

>bi and >bi+1 to make βi smaller. In this way we push the small values to the
smaller indices. The algorithm is given in detail below.

Input: a basis and its orthogo-
nalization
Output: a reduced basis
(1) arrange that |µij | ≤ 1

2βi,
for 1 ≤ i ≤ n−1, 2 ≤ j ≤
n

(2) if ∃i : β2
i+1 ≤ 1

2β
2
i

(3) exchange >bi and >bi+1

(4) goto 1
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Before we analyze the algorithm let us just describe in detail how to do the
first step. The key is the order in which to take care of the conditions, we first
make sure that µ(n−1)n is small by subtracting a suitable integer multiple of
>bn−1 from >bn. We then take care of µ(n−2)(n−1) and µ(n−2)n by subtracting a
suitable integer multiple of >bn−2 from >bn−1 and >bn respectively. Note that this
does not change µ(n−1)n! We then take care of µ(n−3)j etc. The process thus
resembles Gaussian elimination.

Our analysis has to answer two questions:

1. How good is the result, i. e. how much longer is the vector >b1 compared
to the shortest vector on termination?

2. How many iterations are needed in the worst case and how long time does
an iteration take?

The first question is essentially answered by

Lemma 9.7. Upon termination the length of the vector >b1 is at most 2(n−1)/2

times the length of the shortest vector in L.

Proof. The termination condition gives:

β2
1 ≤ 2β2

2 ≤ . . . ≤ 2n−1β2
n,

and by Lemma 9.6 we have

|>b1| = β1 ≤ 2
n−1

2
n
min
i=1

βi ≤ 2
n−1

2 |the shortest vector in L|.

To answer the second question let us first analyze the time needed for one
iteration. The most time-consuming step is to make sure that the µij are small
which is similar to Gaussian elimination, and takes time O(n3). Next we bound
the number of iterations. Let us consider an interchange and let >b′i denote the
new value of βi (and similarly for other quantities). Suppose we exchange >b2
and >b3. After the exchange, we have β′

2 = |>b∗′2 | = the length of the part of >b′2
that is orthogonal to >b1, but >b′2 = >b3, so

β′
2 =

√
β2

3 + µ2
23 ≤

√
1
2
β2

2 +
1
4
β2

2 =

√
3
4
β2.

Now β4 is the part of >b4 which is orthogonal to >b1, >b2 and >b3. Since this set of
vectors does not change when we interchange b2 and b3, β4 remains unchanged
and if fact for j ≥ 4, we have β′

j = βj and since det(L) =
∏n

i=1 βi =
∏n

i=1 β
′
i, it

follows that

β′
3 =

β2β3

β′
2

≥
√
4
3
β3.

So we conclude that an exchange at i only affects βi and βi+1, of which the
first decreases and the latter increases. Furthermore, we have lower-bounded
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their rate of change. Consider how an exchange affects the product B =∏n
j=1 β

n−j
j . The only interesting part is

βn−ii βn−i−1
i+1 = βi (βiβi+1)n−i−1︸ ︷︷ ︸

unchanged

,

so B decreases by the same factor as does the particular βi in each iteration.
If the longest input vector has length D, then initially, βj ≤ D which implies

that to begin with

B ≤
n∏
j=1

Dn−j = D
n(n−1)

2 ,

and in the end B ≥ 1, because

β1 ≥ 1 (length of >b1)

β1β2 ≥ 1 (det

((
>b1
>b2

)(
>bT1

>bT2

))
= β2

1β
2
2 , an integer)

...
β1β2 · · ·βj ≥ 1

...
β1β2 · · ·βn = det(L) ≥ 1,

and B is the product of these numbers.
Thus we see that the number of iterations is in O(n2 logD), and that the

total running time of the algorithm is in O(n5 logD) operations on numbers.
To complete the analysis we would need to analyze the accuracy needed during
the computations. This is rather tedious and we omit this analysis. In practice,
however, reports show that one has to be rather accurate and use at least double
precision in larger dimensions. This answers the second question and concludes
our analysis of L3. We end by stating a formal theorem.

Theorem 9.8. Given a basis of a lattice in n dimensions where each of the
basis vectors is of length at most D, then the algorithm L3 finds a vector in L
which is at most 2(n−1)/2 times longer than the shortest vector. The algorithm
runs in time O(n5 logD) operations on numbers.



Chapter 10

Multiplication of Large
Integers

The computational problem of multiplying extremely large integers might not
seem of immediate practical use since the standard method is sufficient while the
numbers only have a few thousand digits. However, extremely large numbers
do come up in some applications and in those cases an efficient multiplication
algorithm is of vital importance. There is also another motivation of a more
philosophical nature. Multiplication is a basic operation and it is fundamental
to our understanding of efficient computation to investigate how to multiply in
the most efficient matter. With this in mind it is also curious to note that the
fastest algorithm given in these notes (taken from [47]), although it is the fastest
algorithms known, is not known to be optimal. Thus there might still be more
efficient algorithms for multiplication to be discovered!

The standard way to multiply large numbers that we all learned in grade
school uses O(n2) steps to multiply two n-bit numbers. The first algorithm
improving this bound was given by Karatsuba [29] and since it is rather simple
we present this algorithm first.

10.1 Karatsuba’s algorithm

We want to multiply the two n bit numbers x and y. Suppose that n is a power
of 2 and rewrite x and y:

x = a+ 2n/2b, y = c+ 2n/2d,

where a, b, c, d < 2n/2. What we want to calculate is the product

xy = (a+ 2n/2b)(c+ 2n/2d) = ac+ 2n/2(ad+ bc) + 2nbd.

Noticing that ad+ bc = (a+ b)(c+d)−ac− bd, it suffices to compute three n/21

bit products: ac, bd, and (a + b)(c + d), which can be calculated by recursion.
We also need a few additions and shift operations in each recursion level. Since

1The numbers (a + b) and (c + d) might have n/2 + 1 bits and to be exact this extra bit
should be handled separately. It does not change the analysis however and we ignore this
little complication.

73



74 CHAPTER 10. MULTIPLICATION OF LARGE INTEGERS

the latter can be done in time O(n) if we denote the number of bit operations
needed to multiply two n bit numbers byM(n), we get the following recurrence
relation.

M(n) = 3M(n/2) +O(n).

A recurrence relation of the form M(n) = aM(n/b) + O(nc) has the solution
M(n) = O(nlogb a) provided c < logb a we get in this case thatM(n) = O(nlog2 3)
and since log2 3 ≈ 1.58 this is considerably faster than the naive algorithm.
We state this as a theorem before we proceed to develop tools for even faster
algorithms.

Theorem 10.1. Two n-bit numbers can be multiplied using O(nlog2 3) bit op-
erations.

10.2 The Discrete Fourier Transform

The discrete Fourier transform is a basic building block in many algorithms.
We use it to get a fast algorithm for multiplying large numbers, but the main
application in real life is in signal processing.

10.2.1 Definition

The discrete Fourier transform â0, â1, . . . , ân−1 of the sequence a0, a1, . . . , an−1

is defined by

âj =
n−1∑
i=0

ωijai,

where ω is an n’th root of unity, i. e. , ωn = 1 and ωk �= 1, k < n. Most of
the time ω will be the complex number e2πi/n, but we will also consider other
domains. The inverse of the transform is

ak =
1
n

n−1∑
j=0

ω−jk âj.

We leave it to the reader to verify that this is in fact a correct inversion.
One of the reasons to use the Fourier transform is that convolution of two

sequences is transformed to pairwise multiplication in the transform domain:

c = a ∗ b ∼ ĉk = âk b̂k,

where convolution is defined by

a ∗ b =
∑

i+j≡k mod n

aibj.

We leave the proof of also this fact as an exercise.
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10.3 The Fast Fourier Transform

To calculate the Fourier transform in an efficient way, we use a method known
as the fast Fourier transform (FFT). To see how the FFT works, suppose that
n is a power of 2 and split the definition sum into terms with even index and
those with odd index.

âj =
n−1∑
i=0

ωijai =
n/2−1∑
k=0

ω2kja2k +
n/2−1∑
k=0

ω(2k+1)ja2k+1.

If we put σ = ω2 then σ is an n/2’th root of unity and we can use if for
transforms of size n/2. We use it to transform the two sequences given by the
odd and even terms of our original sequence. Let (âej)

n/2−1
j=0 be the transform of

the even elements, i. e.

âej =
n/2−1∑
k=0

σjka2k

and similarly let

âoj =
n/2−1∑
k=0

σjka2k+1

be the transform of the odd elements. Then by straightforward identification of
terms we have

âj = âej + ωj âoj , j = 0, 1, . . . , n/2− 1, (10.1)

and

âj = âej−n/2 + ωj âoj−n/2, j = n/2, n/2 + 1, . . . , n− 1. (10.2)

Thus we can calculate the Fourier transform with the help of a divide and
conquer strategy. By recursion we compute the transforms of the odd and even
terms and then we use (10.1) and (10.2) to complete the calculation. Since
the latter costs O(n) arithmetic operations, if we let T (n) be the number of
operations needed for a transform of size n we get

T (n) = cn+ 2T (n/2)

and this solves to T (n) = O(n logn). Let us state this as a theorem

Theorem 10.2. When n is a power of 2, the DFT can be computed by the FFT
in O(n log n) arithmetic operations.

10.4 Fast Multiplication

The basic idea to make a faster algorithm is to use the Fourier transform:
the main work in multiplying resembles convolution, so by using the Fourier
transform, we can multiply the numbers bitwise in the transform domain.
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10.4.1 A First Attempt

Our first attempt to make an algorithm for multiplication is the following:

Input: Two numbers a and b represented by the binary se-
quences a0, a1, . . . , an−1 and b0, b1, . . . , bn−1.
Output: The binary sequence c0, c1, . . . , cn−1 representing the
product c = ab.
(1) Calculate the transforms â, b̂.
(2) ĉk ← âk b̂k
(3) Compute c by doing the inverse transformation.

Step 1 uses O(n log n) exact complex multiplications. Step 2 can be calcu-
lated in O(n) operations and step 3 takes the same time as step 1.

A minor problem is that

c0 = a0b0 + a1bn−1 + a2bn−2 + · · ·

is not really the least significant bit of the product. To get the correct answer
we have to use 2n bits, and to extend the input vectors to double length by
adding coordinates which are all set to zero. In other words we change n to 2n
by setting an+i = bn+i = 0 for 0 ≤ i ≤ n − 1. Another minor problem is then
that the ci are not the bits of the products, but rather numbers from 0 to n.
Thus we have to add these n numbers, each consisting of logn bits but this can
easily be done in time O(n log n) and thus this is not a problem either.

What we really want is to derive a method for multiplication that is fast
measured in the number of bit operations needed. So, obviously, using exact
complex arithmetics is not desirable. There seem to be two possible solutions:

1. Use the method above, but try to limit the need of accuracy in the complex
multiplications.

2. Try to use the Fourier transform over some other domain than the complex
numbers, e. g. , over ZN for some N .

10.4.2 Use complex numbers

If we want to use the complex Fourier transform as proposed above, the number
of bits of accuracy needed turns out to be O(log n). Let us sketch why this is
sufficient. Suppose b bits of accuracy are used in representing the numbers ωj

and in the calculations. If two numbers, each known with j bits of accuracy are
added or multiplied the result is known with about j − 1 bits of accuracy. This
implies that at the i’th level of the recursion, we have b−O(i) bits of accuracy
in the numbers. Since the recursion is logn levels deep we have b − O(log n)
bits of accuracy in then answer.

Now if ai and bi are used as individual bits we know that the answers cj are
integers which are at most n and thus 2+ logn bits of accuracy in the answer is
sufficient to obtain the exact answer. We conclude that b = d logn for a suitable
constant d is sufficient and let us analyze the resulting algorithm.
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If M(n) is the number of bit operations needed to multiply two n bit num-
bers, we get

M(n) = cn lognM(O(log n))
= cn logn c′ logn log lognM(O(log logn))
= O(n(log n)2 log logn)M(O(log logn))
∈ O(n(log n)2+ε).

It turns out to be better to have every ai and bi consist of logn bits each.
We then take convolution of vectors of length n/ logn, containing integers
0, 1, . . . , n−1; and by the above reasoning O(log n) bits of accuracy still suffices
and we get.

M(n) = c(n/ logn) log(n/ logn)M(O(logn))
≈ cnM(O(log n))
= O(n log n)M(O(log logn))
∈ O(n log n(log logn)1+ε).

This is the best known running time upto the existence of ε. We show below
how to eliminate this ε. In practice, however, we recommend the algorithm with
complex numbers since in most applications the algorithm can be performed
with single or at most double precision and then there is no reason to worry
about recursion, and real life computers are slowed by the need to use recursion.

Example 10.3. We want to FFT multiply the integers A = 1634 and B = 9827.
a0 . . . a7 = (4, 3, 6, 1, 0, 0, 0, 0)
b0 . . . b7 = (7, 2, 8, 9, 0, 0, 0, 0)

We want to do a 8-dimensional FFT using the 8’th root of unity ω = e2πi/8 =√
1/2+ i

√
1/2. We want to perform calculations to a fixed precision and we use

two decimal digits of accuracy and use the value .71 + .71i for ω, and similar
values for larger powers of ω. We note, however, that ω2 = i and ω4 = −1
and hence there is no need to use approximate values for these numbers. If we
unravel the FFT we see that the final result is in fact explicitly given by

â0 = âe0 + ω0âo0 â1 = âe1 + ω1âo1 â2 = âe2 + ω2âo2 â3 = âe3 + ω3âo3

â4 = âe0 + ω4âo0 â5 = âe1 + ω5âo1 â6 = âe2 + ω6âo2 â7 = âe3 + ω7âo3

where (âei )
3
i=0 is the transform of the even part (4, 6, 0, 0) and (âoi )

3
i=1 is the

transform of the odd part (3, 1, 0, 0). We calculate these two transforms by
recursion using σ = ω2 = i as the appropriate root of unity. We start with the
even part (4, 6, 0, 0) and again we have after expanding

âe0 = âee0 + σ0âeo0 âe1 = âee1 + σ1âeo1 âe2 = âee0 + σ2âeo0 âe3 = âee1 + σ3âeo0 ,

where (âee0 , âee1 ) is the transform of the even even part i.e. (4, 0) and (âeo0 , âeo1 )
is the transform of (6, 0). Using the definition of a transform of size two with
the root of unity γ = ω4 = −1 we have

âee0 = γ0·0 · 4 + γ1·0 · 0 = 4
âee1 = γ0·1 · 4 + γ1·1 · 0 = 4
âeo0 = γ0·0 · 6 + γ1·0 · 0 = 6
âeo1 = γ0·1 · 6 + γ1·1 · 0 = 6.
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Substituting this back into the previous expressions we get

âe0 = 4 + σ0 · 6 = 10
âe1 = 4 + σ1 · 6 = 4 + 6i
âe2 = 4 + σ2 · 6 = 4− 6 = −2
âe3 = 4 + σ3 · 6 = 4− 6i.

Let us now turn to the odd part, (3, 1, 0, 0). We have, with similar notation, as
before

âo0 = âoe0 + σ0âoo0 âo1 = âoe1 + σ1âoo1 âo2 = âoe0 + σ2âoo0 âo3 = âoe1 + σ3âoo0 ,

where (âoe0 , âoe1 ) is the transform of the even even part i.e. (3, 0) and (âoo0 , âoo1 )
is the transform of (1, 0). By definition

(âoe0 , âoe1 ) = (3, 3) (âoo0 , âoo1 ) = (1, 1)

giving

(âo0, â
o
1, â

o
2, â

o
3) = (4, 3 + i, 2, 3− i).

Substituting this into the first set of equations and using the approximate value
for the powers of ω gives

â0 = 10 + 4 = 14
â1 = 4 + 6i+ ω · (3 + i) = 5.42 + 8.84i
â2 = −2 + ω2 · 2 = −2 + 2i
â3 = 4− 6i+ ω3 · (3− i) = 2.58− 3.16i
â4 = 10 + ω44 = 6
â5 = 4 + 6i+ ω5 · (3 + i) = 2.58 + 3.16i
â6 = −2 + ω6 · 2 = −2− 2i
â7 = 4− 6i+ ω7 · (3− i) = 5.42− 8.84i

Note that the pairs (â1, â7), (â2, â6), (â3, â5) are the complex conjugates of each
other. This is no surprise since this property of getting conjugate pairs is true
for any real initial vector a. We now calculate the transformation of b in the
same way yielding the result.

b̂ = (26, 2.03 + 15.81i,−1− 7i, 11.97− 0.19i, 4, 11.97+ 0.19i,−1 + 7i, 2.03− 15.81i)

We multiply the two transforms componentwise (ĉi = âi · b̂i) to get

ĉ = (364,−128.76+ 103.64i, 16+ 12i, 30.28− 38.32i, 24, 30.28+ 38.32i, 16− 12i,−128.76− 103.64i).

Now do the inverse FFT on ĉ which is similar to the forward transform except
that we replace ω by ω−1 =

√
1/2− i

√
1/2. We also divide the final result by 8

obtaining

c = (27.88, 28.86, 79.99, 79.32, 77.12, 62.13, 9.01,−0.32).
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We know that the components of c are integers and hence we round them to

c = (28, 29, 80, 79, 77, 62, 9, 0)

which in fact is the correct answer. We note in all honesty that the distance
from the final components to the nearest integers were a bit too large to be really
sure that the answers are correct. It would have been wise to redo the calculation
with 3 digits of accuracy which yields

c = (28.004, 29.005, 80.000, 78.988, 76.995, 61.995, 8.999, 0.011)

which certainly looks much nicer. In any case we know that the correct product
of the two given numbers is

7∑
i=0

ci10i

but our “digits” ci are larger than 10 and hence we move the overflow to higher
index ci one by one giving the process

c = (8, 31, 80, 79, 77, 62, 9, 0)
c = (8, 1, 83, 79, 77, 62, 9, 0)
c = (8, 1, 3, 87, 77, 62, 9, 0)
c = (8, 1, 3, 7, 85, 62, 9, 0)
c = (8, 1, 3, 7, 5, 70, 9, 0)
c = (8, 1, 3, 7, 5, 0, 16, 0)
c = (8, 1, 3, 7, 5, 0, 6, 1),

yielding the answer 16057318. If we keep track of constants we see that the cost
to multiply two n digit numbers is something like 6n logn complex multiplica-
tions. The traditional method requires n2 multiplications of individual digits and
a few additions. Since 6n logn is larger than n2 for small n the benefit is not
visible in such a small example as n = 8. However, as n gets large the situation
changes drastically.

10.4.3 Making calculations in ZN

This time we do the transform in the ring ZN instead. We require that n = 2k.
First let B = 2�k/2	 and l = n/B. We let the input vectors a and b be of length
B containing integers 0, 1, . . . , 2l − 1. Calculations are to be performed modulo
N = 22l + 1. This gives the algorithm for integer multiplication with the best
known asymptotic running time. It is called the Schönhage-Strassen algorithm
after its inventors.

The number 24l/B is a Bth unit root since (24l/B)B = 24l = (22l)2 = (−1)2 =
1 mod 22l + 1. Thus since this is the only property we need of ω, ω = 24l/B is
a valid choice.

We represent a number modulo 22l + 1 by 2l bits. We use that x22l + y ≡
y−x mod 22l + 1 so that multiplication by powers of the form 24l/B and addition
can be done in O(l) bit operations.

Let us analyze our proposed multiplication algorithm given in Section 10.4.1.
We find that step 1 requires O(B logB) multiplications, each of which can
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be performed in O(l) bit operations. The multiplication of the transforms in
step 2 requires BM(2l) operations where M(n) denotes the number of opera-
tions needed to multiply numbers of length n. We get

M(n) = O(lB logB) +BM(2l)
= O(n log n) +BM(2l)
= cn logn+BM(2l),

where we set M(n) =M ′(n)n:

nM ′(n) = cn logn+B2lM ′(2l)
M ′(n) = c logn+ 2M ′(2l)

≤ c logn+ 2M(4
√
n)

≤ c logn+ 2c log 4
√
n+ 4M ′(4

√
4
√
n)

≤ c logn+ c logn+ 4c log(4
√
4
√
n) + 8M ′(dn1/8).

We reachM ′(1) after log logn steps; and thus the total cost is beO(n log n log logn).
Unfortunately, the method described above needs some minor adjustments.

A few things to worry about are:

1. If the components of the result are larger than 22l the algorithm gives an
erroneous result; ck might be as large as B22l and we only know ck modulo
22l + 1.

2. What happens if some number becomes exactly 22l? 2l bits are not enough
to represent such a number.

3. How do we convert the output vector to a number? Is knowledge of ck
enough to calculate the product?

4. We want to determine a product. In the recursion we calculate the product
modulo 22l + 1.

Problem 2 is a simple special case; we do not draw any further attention to
it. Problem 4 is solved by defining our basic computational problem to compute
a product of two integers modulo 2n + 1 for a given n. When computing the
product of two n-bit integers there is no harm to compute the product mod
22n + 1 and thus we can simply double n on the first level of recursion.

When we multiply a and b represented by the vectors a = (a0, a1, . . . , aB−1)
and b = (b0, b1, . . . , bB−1):

a =
B−1∑
i=0

2liai

and

b =
B−1∑
i=0

2libi,

we want to get the product

ab =
2B−2∑
k=0


2kl ∑

i+j≡k
aibj


 ≡

B−1∑
k=0

2klc′k mod 2
n + 1
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where
c′k =

∑
i+j=k

aibj −
∑

i+j=k+B

aibj.

To calculate c′k, use the vectors

a′′ = (a0 Ψa1 Ψ2a2 . . . ΨB−1aB−1),
b′′ = (b0 Ψb1 Ψ2b2 . . . ΨB−1bB−1),

where ΨB = −1 (Ψ = 22l/B, 4 or 16). If we use the Fourier transform to
compute the convolution of a′′ and b′′ (ĉ′′k = b̂′′k â

′′
k), we get

c′′ = (c′0 Ψc′1 Ψ2c′2 . . . ΨB−1c′B−1).

It is now easy to calculate the sum

B−1∑
k=0

2klc′k

in O(n) operations. This solves problem 3.
For problem 1 we know c′k mod 2

2l + 1. If we calculate c′k mod B we also
know c′k mod B(2

2l + 1):

c′k ≡
{

x mod 22l + 1
y mod B

⇒ c′k = (y − x)(22l + 1) + x.

We can calculate c′k mod B as

c′k =
∑
i+j=k

aibj −
∑

i+j=k+B

aibj mod B.

We have to deal with logB bit numbers, to compare with B bit numbers that
we have used until now, so this should be fairly simple. Let Ai = ai mod B and
Bi = bi mod B, and let

α =
B−1∑
i=0

B3iAi,

β =
B−1∑
i=0

B3iBi.

Now calculate the product αβ, which is the product of two O(B logB) bit num-
bers, for example, by using Karatsuba’s algorithm in time O((B logB)1.58) ⊂
o(n) operations:

αβ =
2B−2∑
k=0

B3k
∑
i+j=k

AiBj

︸ ︷︷ ︸
≤B3

=
2B−2∑
k=0

B3kγk.

We can now calculate c′k mod B as γk− γk+B mod B. This takes care of all our
problems.
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10.5 Division of large integers

Let x and y be two numbers each with at most n bits. We let division be the
problem of computing an approximation of x/y with n digits accuracy, i.e. of
finding a number q such that |x/y − q| ≤ 2−nq. Intuitively, most people think
of division as the most difficult arithmetical operation, but from a complex-
ity theory point of view it turns out not to be much more complicated than
multiplication.

Theorem 10.4. LetM(n) be a function such that for any n, 2M(n) ≤ M(2n) ≤
CM(n) for some constant C and such that multiplication of two n bit integers
can be done in time M(n). Then, we can also solve division in time O(M(n)).

The technical assumption 2M(n) ≤ M(2n) ≤ CM(n) is very mild and is
true for any nice function that grows at least linearly and at most quadratically.

Let us now describe the algorithm. Firstly, note that it is sufficient to
compute 1/y with n (or possibly n + 1 but we do not care about such small
details) bits of accuracy. A final multiplication by x of cost M(n) would then
give the full answer. To simplify notation we divide y by a power of 2 to get
1/2 ≤ y ≤ 1 given by a binary expansion with at most n bits. Define x0 = 1
and let

xi+1 = 2xi − yx2
i .

We have the following lemma:

Lemma 10.5. We have |xiy − 1| ≤ 2−2i

.

Proof. We proceed by induction over i. The lemma is clearly true for i = 0. For
general i we have

1− xi+1y = 1− 2xiy + y2x2
i = (1 − xiy)2,

which completes the induction step.

The lemma implies that with i = 1 + logn, xi is an approximation to 1/y
within the desired accuracy. Since each iteration can be done with two multipli-
cations and one subtraction this would give an algorithm for inversion that runs
in time O(M(n) log n). To remove this unwanted factor of logn we proceed as
follows.

Since only the 2i first bits of xi are correct it seems wasteful to use n bits of
accuracy in the calculations. Let ỹi be y with 5+2i bits of accuracy, start with
x̃0 = 1, use the updating rule

xi+1 = 2x̃i − yix̃
2
i

where x̃i is xi rounded to 5 + 2i bits. We claim that

|1− x̃iyi| ≤ 2−2i−1−1/2.

We again prove this by induction. It is true for i = 0. For the induction-step
we note that

|x̃i+1yi+1 − xi+1yi| ≤ |x̃i+1yi+1 − x̃i+1yi|+ |x̃i+1yi − xi+1yi| ≤ 2−(3+2i)
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and that, as before,
1− xi+1yi = (1− x̃iyi)2.

The two inequalities taken together yield

|1− x̃i+1yi+1| ≤ 2−3−2i

+ 2−2i−1 ≤ 2−2i−1/2

and the induction-step is complete.
The cost of the i’th iteration is 2M(5 + 2i) + O(2i) and thus we get total

cost
1+logn∑
i=1

2M(5 + 2i) +O(2i) ≤ O(M(n))

where we have used the assumptions on the function M . Thus we can conclude
that division is only marginally more expensive than multiplication and we have
established Theorem 10.4.

The iteration formula might look like magic when first encountered but in
fact this is not the case. Remember that Newton’s method for solving a non-
linear equation f(x) = 0 is to use iterations by the formula

xi+1 = xi − f(xi)
f ′(xi)

.

If we apply this with f(x) = y − 1
x , since f ′(x) = 1

x2 we get the iterative
formula we used. The quadratic convergence is then natural since this is true
for Newton-iterations applied to smooth functions.
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Chapter 11

Matrix multiplication

11.1 Introduction

Given two n×nmatrices, A and B, we wish to examine how fast we can compute
the product AB = C. The normal method takes time O(n3) since each entry
in C is computed as

ci,k =
n∑
j=1

ai,jbj,k,

which means that each of the n2 entries in C takes time O(n) to compute.
The first algorithm to do better than this obvious bound was given by

Strassen in 1969 [52]. The idea of this algorithm is to divide each n× n matrix
into four parts of size n/2×n/2. If we view the submatrices of size n/2×n/2 as
single elements, the problem is reduced to computing the product of two 2× 2
matrices, and each subproblem can be solved recursively. The basic building
block of the algorithm is therefore a computation of the product of two 2 × 2
matrices. The key to Strassen’s algorithm is to compute such a product with
7 multiplications which is one multiplication fewer than the 8 multiplications
of the standard algorithm. Let us describe Strassen’s method. We want to
compute (

a11 a12

a21 a22

)
·
(

b11 b12
b21 b22

)
.

We first compute

m1 = (a12 − a22)(b21 + b22)
m2 = (a11 + a22)(b11 + b22)
m3 = (a11 − a21)(b11 + b12)
m4 = (a11 + a12)b22
m5 = a11(b12 − b22)
m6 = a22(b21 − b11)
m7 = (a21 + a22)b11.

The answer is now given by (
c11 c12
c21 c22

)
,

85
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where

c11 = m1 +m2 −m4 +m6

c12 = m4 +m5

c21 = m6 +m7

c22 = m2 −m3 +m5 −m7.

If T (n) denotes the time this algorithm takes to multiply two n × n matrices,
we hence get the recurrence relation T (n) = 7T (n/2)+ 18n2 which is solved by
T (n) ∈ O(nlog2 7) ∈ O(n2.81).

Today, the fastest known algorithm is by Coppersmith and Winograd [12]
(1987), and runs in time O(n2.376). In these notes we describe a algorithm with
complexity O(n2.67). Note, however, that these two algorithms are not practical
because of the very large constants involved.

11.2 Bilinear problems

A problem on the following form is called bilinear. Inputs: xi, i ∈ I, and yj ,
j ∈ J where I and J are index sets. Output: zk, k ∈ K, where K is an index
set and

zk =
∑
i,j

ci,j,kxiyj.

Example 11.1. The multiplication of two complex numbers x1+ix2 and y1+iy2

can be written as (y1 + ix2)(y1 + iy2) = z1 + iz2 where

z1 = x1y1 − x2y2,

z2 = x1y2 + x2y1.

Comparing this with the sum zk above, we see that the coefficients ci,j,1 can be
written as the matrix (

1 0
0 −1

)
,

and ci,j,2 as (
0 1
1 0

)
.

Hence these two matrices define the output in terms of a three dimensional
array. This array is called a tensor.

Multiplication of two complex numbers performed as above requires four
multiplications of real numbers. In fact we can do better. Let

p0 = x1y1,

p1 = x2y2,

p2 = (x1 + x2)(y1 + y2).

Then z1 = p0 − p1 and z2 = p2 − p0 − p1 and thus three multiplications are
sufficient. It can be shown (and this is one of the homework problems) that two
multiplications do not suffice.



11.2. BILINEAR PROBLEMS 87

These facts turn out to be related to the rank of a tensor. To motivate this
concept, consider the contribution of p0 to the output, namely(

1 0
0 0

) ( −1 0
0 0

)
,

the contribution of p1 is (
0 0
0 −1

) (
0 0
0 −1

)
,

and for p2, the contribution is(
0 0
0 0

) (
1 1
1 1

)
.

Note now that the addition of these tensors gives the tensor of our problem,
that is (

1 0
0 −1

) (
0 1
1 0

)
.

Definition 11.2. A tensor has rank 1 if ci,j,k = diejfk for some vectors d, e
and f .

This definition carries over to ordinary matrices, since there we have that
mi,j = aibj for vectors a and b iff the rank is one.

Definition 11.3. The rank of a tensor C is the least number of rank 1 tensors,
Ni, such that C =

∑
iNi.

If this definition is applied to matrices we recover the ordinary concept of
rank.

Theorem 11.4. The rank of a tensor equals the number of multiplications that
is required to compute the underlying computational problem.

Proof. First, note that a tensor of rank 1 in a natural way corresponds to a
computation consisting of 1 multiplication. Next, there is a one-to-one cor-
respondence between the decomposition of the tensor into rank 1 tensors and
the corresponding multiplications in the computational problem. Together this
proves the theorem.

Theorem 11.4 implies that it would be useful to be able to compute the rank
of a tensor, but while computing the rank of a matrix can be achieved quickly
by Gaussian elimination, for a tensor the problem is NP-complete [25].

As a curiosity we note that the rank of a tensor depends on the field over
which it is computed not only on the domain of the coefficients. This is an-
other difference to rank of matrices. The example below shows that the rank is
different over R and over C.

Example 11.5. Consider the tensors(
1 i
i −1

) ( −i 1
1 i

)
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and (
1 −i
−i −1

) (
i 1
1 −i

)
,

which both have rank 1. In the first case we can choose d = (1, i), e = (1, i),
and f = (1,−i) and in the second case we have d = (1,−i), e = (1,−i),
and f = (1, i). Adding these together gives the tensor for computing complex
multiplication. Hence this tensor has rank 3 over R but rank 2 over C.

An alternative, but equivalent, way to view a tensor is as a collection of
matrices, Mi. The rank is then the least number of rank 1 matrices, Nj , such
that each Mi can be written as a on the form

∑
j ajNj for some scalars aj.

Example 11.6. The tensor(
1 0
0 1

) (
0 1
0 0

)
corresponds to

z1 = x1y1 + x2y2,

z2 = x1y2.

Clearly the computation of z1 and z2 can be performed with 3 multiplications an
let us consider the question of using only 2 multiplications? If this is possible the
rank of the tensor must be 2, which means that the two matrices of the tensor
can be written as linear combinations of two rank 1 matrices N1 and N2. We

may suppose that N1 =
(
0 1
0 0

)
. This follows sine if we have two other rank

1 matrices N ′
1 and N2 and N1 = aN ′

1 + bN2 with a �= 0 then we can replace N ′
1

by 1
a (N1− bN2) giving a representation of both matrices in terms of N1 and N2.

In this case we must have(
1 0
0 1

)
= a

(
0 1
0 0

)
+N2 ⇒ N2 =

(
1 −a
0 1

)
.

However, for all values of a, the rank of N2 is greater than 1, which implies that
the given tensor can not be written as linear combination of only two rank 1
matrices. Hence, the rank of the given tensor is 3, and the computation of z1
and z2 then must take 3 multiplications.

Example 11.7. Consider again the tensor given in the previous example. For
any ε the tensors (

0 ε−1

0 1

) (
0 1
0 ε

)
,

and (
1 −ε−1

0 0

) (
0 0
0 0

)
,

have rank 1. Adding these together yields(
1 0
0 1

) (
0 1
0 ε

)
.

So by making ε small, we may produce a tensor arbitrarily close to the tensor
of the previous example. This calls for the following definition.
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Definition 11.8. The border rank of a tensor, T , is the smallest integer g,
such tensors of rank t exist arbitrarily close to T .

From Example 11.5 and 11.7 we thus have a tensor whose rank is 3 but
whose border rank is 2. For ordinary matrices the border rank is always equal
to the rank and hence for matrices border rank is not an interesting concept.

A final difference that we note is that the maximal rank of an n× n matrix
is of course n, but the exact value of the maximal rank, r, of an n×n×n tensor
is unknown. The value of r is known only up to the inequality n2/3 ≤ r ≤ n2/2.

11.3 Matrix multiplication and tensors

To return to the main subject of this chapter, we want to compute(
x1,1 x1,2

x2,1 x2,2

)(
y1,1 y1,2

y2,1 y2,2

)
=
(

z1,1 z1,2
z2,1 z2,2

)
and now we may ask what tensor this corresponds to. We have, for example,
that z1,1 = x1,1y1,1 + x1,2y2,1, which can be expressed as a 4 × 4 matrix with
rows labeled x1,1, x1,2, x2,1, x2,2, and columns labeled y1,1, y1,2, y2,1, y2,2, that
is,

z1,1 =



1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 .

Hence, we get the tensor

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0






0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0






0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1


 ,

where the matrices correspond to z1,1, z1,2, z2,1 and z2,2, respectively.
In general we have that each entry in the matrix product is

zi,k =
n∑
j=1

xi,jyj,k.

Note that this notation actually is a simplification, since we really have n2

variables each of zk1,k2 , xi1,i2 , and yj1,j2 , and hence we should write the bilinear
problem as

zk1,k2 =
∑

i1,i2,j1,j2,k1,k2

c(i1,i2),(j1,j2),(k1,k2)xi1,i2yj1,j2 ,

where c(i1,i2),(j1,j2),(k1,k2) = 1 if i1 = k1, j1 = i2, and k2 = j2, and 0 otherwise.
For example, for z1,1 we get c(1,i2),(j1,1),(1,1) = 1 whenever i2 = j1, as we expect.

We find it convenient to express our tensor as the formal sum∑
i,j,k

xi,jyj,kvi,k,
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that is, instead of having the variables zi,k as output we introduce formal vari-
ables vi,k and move them into the sum. (As an analogy, consider a vector
(a0, a1, . . . , an−1) which can be written as a formal power series a0+ a1t+ · · ·+
an−1t

n−1.) Note that below the formal variables are called zi,k, changing the
meaning of this notation.

Definition 11.9. Let T (m, p, r) denote the tensor that corresponds to the mul-
tiplication of an m× p matrix with a p× r matrix, that is,

T (m, p, r) =
m∑
i=1

p∑
j=1

r∑
k=1

xi,jyj,kzi,k,

and let M(m, p, r) denote the number of multiplications that this matrix multi-
plication requires, that is, M(m, p, r) is the rank of T (m, p, r) (For our original
problem, we are hence interested in knowing the value of M(n, n, n).)

Theorem 11.10. We have that M(m, p, r) = M(p, r,m), and likewise for all
permutations of m, p, and r.

Proof. Since

T (m, p, r) =
m∑
i=1

p∑
j=1

r∑
k=1

xi,jyj,kzi,k,

and

T (p, r,m) =
p∑

j=1

r∑
k=1

m∑
i=1

xj,kyk,izj,i,

we see that T (m, p, r) and T (p, r,m) are equal up to a permutation of the indices
and this permutation does not change the rank.

The proof of theorem 11.10 might seem obvious but we have in fact done
something. Try to prove with resorting to our present formalism that computing
the product of a 4 × 3 matrix and a 3 × 2 matrix requires exactly as many
multiplications as computing the product of a 3× 4 matrix and a 4× 2 matrix!
The idea to stop distinguishing inputs and outputs is surprisingly powerful.

Definition 11.11. Let T1 and T2 be two tensors which can be written as c1i1,j1,k1

and c2i2,j2,k2
, respectively, where i1 ∈ I1, j1 ∈ J1, k1 ∈ K1, i2 ∈ I2, j2 ∈ J2,

and k2 ∈ K2. The tensor product, T1 ⊗T2, is a tensor with index sets (i1, i2) ∈
I1×I2, (j1, j2) ∈ J1×J2, and (k1, k2) ∈ K1×K2, such that c(i1,i2),(j1,j2),(k1,k2) =
c1i1,j1,k1

· c2i2,j2,k2
.

Theorem 11.12. For two tensors, T1 and T2, we have that

rank(T1 ⊗ T2) ≤ rank(T1)rank(T2).

Proof. Let r1 = rank(T1), that is, we have

T1 =
r1∑
i=1

N1
i ,
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where each N1
i is a tensor of rank 1. Correspondingly, for T2 we have T2 =∑r2

j=1 N
2
j . This means that

T1 ⊗ T2 =
r1∑
i=1

N1
i ⊗

r2∑
j=1

N2
j =

r1∑
i=1

r2∑
j=1

N1
i ⊗N2

j ,

since ⊗ is distributive over +. It is easy to check that N1
i ⊗ N2

j is a tensor of
rank 1, and hence, the theorem follows.

Theorem 11.13. For two tensors, T (m1, p1, r1) and T (m2, p2, r2), we have
that

T (m1, p1, r1)⊗ T (m2, p2, r2) = T (m1m2, p1p2, r1r2).

Proof. Let

T (m1, p1, r1) =
m1∑
i1=1

p1∑
j1=1

r1∑
k1=1

xi1,j1yj1,k1zi1,k1 ,

and

T (m2, p2, r2) =
m2∑
i2=1

p2∑
j2=1

r2∑
k2=1

xi2,j2yj2,k2zi2,k2 .

Then

T (m1, p1, r1)⊗ T (m2, p2, r2) =
∑
i1,i2

∑
j1,j2

∑
k1,k2

x(i1i2,j1j2)y(j1j2,k1k2)z(i1i2,k1k2).

Inspection shows that this tensor is exactly T (m1m2, p1p2, r1r2) and the proof
is complete.

Using the notation we have introduced, and the two theorems above, we can
state Strassen’s result as follows. Suppose n is even. Then Theorem 11.13 im-
plies that T (n, n, n) = T (n/2, n/2, n/2)⊗T (2, 2, 2) and Theorem 11.12 says that
M(n, n, n) ≤ M(n/2, n/2, n/2)M(2, 2, 2) = M(n/2, n/2, n/2) · 7. By induction
we get that if n = 2k then M(n, n, n) ≤ 7k and this is precisely what we get by
Strassen’s algorithm.

11.4 The Complexity of Matrix Multiplication

M(n, n, n) grows like nw for some w. We are interested in the value of the
exponent w. We find and describe an algorithm that gives an upper bound on
the size of w. The exponent w corresponding to a certain algorithm is called the
efficiency of the algorithm. We need also to define the efficiency of algorithms
doing many disjoint matrix multiplications and also of algorithms doing only
approximate matrix multiplication. The key to the current algorithm is to
prove that we can convert such algorithms to exact algorithms for one matrix
multiplication without decreasing the efficiency, except by an arbitrarily small
amount.

What we try to find is thus:

w = inf
logM(n, n, n)

logn
.
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The number of multiplications needed to multiply an m by p matrix by a p by
r matrix is denoted by M(m, p, r) and we claim that

M(m, p, r) ∝ (mpr)w/3

which gives

w = inf 3
logM(m, p, r)
log(mpr)

.

To see that this defines the same number note that this second definition can
only give a smaller number since we have extended the range of the infimum.
On the other hand know we from before that M(mpr,mpr,mpr) ≤ M(m, p, r)3

and this gives the reverse inequality.
Now it is time for the main idea of this chapter. It is to somehow try

to make more than one matrix multiplication at the same time. We need to
define also the efficiency of such an algorithm. If we compute the product of t
disjoint matrices, where the i’th problem is of size (mi, pi, ri), by, in total, Q
multiplications, then the efficiency of that algorithm is defined to be the number
w such that

t∑
i=1

(mipili)w/3 = Q.

In our case we want to do two multiplications, one consisting of matrices
with elements xij and yjk which should give the elements zik as answer, and
similarly one with ujk and vki giving wji as answer. The indices are in the
intervals i ∈ [1,m], j ∈ [1, p] and k ∈ [1, r]. We use the following equations.∑

j

(xij + ujk)(yjk + εvki)−
∑
j

ujkyjk − εvki
∑
j

(xij + ujk) =
∑
j

xijyjk = zik

∑
k

(xij + ujk)(yjk + εvki)−
∑
k

ujkyjk − xij
∑
k

(yjk + εvki) = ε
∑
k

ujkvki = εwji

The first equation is done for all i and k, and the second for all i and j. They
represent one T (m, p, r) and one T (p, r,m). Since the first two terms consist of
sums of the same products in both equations, these products have only to be
evaluated once making the number of multiplications neededmpr+pr+mr+pm.
Although this is already less than 2mpr, we can do even better. Remove the
third term in the first equation. This gives only an approximative answer, but
it is done in mpr + pr + pm multiplications.

There are two problems with this approach. First, we now have only an
approximative algorithm for multiplication, and second, we can do two multi-
plications but have in the original problem only one. We next show that we can
eliminate both problems without decreasing the efficiency except by an arbi-
trarily small amount. For simplicity we treat the two problems separately from
each other, although it is possible to do them at the same time.

11.5 Exact multiplication with the approxima-
tive algorithm

We have an approximative algorithm that requires Q multiplications to compute
T (m, p, r). We convert this to an exact algorithm computing a different matrix
product without loosing too much in efficiency.
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Note that the approximative algorithm gives us a polynomial in ε, P (ε).
In our case above it has degree d = 1. By running the algorithm twice, with
e. g. ε = 1 and ε = 2, we can then extrapolate the two answers to get the
required P (0). In general, if we have an approximative algorithm that gives us
a result that is a polynomial P (ε) of degree d, we can run it for d+ 1 different
values of ε and then extrapolate to get the exact answer. This extrapolation
is only a linear combination of the individual results, P (0) =

∑d+1
i=1 ciP (εi),

with fixed constants ci (as soon as we have fixed all εi), so it requires no extra
multiplications.

This means that if we have an approximative algorithm of degree d that re-
quires Q multiplications, we can get an exact answer in (d+1)Q multiplications.

So far it does not seem like a big advantage with this whole approach. We
can gain about half of the multiplications if we accept an approximative answer,
but then we have to run this twice instead to find out the real answer. However,
the point is that we can now use the approximative algorithm recursively, and
thus blow up the win in multiplications during these steps, more than we have
to pay back in repeated applications of the algorithm at the top level.

Theorem 11.14. If we have an approximative algorithm with efficiency w,
then, for any δ > 0, there exists an exact algorithm with efficiency w + δ.

Proof. Suppose we have an approximative algorithm with degree d for T (m, p, r)
that requires Q multiplications. Then we can take the s-fold product of the
algorithm on itself, i. e. , we run it recursively s levels. This yields an algorithm
(still approximative) for T (ms, ps, rs) in Qs multiplications, with degree sd.
This means that we have an exact algorithm for T (ms, ps, rs) in (sd + 1)Qs

multiplications, which gives the efficiency

w = 3
log((sd+ 1)Qs)
log(mspsrs)

= 3
log(sd+ 1) + s log(Q)

s log(mpr)
≤ 3

logQ
log(mpr)

+ δ

for sufficiently large s.

We next proceed to study how to convert an algorithm computing disjoint
matrix product to an algorithm computing only one matrix product without
loosing too much in efficiency.

11.6 Combining a number of disjoint multipli-
cations into one

Suppose we can calculate two disjoint matrix multiplications T (m1, p1, r1) and
T (m2, p2, r2) together with Q multiplications. This operation can be thought
of as a tensor T ((m1, p1, r1)⊕ T (m2, p2, r2)). If we run this recursively s levels,
we get T ((m1, p1, r1) ⊕ T (m2, p2, r2))⊗s, and thus with Qs multiplications we
have computed 2s matrix products. These are not of the same size, and to be
precise

(
s
i

)
of them have size T (mi

1m
s−i
2 , pi1p

s−i
2 , ri1r

s−i
2 ).

Thus there are two steps involved here. First we have to deal with that
the multiplications have different size, and thereafter we must combine several
equal-size multiplications into one large matrix multiplication.

The first problem is unexpectedly simple. Of the 2s different sized multipli-
cations we only use those of one size. Rather than using the size that is most
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abundant, we use the size that is computationally most advantageous, i. e. the
one that maximizes (

s

i

)
(m1p1r1)iw/3(m2p2r2)(s−i)w/3.

Since

((m1p1r1)w/3 + (m2p2r2)w/3)s =
s∑

i=0

(
s

i

)
(m1p1r1)iw/3(m2p2r2)(s−i)w/3,

we can always find an i such that(
s

i

)
(m1p1r1)iw/3(m2p2r2)(s−i)w/3 ≥ 1

s+ 1
((m1p1r1)w/3 + (m2p2r2)w/3)s

and this is the size we choose. It is easy to see that this implies that for any
given δ and for sufficiently large s, the efficiency of the algorithm has dropped
by at most δ. For the special case of two disjoint matrix multiplications we have
proved the following theorem:

Theorem 11.15. If we have an exact algorithm for disjoint matrix multiplica-
tions with efficiency w, then, for any δ > 0 there exist an exact algorithm with
efficiency w + δ for disjoint matrix multiplication of one single size.

Proof. We need only show how to modify the proof to deal with an arbitrary
sum rather than a sum of two terms. Suppose we have an algorithm computing
t disjoint matrix multiplications and using Q multiplications. If we take an s
tensor power of this algorithm then we obtain ts different matrix multiplications
by Qs multiplications. The number of different sizes that occur is, however, at
most st and hence there is one particular size that corresponds to a fraction at
least s−t of the “efficiency sum”. Finally, since

lim
s→∞

log(st)
s

= 0,

for sufficiently large s we have lost at most δ in the efficiency.

Now we can do K disjoint equal-sized matrix multiplications T (m, p, r) with
Q multiplications. Note that the efficiency w is the efficiency per computed
matrix, Q/K = (mpr)w/3. It is time to see what efficiency we can achieve for
one single matrix multiplication.

Theorem 11.16. If we have an exact algorithm for disjoint matrix multiplica-
tions of the same size with efficiency w, then, for any δ > 0 there exist an exact
algorithm with efficiency w + δ that computes a single matrix multiplication.

Proof. We have an algorithm which with Q multiplications can perform K dis-
joint matrix multiplications T (m, p, r). If we use it recursively one level, i. e. we
try to compute T (m2, p2, r2), we can now manage K of the Q recursive mul-
tiplications with only one call to the algorithm. This means that Q/K = L
calls (for simplicity assuming L to be an integer) suffices and since the top level
invocation of the algorithm also produces K copies, we have produced K copies
of T (m2, p2, r2) in LQ multiplications. In general, with s recursive levels we get
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K copies of T (ms, ps, rs) in QLs−1 = KLs multiplications. At the top level we
can discard K − 1 copies and save only one. The efficiency is

w = 3
log(KLs)
log(mspsrs)

= 3
logK + s logL
s log(mpr)

≤ 3
logL

log(mpr)
+ δ

for sufficiently large s. (Note that the original algorithm here uses Q/K = L
multiplications per produced matrix, so it should say L rather than Q when
comparing the efficiency of the original algorithm with the new w.)

If Q/K is not an integer we have to proceed as follows. Let H = �Q/K� be
the smallest integer larger than Q/K. We can then repeat the above argument
withH (simply by assuming that we did more multiplications than needed). The
loss in efficiency might be too large but this can be decreased by first taking a
t’th power of the original algorithm producing Kt copies of T (mt, pt, rt) to a
cost of Qt. If Let H = �Qt/Kt� and we repeat the above construction we get
efficiency

w = 3
log(KtHs)
log(mstpstrst)

= 3
t logK + s logH
st log(mpr)

≤ 3
logL

log(mpr)
+ δ

if we first chose t sufficiently large to make H a sufficiently close approximation
of Lt and then s sufficiently large to decrease the influence of Kt.

11.7 Conclusions

The basic construction was to make two (approximative) matrix multiplications,
corresponding to T (m, p, r) and T (p, r,m) using mpr+pr+pm multiplications.
This gives an efficiency of

w = 3
log((mpr + pr + pm)/2)

log(mpr)

The choice of m, p, and r that gives best efficiency is m = 7, p = 1 and r = 7
yielding

w = 3
log((49 + 7 + 7)/2)

log(49)
= 3

log 31.5
log 49

≈ 2.659.

Our constructions now yield an exact algorithm for a single matrix multipli-
cation, with efficiency arbitrarily close to 2.659 .

As already noted, the currently fastest known algorithm has an efficiency of
2.376. The best lower bound is given by the fact that M(n, n, n) ≥ 2n2 − 1 and
thus we do not even know that w > 2. Furthermore, some researchers in the
area, when forced to guess the value of w, pick the value 2.
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Chapter 12

Maximum Flow

12.1 Introduction

A network is defined as a graph with a set of vertices V , a set of edges E and
a capacity function c : E → Z+. In the problem of maximum flow we have
two special vertices, the source s and the sink t. The problem is to find the
maximum throughput, or the maximum flow, from s to t.

There are several real applications where one encounters this problem. Some
examples are road and railway traffic, electrical and computer networks.

In order to complicate things further, there may be a cost function associated
with each edge. A secondary condition might be to minimize the cost or the
cost/throughput ratio. We her only address the basic problem.

There are often several different flows, even infinitely many, which all at-
tain the maximum value. However, we will prove later that there is always a
maximum flow with integer only values.

7/5

3

4

6 2

2 6

5/5

6

8

1

11/5

ts

Figure 12.1: Partially filled network.

One way of finding the maximum flow is to start with some flow and increase
it. An algorithm which finds an increase to an existing flow can then be run
until no further improvement is possible. In Figure 12.1 we see a network with
capacities on each edge. The second number on each edge is the current flow
along that edge. Edges with only one number has 0 flow.

The algorithms we study require the use of the residual graph. A residual
graph is constructed from a (partially) filled network by using the same vertices
as in our original graph, and by replacing every edge with two directed edges,
pointing in opposite directions. The edges are associated with a capacity, which

97
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Figure 12.2: Network with increased (maximum) flow.

equals the possible flow increase in that direction. Edges in the residual graph
with zero capacity are removed. The correspond to fully used edges.

For example, consider the residual graph of the flow in Figure 12.2 displayed
in Figure 12.3.
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Figure 12.3: Residual graph.

At a closer study, the graph above shows an interesting property: There is
no directed path from the source to the sink. This implies that it is impossible
to increase the flow and it seems likely that we have found a maximum flow.
This intuition is true and can be formed into of theorem.

Theorem 12.1. If there is no directed path from s to t in the residual graph,
we have a maximum flow.

Proof. Consider the residual graph again.
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Figure 12.4: Residual graph divided into two sets, R and R∗.

Let R be the set of vertices for which a directed path from s can be found,
and R∗ its complement. All edges in the original graph have maximum flow
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directed from R to R∗. There is a certain flow from s to t. We make some of
observations:

1. The flow from R to R∗ equals the flow from s to t.

2. The flow from R to R∗ can never exceed the total capacity of all edges
(v, w) : v ∈ R and w ∈ R∗.

3. Since the flow from R to R∗ is maximized, so is the flow from s to t.

This concludes the proof.

12.2 Naive algorithm

To find the maximum flow we start with any flow (in particular no flow at all)
and, given the residual graph, find an increase of our current flow. A naive
approach, where we try to find any directed path from s to t and fill it up to
maximum capacity, runs for at most O(|V |cmax) iterations, since we increase the
flow with at least one each iteration. A path which increases the flow is called
an augmenting path. This search can be implemented as a depth-first search,
which takes O(|E|). Total elapsed time is O(|E||V |cmax), which is acceptable
except when cmax is large. This worst case scenario is possible as can be seen
in the following example.

Example 12.2. Consider the sequence of flows given in figure 12.5.
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Figure 12.5: Worst case scenario.
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We have lined up three partially filled network graphs and their residual
graphs. In the first picture we show a graph with minimal flow. In its residual
graph we find an augmenting path which gives the second graph. Its residual
graph gives the third graph, which looks like the first one. It is clear that with
this graph, the total flow is increased by exactly two in each step, not counting
the first and the last. Thus the algorithm continues for about c/2 iterations.

Let us give the promised argument showing that we always have a maximal
flow with integral flows along each edge. Each augmenting path gives an integer
increase to our flow. We start with zero flow on each edge and hence the final,
maximal flow has an integral flow along each edge.

If capacities are large, our naive algorithm can, as shown by example 12.2, be
very inefficient. It turns out that we can do better by choosing an augmenting
path in a clever way. When considering methods for choosing augmenting paths
there are two key properties to look for.

1. It should be easy to find an augmenting path of the desired type.

2. We should get a strong bound on the number of iterations.

In all our augmenting path algorithms we always augment the flow along the
found path by the maximal amount possible and hence we saturate at least one
edge along the path.

12.3 Maximum augmenting path

A natural method is find the path which maximizes the increase of the flow.
We can find this quickly by a bottom-up approach: Find the maximum flow
C(v) from s to each vertex v ∈ V by using already calculated values of C. The
algorithm can be written this way:

We want to calculate C(v), ∀v ∈ V . G(v) contains a preliminary estimate.

1. S = {s}
2. G(v) = cap(s, v)

3. Pick the v ∈ S∗ with the largest G(v).

4. C(v) = G(v), G(w) = max(G(w), min(G(v), cap(v, w))), ∀(v, w) ∈ E

This is essentially Dijkstra’s algorithm for finding the minimum distance
between vertices in a graph. For more detail consult a book on algorithms, for
example [13] p.529-530.

When we have a sparse graph, G(v) can be stored in a heap for which the
maximum value can be found in O(1), but updating costs O(log |V |). The total
cost is O(|E|log|V |), since there is at most one update for every edge in the
fourth step in our algorithm. In a dense graph, it is cheaper to look at all the
vertices in each step, giving the cost O(|V |2). Thus, the total complexity is
O(min(|E| log |V |, |V |2)).

Thus we can find that path which allows the largest increase in flow efficiently
and we now address the question to bound the number of iterations. To get a
feeling for this problem, let us start by an example.
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Example 12.3. Consider a network with 4 levels. On level 1 there is only s
and on level 4 there is only t. There are m nodes on each of the levels 2 and
3. The node s is connected to each level 2 node by an edge of capacity m and
t is connected to each level 3 node also by an edge of capacity m. Every level
2 node is connected to every level 3 node by an edge of capacity 1. The reader
may verify that if each edge is saturated we have flow m2 while any augmenting
path has flow 1.

Next we show that this example is the worst possible.

Theorem 12.4. Given a graph with maximal flow M , then there is always a
path with flow ≥ M

|E| .

Proof. Suppose we have a network with a maximum flow M . Take any path
from s to t. If this path has a flow ≥ M

|E| , we’ve found such a flow. If the flow is
smaller, we can remove it from the network and find another path. If the new
path also has a flow < M

|E| , we remove it, find another and so on. The maximum
number of times a path can be removed is |E|, since we reduce the flow on (at
least) one edge to zero in each iteration. This, however, can’t occur since all
flow must be removed, and we remove less than M

|E| each time. Therefore, there
must be a path with flow ≥ M

|E| .

Given a network and a residual graph with maximum flow M, we know that
there is an augmenting path with a flow greater than or equal to M

|E| . After
our first iteration we have at least this flow in our network and the maximum
flow in the corresponding residual graph is ≤ M(1− 1

|E| ). After k iterations we
have a maximum flow ≤ M(1 − 1

|E|)
k in the residual graph. Since we increase

the flow with at least 1 in every iteration, we are finished when the flow in the
residual graph is < 1.

The maximal number of iterations can now be estimated as follows.

(1 − 1
|E| )

kM ≤ 1⇒

k log(1− 1
|E| ) + logM ≤ 0⇒

k >
logM

− log(1− 1
|E|)

≈ |E| logM

Since O(|E| logM) ≤ O(|E| log(|V |cmax)) and each iteration is an applica-
tion of Dijkstra’s algorithm we get a total running time of

O(min(|E|2 log |V | log(|V |cmax), |E||V |2 log(|V |cmax))).

The cmax factor has been reduced by a logarithm. It can be removed entirely
with an even better way of choosing the augmenting path.

12.4 Shortest augmenting path

The second main approach to finding a good augmenting path is to find a path
that contains as few edges as possible, i. e. , a shortest augmenting path. As
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before, we repeat this step until no further increase is possible. The crucial fact
for this approach is that it turns out that the length of the shortest path never
decreases. This is far from obvious since when we augment along a path some
new edges might appear in the residual graph. These edges are always along
the augmenting path and directed to the opposite direction of the flow we just
created. Thus intuitively they should not be good to use in a short path since
the augmenting path we used was as short as possible and the new edges “go
the wrong way”. Since we repeat such an intuitive argument is of course not
sufficient and we need a formal proof.

Consider the breadth first search (BFS) tree in the residual graph and assume
at this point that the distance from s to t in the residual graph is d.

s

t

Depth

1

2

3

Figure 12.6: BFS tree resulting from a residual graph.

Since there are d layers (in the example d = 3) in the BFS-tree every path
of a minimal length d must go strictly downwards in the BFS tree. New edges
point upwards and since this is the only type of edge added they cannot be used
for any path of length at most d from s to t. Each augmenting path saturates
one edge and hence one edge pointing downward is removed in each iteration.
There are hence at most |E| augmenting paths of length d, after which we must
choose a path of length d + 1. Finding a path takes O(|E|), and we can find
at most |E| paths for each d. Since we have |V | possible values of d the total
running time is bounded by O(|E|2|V |).

This algorithm is good, but can be improved by finding all augmenting paths
of a fixed length d more efficiently. This is natural since, as described above,
they all come from a single BFS tree where we only erase edges. We proceed as
follows.

1. Calculate the BFS tree.

2. Remove the edges that cannot be used to reach t in a path of length d.
This is done by backtracking from t. Also remove any vertices that lose
all edges connected to them.
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3. Find a path from s to t of length d.

4. Calculate the flow on the found path.

5. Update the residual graph

6. Remove saturated edges in the BFS tree. Also recursively remove nodes
that no longer can reach t by downward edges in the BFS tree. Goto 3.

Steps 1 and 2 use total time O(|E|) for each fixed d. Steps 3,4 and 5 use
O(d), per path found. It is not hard to find a suitable data structure with
pointers to make step 6 take O(|E|) total time. We simply make sure that for
each edge removed we use constant time. Total time spent for a certain depth d
is thus O(d[number of paths found] + |E|) ≤ O(d|E|) ≤ O(|E||V |). Since d can
take |V | different values, the total running time is O(|E||V |2), which is better
than the previous algorithm since the number of vertices is almost less always
than the number of edges.

We are satisfied with this result, but note that better algorithms are avail-
able. Since the most recent results depend in a subtle way on the relation
between |V |, |E| and the maximal capacity we refer to [28] for a discussion of
the best results.



104 CHAPTER 12. MAXIMUM FLOW



Chapter 13

Bipartite matching

A graph G is bipartite is one can divide the vertices into two sets V1 and V2 such
that each edge is between one vertex in V1 and one vertex in V2. A matching in
a bipartite graph G is a subset M of the edges E such that no two edges in M
have a common vertex. A matching is a maximum matching for the graph if no
other matching has a greater number of edges.

The problem of finding a maximum matching • ��
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Figure 13.1: A possi-
ble augmenting path
(dashed).

in a given bipartite graph is a special case of the
network flow problem. To see this, we add two ver-
tices s and t to the graph, join s to every vertex
in V1 by an edge, and join every vertex in V2 to t
(see Figure 13.2). Every edge is assigned the ca-
pacity 1. We now find a maximum flow through
the network with integer flow through all edges.
Then the edges with flow 1 in E form a maximum
matching.

Consider the flow after the first step of the al-
gorithm. This flow corresponds to a matching with
one edge e. The edge in this matching is now di-
rected the opposite way in the residual graph. Now take an augmenting path
through e, and disregard the edges at s and t. We get a path where the edges
alternately belong to the new matching or to the original matching (see Fig-
ure 13.1). The edges that belong to the old matching are precisely the edges
that are directed from V2 to V1. The first and last edges in the path belong to
the new matching.

Which network flow algorithm should we use? Since the maximum edge
capacity is 1, the naive algorithm runs in time O(nm), where n = |V1 ∪ V2| and
m = |E|. We now analyze the O(n2m) algorithm which selects the shortest
augmenting path, in order to find out if it performs better in the special case of
flow instances that come from bipartite matching problems.

Theorem 13.1. Let M be any matching, and let a maximum matching have
|M |+ k edges. Then M has at least k disjoint augmenting paths.

Proof. Let M ′ be a maximum matching, and consider the two matchings M
and M ′ together (see Figure 13.3). We obtain a graph where each vertex has
degree at most 2. This gives rise to three types of connected components:
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Figure 13.2: A bipartite graph and the corresponding network.

1. A non-augmenting path (or possibly a closed circuit) with an equal number
of edges from M and M ′.

2. An augmenting path where the first and the last edge belongs to M ′.

3. A diminishing path which begins and ends with an edge from M .

There is one more edge from M ′ than M in an augmenting path, and one edge
less in a diminishing path. Hence

(number of augmenting paths)− (number of diminishing paths) = k,

and so there must be at least k augmenting paths.

Corollary 13.2. If k edges can be added to the matching then there is an
augmenting path of length at most n/k.

Corollary 13.3. If there are no augmenting paths of length ≤ √
n, then there

are at most
√
n augmenting paths remaining before the maximum matching is

found.

The network flow algorithm which finds•
����� •

•

����������

����� •

•

����������  •

•
����� •

•

����� •
Figure 13.3: A matching with 3
edges and a maximum matching
(dashed) with 5 edges.

the shortest augmenting path in each step
finds all augmenting paths of a fixed length d
in time

O(d · (number of paths) +m).

We run the algorithm until d ≥ √
n. This

takes time O(n
√
n+m

√
n). We then find the

remaining augmenting paths using depth-
first search. The total time of this second
stage is bounded by O(m

√
n). We may as-

sume that m ≥ n, and hence the total run-
ning time for the algorithm is bounded by O(m

√
n). This is the best algorithm

known for the bipartite matching problem. We summarize our findings in a
theorem.
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Theorem 13.4. A maximal bipartite matching in an unweighted graph can be
found in time O(|E|√|V |).

We now complicate the problem by adding weights to the edges and asking
for the minimal weight, maximal size matching.

13.1 Weighted bipartite matching

13.1.1 Introduction

Suppose that we have a bipartite graph (V1 ∪ V2, E) and a weight function
w:E → Z. The weight of an edge may be thought of as the cost for including
the edge in a matching. The goal is now to find a matching of maximal size, and
among these, the “cheapest” one. That is, we must find a maximummatchingM
with

∑
e∈M w(e) minimal.

Note that it does not matter if some of the weights are negative; if we
increase all weights by an equal amount, the solution is preserved, since all
maximum matchings have the same number of edges. We can therefore assume
that w(e) ≥ 0 for all e ∈ E.

The key idea is to find the cheapest matching with k edges, for successive k.
The following theorem shows that we can always do this by choosing the cheap-
est augmenting path, that is, the path that causes the smallest increase in the
total weight of the matching.

Theorem 13.5. Let M be a cheapest matching with k edges. A cheapest match-
ing with k + 1 edges can be obtained by augmenting M with the cheapest aug-
menting path.

Proof. Let M ′ be a cheapest matching with k + 1 edges, and consider the bi-
partite graph H with edge set M ∪M ′. The situation is analogous to that in
the proof of Theorem 13.1. Specifically, we get the same types of connected
components:

1. Non-augmenting paths with an even number of edges.

2. Augmenting paths with one edge more from M ′ than M .

3. Diminishing paths with one edge more from M than M ′.

In a non-augmenting path, the total weight of edges in M must be equal to the
total weight of edges in M ′. Otherwise one of the matchings could be made
cheaper by replacing the edges in the path by those in the other matching.

The number of augmenting paths is one greater than the number of dimin-
ishing paths. If there are no diminishing paths, then we are done. Otherwise,
consider a pair consisting of one augmenting path and one diminishing path.
The total weight of the edges in both paths that belong to M must equal the
weight of the edges inM ′ in the two paths. Otherwise we could switch the edges
in M and M ′ and obtain a cheaper matching of size k or k + 1. It follows that
all augmenting paths have the same difference c between the weight of edges in
M ′ and M , while all diminishing paths have weight difference −c, where c is a
non-negative number. Thus any augmenting path is equally cheap.

It follows that we always get a cheapest matching with k + 1 edges by aug-
menting M with the cheapest augmenting path.
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The problem of finding the cheapest augmenting path is similar to the
shortest-path problem, Since the edges belonging to M are removed if they
are used in the augmenting path, their weights should be negated. This creates
negative distances in the graph and we cannot use Dijkstra’s algorithm directly.
We have two options:

• Use an algorithm for the shortest-path problem that allows negative dis-
tances.

• Find a way to eliminate the negative weights.

13.1.2 The general shortest-path problem

A solution to the shortest-path problem, when negative distances are allowed,
exists if and only if there are no circuits with negative total distance in the
graph. A shortest simple1 path always exists, but finding it in the general case
is NP-complete. In our case, however, there cannot be any negative circuits,
since this would contradict the fact that we have a cheapest matching.

In Dijkstra’s algorithm (for details see [13]), we “guess” the shortest distance
between s and the other vertices. The lowest guess for a vertex is always the
correct value. This is not true if there are negative distances, but a similar
algorithm works:

1. Let D(s) = 0 and D(v) =∞ for all vertices v �= s.

2. For all vertices vi and all edges (vi, vj), put

D(vj) = min(D(vj), D(vi) + dij),

where dij is the distance of the edge.

3. Repeat step 2 sufficiently many times.

The key to the analysis is to estimate the number of iterations. The answer is
given below.

Theorem 13.6. After k iterations of step 2 in the above algorithm, D(v) is the
length of the path from s to v which uses at most k edges.

Proof. The theorem is proved by inductions over k and we leave the details to
the reader.

In a graph with no negative cycles, each shortest path is of length at most n
and hence n iterations are sufficient. Since each iteration runs in time O(m) we
can find the shortest path to each vertex in time O(nm). This can be compared
to Dijkstra’s algorithm which runs in time at most O(m logn).

1A path is simple if it contains each vertex at most once.
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13.1.3 Removing the negative distances

We now try to scale the weights to make them positive. This can be done by
finding an appropriate function F :V → Z and setting

w′
ij = wij + F (vi)− F (vj) (13.1)

for all edges (vi, vj) with original weights wij . This changes the total cost of any
path from s to t by F (s)−F (t). Since this change does not depend on the path
chosen, finding the path with lowest weight is the same problem independent
whether we use the weights wij or w′

ij .
One particularly interesting choice is to take F (v) as the cost of the cheapest

path from s to v. Then the inequality F (vj) ≤ F (vi) + wij holds, and the new
weights w′

ij are non-negative. This might seem like a circular argument since
we say that once we have the shortest distances we can modify the weights to
make them all positive. The reason we wanted positive weights in the first place
was to find these shortest distances! It turns out, however, that we can enter
the “circle” and stay there. The weights are intially positive and hence we can
find F (v) in the first iteration. We update the weights with this F (v) using
(13.1). This change makes any edge that appears on the shortest path from s to
t have weight 0 and since these are the only edges that get reversed, changing
the sign of those weights does not create any negative numbers and thus we can
continue. The algorithm is thus follows:

1. Find the cheapest path from s to t using Dijkstra’s algorithm. The dis-
tances F (v) of all vertices are computed at the same time. If no such path
exists, the algorithm terminates.

2. Modify the weights on all edges. Weights wij are replaced by the w′
ij using

(13.1).

3. Add the augmenting path, reversing the directions of the edges along the
path. Go back to step 1 and repeat.

This algorithm requires at most n iterations of Dijkstra’s algorithm. The run-
ning time is therefore O(mn log n). We state this as a theorem.

Theorem 13.7. A minimal weight maximal matching in a bipartite graph can
be found in time O(|E||V | log |V |).

Figures 13.4 to 13.11 illustrate the algorithm.
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Figure 13.4: The algorithm for weighted matching. The initial situation.
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Chapter 14

Linear programming

14.1 Introduction

A linear programming problem is a special case of a mathematical programming
problem. One general class of problems is described as follows: Find

min f(x)

given the constraints
hi(x) ≤ 0 i = 1, 2, . . .m,

where f and hi are some type of functions. It does not matter if we use minimiza-
tion or maximization since finding min f(x) is equivalent to finding max−f(x).
In these notes we allow both maximization and minimization problems. The
function f is called the objective function while the functions hi are the con-
straints. In linear programming, both the objective function and the constrains
are linear, and we formulate the problem as

min cTx

Ax ≤ b,

where c, b and x are column-vectors and A is a matrix. We assume that we have
n variables and m inequalities and thus c and x are of length n, b is of length
m and A has m rows and n columns.

14.1.1 Why Linear Programming?

From an applications perspective, linear programming is a very useful subroutine
and sometimes a problem can be formulated precisely as a linear program. As
a, somewhat contrived, example of the latter case consider a situation where
we have m jobs to be performed and k workers (or machines). We have km
variables xij , one for each combination of task j and worker i. It is supposed
to model the amount of effort of worker i invests in task j.∑m

j=1 xij ≤ ci, the amount of time person i is willing to work.∑k
i=1 xijwij ≥ 1, every task is supposed to be completed.

113
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Here the weight factors wij give the speed of worker i on task j. Given
these constraints we want to minimize the total cost which we formulate as∑

i,j xij li where li is the salary of person i. Note that all constraints as well as
the objective functions are linear.

A common way to use linear programming for more complicated tasks is
through integer linear programming. Such a problem is obtained by adding
the constraint that the variables take only integer values. Unfortunately, it is
not difficult to see that integer linear programming is NP-hard and thus this
formulation might be of little value. It turns out, however, that this is, in many
situation not correct. A common approach is to simply drop the integrality
constraint and solve the linear program. If we are lucky the solution is integral
and if we are not, depending on the situation, the solution might still give useful
information. In particular since dropping the integrality constraint can only
improve the optimum the optimum over that rational numbers is a bound for
the optimum of the integral problem. One major industrial use of this approach
is the scheduling of air-line crews.

We now turn to studying the problem.

14.1.2 Example 1

Find the maximum for x+ 2y given the following conditions

x− y ≤ 2
2x+ y ≤ 16
y ≤ 10
x, y ≥ 0

2x + y <= 16

x + 2y = 23

x - y <= 2

y <= 10

( 3 , 10 )

Figure 14.1: Example 1

We denote the set of points which satisfy the constraints by K and it is the
area shaded grey in Figure 14.1. Note that K is convex, which is not surprising



14.2. FEASIBLE POINTS VERSUS OPTIMALITY 115

since it the intersection of halfspaces which are convex and the intersection of
any collection of convex sets is convex. Remember that a set K is convex if for
x, y ∈ K it is true that the line segment between x and y also belongs to K. In
mathematical terms we have λx+ (1− λ)y ∈ K, 0 ≤ λ ≤ 1.

A set K which is the intersection of halfspaces is called a polytope. The
geometry of such a body is important and let us define a few terms. We assume
that the hyperplanes defining K are in general position, by which mean that
any n intersect at a single point and any n− 1 intersect along a line and no set
of of n+1 hyperplanes have a common intersection. The interior of K is the set
of points such that we have strict inequality in all the constraints, this implies
in particular that a small ball around any such point is still contained in K.
A vertex of K is a point that is the intersection of n defining hyperplanes and
which satisfies the other inequalities strictly. Finally we let an edge be the set of
points lying in n−1 of hyperplanes and satisfying the other inequalities strictly.
To avoid discussing degenerate cases we also assume that K is bounded.

In the example in Figure 14.1 it easy to see that we have a maximum at
the point (3,10). We note that this time the optimum is in a vertex of K. It
turns out that this is always true in that any linear program has an optimal
point which is a vertex. The optimum might also be obtained at non-vertices
but in such a case the optimum is non-unique and some vertex is an acceptable
answer. That this is true is a general property of convex functions over convex
sets and we will not give the formal proof, but only a short motivation. If v
is an optimal point and it is not a vertex, then it can be written on the form
λx+(1−λ)y with x, y ∈ K and 0 < λ < 1. It is not difficult to see that both x
and y must attain the same value and thus we can find an optimal point closer
to the boundary and if we continue this way we eventually end up with a vertex.

14.1.3 Naive solution

Given that the optimum is always at a vertex, one way to solve the problem is
simply to check all vertices, and take the vertex that results in the best value for
the objective function. There are potentially

(
m
n

)
ways to chose the n equations

that define a vertex and this is an exponentially large number. Most of these
sets of n equation will define a point outsideK, but a simple example that shows
that we might still end up with exponentially many is given by the hypercube
defined by

0 ≤ xi ≤ 1, i = 1, . . . , n.

In this case m = 2n and we have 2n vertices.

14.2 Feasible points versus optimality

A feasible point is any point that satisfies the given inequalities and thus belongs
to K. Before we attack the question of how to find the optimum let us address
the question of finding any point in K. In fact already this is a difficult problem
which is almost equivalent to finding the optimal point. This is explained by
the following theorem.

Theorem 14.1. Suppose that K ⊆ [−M,M ]n is defined by m inequalities and
that maxi |ci| ≤ C. Then if we can solve the feasibility problem in n variables
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with m + 1 inequalities in time T then we can find the optimal problem within
accuracy ε in time T log (2nCMε−1).

Proof. The set of inequalities we use is the inequalities defining K together with
cTx ≤ D for a suitable sequence of choices for D. Initially we know that the
optimum is in the range [−nCM,nCM ]. By a binary search over D we can, in
t calls to the feasibility algorithm, decrease the length of the interval where the
optimum is located by a factor 2t. The result follows.

We have a more positive theorem which in fact tells us that we can assume
that we start with a feasible point.

Theorem 14.2. Given a linear program with n variables and m inequalities.
If we, starting from a feasible point, can find the optimal point in time T (n,m)
then we can find a feasibly point (provided it exists) for any linear program with
n variables and m inequalities in time T (n+ 1,m+ 1).

Proof. We are trying to find a feasible point to the inequalities Ax ≤ b. We the
same extra variable y to each inequality transforming the i inequality to

n∑
j=1

Aij + y ≤ bi.

We also add the equation y ≤ 0 and ask for max y. It is not difficult to see that
the original system is feasible iff the optimum of the created problem is 0 and
that any optimal solution gives a feasible solution to the original system. Thus
to complete the proof we need just find a feasible solution to the created system.
This is easy since we can take any value of x and adjust y appropriately. For
definiteness we can use x = 0 and y = min(b1, b2, . . . bm, 0).

In view of Theorem 14.2 we can assume that we are given a feasible point
and we want to find the optimum. Given any feasible point we can find a vertex
as follows. Suppose that at a given point x some inequalities are satisfied with
equality and this gives a submatrix Ax. If x is not already a vertex then Ax

contains less than n equations and we want to modify x to add more satisfied
equalities. Since Ax has fewer equations than unknowns we can then find y �= 0
such that Axy = 0. We can now change x to x + ty for a suitable t. The
inequalities originally satisfied with equality remain equalities, and we find a
minimal t that gives an equality in one of the other inequalities. We pick up
another equality and within n iterations we are at a vertex.

Before we embark on describing algorithms let us give the intuitive reason
why linear programming should be easy. The standard method for optimization
problems is that of local search. We start with some solution and create better
and better solutions by locally improving the solution. If we are dealing with
rational numbers this usually means some kind of steepest descent, we try to
move the current solution to a better solution by following the gradient of the
objective function.

The reason this method does not produce optimal solutions in general is
that the method gets stuck in a local optimum which is different from the global
optimum. There is no small way to improve the solution but a radical change
does create a better solution. Linear programming has the good property of
having no local optima. The only local optimum is the global one. Thus if
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we can simply keep moving in a systematic fashion we will get to the optimal
solution, the only problem is to get there quickly.

14.3 Simplex Method for n dimensions

The first, and most famous algorithm for linear programming is the simplex
method. It was originally suggested by Danzig in 1947 and it remained the only
practical method until the middle of 1980’ies.

This method starts at a given feasible vertex and moves from vertex to vertex
improving the objective function. To see how this is done, let us assume that
we are at a particular vertex H . Reorder the inequalities so that equality in
the first n inequalities define H and that matrix A splits into AH (inequalities
satisfied with equality at H) and the rest AR (inequalities which are strict at
H . We have

(
AH

AR

)
x ≤

(
bH
bR

)

The objective is to check if the current vertex is the optimum or to find a
nearby vertex that improves the objective function. More concretely we observe
that the n×n-matrixAH is invertible by the assumption that each n hyperplanes
define a vertex and that x = A−1

H bH gives the coordinates of H (we will from
now on blur the distinction between a vertex and its coordinates). The edges
leaving this vertex are obtained by relaxing one of the inequalities, i.e. replacing
bh by bh − tei where t > 0 and ei is the i’th coordinate vector. This gives

x = A−1
H bH − tA−1

H ei.

Since we are trying to maximize cTx and t > 0 this leads to an improvement
iff cTA−1

H ei < 0. If there is no such i we are at the optimum and iff there is an
i we follow that edge. We replace x by A−1

H bH − tmaxA
−1
H ei where tmax is the

maximal value such that all other inequalities are true. For this value of t one
of the formerly strict inequalities is now an equality. We have reached a new
vertex and repeat the process. Note that we are here using the assumption that
no n + 1 of the hyperplanes intersect in common point. This property implies
that tmax > 0 and we make progress. If we have a degenerate situation with
more than n hyperplanes intersecting at a point we need to be more careful to
make sure we do make progress. This is important in practice, but we do not
discuss this detail here. Let us summarize.
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The simplex algorithm

• At a vertex H find the equalities which are satisfied with equality, forming
a matrix AH .

• Invert AH .

• Find an i, such that cTA−1
H ei < 0. If no such i then H is the optimum,

output H and halt. Otherwise for one found i replaceH byH−tmaxA
−1
H ei

where tmax is the maximal t such that H − tA−1
H ei satisfies Ax ≤ b.

• Repeat.

To analyze the time complexity of this algorithm, the key is to bound the
number of iterations. It turns out that in the worst case this can be very
large. There is a famous example of Klee and Minty that is a perturbation of
the hypercube and where the algorithm in fact goes through all 2n vertices.
In practical experience, however, most people report that it is unusual with
problems needing more than 3n iterations. Thus it seems like the worst case
instances do not accurately reflect the true behavior of the algorithm. Some
attempts have been made to analyze the average behavior of simplex [7], but
the relevance of these results have been disputed.

A combinatorial question of some interest related to the simplex algorithm
is the following. Suppose we have a graph G that is connected. The distance
between any two nodes is the minimal number of edges to get from one to the
other. The diameter of G is the maximal distance of any two vertices. Now the
vertices of a polytopeK naturally form a graph where two are connected if whey
are joined by an edge in K. Suppose we have n variables and m inequalities
defining K. Then any simplex type algorithm that moves from vertex to vertex
will need at least as many moves as the diameter of the corresponding graph.
Suppose for simplicity that m = 2n. Then it is conjectured that the diameter
of K is bounded by cn for some absolute constant c but the strongest upper
bound known is a result by Kalai and Kleitman giving the bound mlogn+2.

14.3.1 Dual linear programs

It turns out that each linear program has a companion, the dual linear program.
We will here only scratch the surface of the importance of this problem. When
discussing the dual problem, the original problem is usually called the primal.
Below we give the find the primal together with its dual.

Primal Dual
max cTx min bT y
Ax ≤ b AT y = c

y ≥ 0
n variables m variables

m inequalities n equalities
m inequalities

The origin of the dual problem is general Lagrange duality used when solving
optimization problems in many variables and let us elaborate slightly on this
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connection. The simplest case is to maximize f(x) given h(x) ≤ 0 for some
differentiable functions f and h. Then it is not difficult to see that in the optimal
point, the gradients of f and h (denoted ∇f and ∇h, respectively) are parallel.
If we have a more general condition given by the inequalities (hi(x) ≤ 0)mi=1

the corresponding condition is that at the optimal point the gradient of f is a
positive linear combination of the gradients of hi. Furthermore if

∇f =
m∑
i=1

λi∇hi

where λi ≥ 0 then λi may be positive only if hi(x) = 0 at the optimum point
and thus for the optimal point we have λihi(x) = 0 for all i. In our case both f
and h are linear functions, c is the gradient of f , AT gives the gradients of the
constraints and the y-variables correspond to the multipliers λi.

We will here establish three properties of the dual problem.

1. For arbitrary feasible points y and x of the dual and primal respectively
we have bT y ≥ cTx.

2. The optima of the two problems (if they exist) are equal.

3. The two problems do form a pair in that the dual problem of the dual
problem is again the primal problem.

The first fact tells us that any feasible solution to the dual problem gives
an upper bounds on the optimum of the primal. The second property tells us
that this bound can be arbitrarily good while the third fact tells us that we
really have a pair of problems that belong together in a very strong sense. Let
us establish these facts in order and start by 1. We have

bT y ≥ (Ax)T y = xTAT y = xT c = cTx,

where the first inequality follows from Ax ≤ b and y ≥ 0. We note that we have
equality iff it is the case for any i that yi = 0 or the i’th inequality is fulfilled
by equality. Let us define such a solution and hence establish 2. Remember the
simplex method and the condition for having an optimal solution. If the first n
inequalities held with equality and the corresponding matrix was AH then we
had that cTA−1

H ei ≥ 0 for any i. We define yi = cTA−1
H ei for i ≤ n and yi = 0 for

i > n. Thus for each i we either have yi = 0 or that the inequality is satisfied
with equality. Thus we only need to establish that AT y = c. Since we have
column vectors, yi = cTA−1

H ei is more conveniently1 written as yi = eTi (A
−1
H )T c

giving y = (A−1
H )T c which is equivalent to AT y = c and we are done.

Finally let us establish 3. The dual is, by definition, given by

min bT y

AT y = c

y ≥ 0

1As the transpose of a number is the number itself.



120 CHAPTER 14. LINEAR PROGRAMMING

Since we have only defined the dual for problems given by inequalities we
rewrite the dual in the following form

max−bT y
 AT

−AT

I


 y ≤


 c

−c
0


 .

In the dual of the dual we have variables corresponding to the inequalities. If
we call these α, β and γ, the dual of the dual is given by

min cTα− cTβ

(
A −A −I ) α

β
γ


 = −b

α, β, γ ≥ 0.

The equality is written differently Aα−Aβ − γ = −b and since this is the only
occurrence of γ, except for γ ≥ 0, we might drop γ and replace the equality by
Aα − Aβ ≥ −b. Finally setting x = β − α we get back the original problem.
The condition that β, α ≥ 0 is simply dropped since it can always be made true
by adding a large vector to both α and β and this does not change x.

One of the useful properties of the dual is that it turns out to be beneficial to
solve the dual and the primal at the same time. We do not enter this discussion
here.

Let us finally give just a hint of other algorithmic ideas. The shortcomings
of the simplex algorithm is due to the fact that a polytope has a complicated
boundary on which it is hard to find a good direction for improvement. In
an attempt to avoid the boundary people have suggested algorithms that stay
inside the polytope. The initial idea is due to Karmarkar[30] from 1984 and it
has since created a large research area. To see how it would work suppose our
problem is on the form

min cTx

Ax = b

x ≥ 0

and that we are given an initial feasible point which is interior in that all xi are
strictly greater than 0. Now suppose we instead try to to solve

min cTx− µ
n∑
i=1

log xi

Ax = b,

for some µ > 0. Since Ax = b just enables us to eliminate some of the variables
this is any easy condition and one can find a local optima by Newton’s method.
The found minima satisfy xi > 0 since the objective function tends to infinity
if xi tends to 0. Thus the found optimum belongs to K. Call the optimal point
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X(µ). One can prove that as µ tends to 0, X(µ) will tend to the optimal point of
the linear program, and that it will do so through the interior of K. It turns out
that by adjusting parameters this idea can yield very efficient algorithms. They
turn out to be provably polynomial time in the worst case and very efficient in
practice.
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Chapter 15

Matching in general graphs

General matching does not pose the requirements that the matching graph is
bipartite. The set of vertices V represent a group of objects that we want to
divide into pairs. The set of edges E represent a possible match between two
objects. We cannot divide V into two distinct sets, since V represent only one
type of object, consequently we can not use the algorithm for bipartite matching.

An example of general matching is a set of patrolling constables. These
constables patrol in pairs, and every constable has preferences about his partner.
Each constable is represented by a vertex v and there is an edge between vertices
which give possible pairs. In order to utilize our resources in an efficient manner,
we would like to have as many pairs out in the street as possible. In other words,
maximize the size of a matching.

A natural algorithm to find the maximal size matching is to repeatedly
find an augmenting path in the graph and update the matching accordingly.
Remember that an augmenting path starts and ends at a free vertex (i. e. a
vertex not in the matching) and every other edge in the path is contained in
the current matching.

Then, what is really the difference between bipartite matching and general
matching? In bipartite matching we could find an augmenting path with Depth
First Search. The problem here is that we may reach vertices where we have to
make a choice between several possible edges. (See Figure 15.1) An exhaustive
search for all possible paths may then take as much time as O(2n).

The choice situation occurs when there is an cycle of odd length with every
other edge in the current matching except for two adjacent edges which do not
belong to the matching. This is the place we entered the cycle in our search for
an augmenting path. The choice is essentially in which direction to go around
this cycle. Such a cycle of odd length is called a blossom and the path that was
the beginning of our search until we entered the blossom, is called the stem.
(See Figure 15.2)

15.1 The idea for our algorithm

To find an augmenting path in a graph G we do a depth first search of G until
we identify a blossom B. Then we create a new graph G′ where B is replaced
with a new vertex k. Continue the search in the same manner in G′. (See Figure

123
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Matched
pair

Choosing
a path

Augmenting
path

Figure 15.1: An augmenting path found by making a correct choice

15.2)

Lemma 15.1. Given a graph G with a blossom B and a graph G′ where B is
substituted with a new node k.

G has an augmenting path
*

G′ has an augmenting path.

Proof. First we prove ⇑. Suppose G′ has an augmenting path, P ′. We can look
at the edges in G corresponding to the edges of P ′ and we have the following
cases:

1. If the path P ′ does not contain k, then the same edges give an augmenting
path in G.

2. If the path P ′ ends in k, we get a corresponding path P in G, but it is
not augmenting. Note that in this case, k was not in the matching of G′,
which imply that the blossom had not stem. This in turn implies that we
can make the path P augmenting by walking around the blossom in the
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New
vertex kBlossom

G G'Transformation

Stem

Figure 15.2: The general graph with a blossom

appropriate direction and end the path where the two unmatched edges
connect.

3. If k is an internal vertex in P ′ then P ′ contains the final part of the stem
where we entered the blossom in G. Consequently the augmenting path
P ′ in G′ corresponds to two paths in G, one that arrives to the blossom
and one that ends where the stem is connected to the blossom. We can
again connect these two into an augmenting path P by walking around
the blossom in the appropriate direction.

Now let us prove ⇓. Suppose we have G and an augmenting path P in G. In
G, we also have a blossom B possibly with a stem. Each vertex in the stem is
called odd if the preceding edge was a matched edge and even if the preceding
edge was unmatched. One end of P is not the endpoint of the stem and we
begin to follow that end until we encounter either the blossom or the stem. We
have the following cases:

1. If we encounter the blossom we change the augmenting path by continuing
around the blossom in the appropriate direction and exit where the stem
is connected. This is another augmenting path in G for which it is easy
to see that it corresponds to an augmenting path in G′, where the edges
of the blossom are removed.

2. If we encounter the stem in an odd vertex, we can change P by replacing
the remaining part of it by the part of the stem from the point P and
the stem intersected to the starting point of the stem. Then we get an
augmenting path that doesn’t contain the blossom and we are finished.

3. If we instead encounter the stem in an even vertex we get into a more
complicated situation than before. We proceed as follows:

We replace the stem to the blossom with the part of the augmenting path
P from the start starting point to where it encountered the stem. The rest
of the stem (from the intersection point to the blossom) remains. stem.
Now start all over again by traversing P (starting at its other endpoint).
If we again encounter the stem in an even position we repeat the same
procedure, i. e. , we replace part of the stem and start at the other endpoint
of P (which is the one we had from the beginning). It might seem like this
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would lead to an infinite loop but the point is that the stem has changed
meanwhile and hence we are making progress. To verify that this process
eventually terminates we reason as follows. Since an augmenting path does
not intersect itself for each iteration the intersection point moves at least
on point closer to the blossom. Consequently sooner or later we either
encounter the blossom or an odd vertex in the stem and we can apply the
appropriate case as described above.

15.2 A more formal description of the algorithm

1. Start a Depth first search at a non matched vertex. Each visited vertex is
labeled with an index i such that i is the length of the augmenting path
so far at that vertex.

2. When an edge leads to an already visited vertex, we get two cases:

(a) The vertex has and odd index i. This tells us that we have reached
a Blossom B. The current graph G is transformed into graph G′ by
replacing B with a new node k and we restart from 1 with this new
graph G′.

(b) The vertex has an even index i. We exactly as when standard depth
first search encounters and already visited vertex. In other words we
keep exploring new edges from our current base.

3. When we complete an augmenting path in the current graph G we lift it
to the original graph by using the algorithm implied by the reasoning in
the proof of Lemma 15.1.

As an idea the algorithm is now completed, but alas, there are practical problems
left concerning administration of data structures. For example, how do we
represent the graphs and how do we create G′?

15.3 Practical problems with the algorithm

Let us answer the last question, how do we create G′? We consider the easiest
approach, namely to write down the whole graph G′ every time we encounter a
blossom B in G.

1. Let k be the vertex replacing B.

2. Write to G′ every edge e(v, w) ∈ G iff v �∈ B ∧w �∈ B. That is, every edge
in G that is not part of the blossom.

3. Write to G′ every edge e(k, v) ∈ G iff ∃w ∈ B ∧ e(w, v) ∈ G. That is,
every edge in G connecting to the blossom B, is reconnected to the new
vertex k in G′.
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Then, what is the time complexity for this naive implementation of our algo-
rithm? The time it takes to create G′ is O(n2). If we make consecutive G → G′

transformations we get series of graphs: G,G′, G′′ . . . G(l). Finally we find an
augmenting path in G(l), where l ≤ n/2 since G(i) has at least two vertices less
than G(i−1).

As mentioned earlier, G(i) is created from G(i−1) in time O(n2). Going
backwards and lifting the augmenting path from G(i) to G(i−1) is done in time
O(n). The time for finding an augmenting path is then O(n3) and the total cost
is O(n4) since we have ≤ n augmenting paths to find.

The largest cost appears when we do the G(i) → G(i+1) operation. The
key to a better implementation of the algorithm is thus to find an improvement
of the G → G′ operation. This can be done by storing, in an efficient way,
only the difference between G and G′. Being careful this can be done in time
size(Blossom) ·O(n) and this improves the overall cost to O(n3). We omit the
details but take the liberty of stating the result as a theorem.

Theorem 15.2. We can find a maximal size matching in general graphs with
n nodes in time O(n3).

The general idea for this algorithm was originally proposed by Edmonds [17].
The fastest known algorithm of today is by Micali and Vazirani [35] and runs
in time O(

√
n ·m).
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Chapter 16

The Traveling Salesman
Problem

The traveling salesman problem (TSP) is given by n cities where the distance
between cities i and j is dij . We want to find the shortest tour that visits
every city exactly once. One key property on instances of TSP is whether the
distances fulfill the triangle inequality, i.e. dij ≤ dik + dkj for any i, j and k. In
every day terms it says that when going from city i to city j it is never cheaper
to go through k than to go directly. This inequality is natural and true in most
applications and we assume it most of the time.

An even more stringent form is that we have actual points xi in a Euclidean
space and that dij is the Euclidean distance between xi and xj . It is well known
that TSP also in this special case is NP-complete and hence we cannot expect a
fast algorithm that always finds an optimal solution. In this chapter we mostly
discuss heuristic approaches to TSP and we rely heavily on material from the
detailed survey [27] by Johnsson and McGeoch. However, [27] is over 100 pages
and we only scratch the surface of the wealth of material presented there.

16.0.1 Finding optimal solutions

An optimal solution can be found in time around 2n using dynamic programming
and for the Euclidean case there exists an algorithm that has the time complexity
2c

√
nlogn. Both these algorithms are, however, mostly of theoretical interest.

When it comes to finding optimal solutions in practice other methods are used.
The most successful method has been based on linear programming. Let us,
very briefly discuss this line of attack.

For each edge (i, j) in the linear program we have a variable1 xij . It should
take the value 1 if the edge is part of the tour and 0 otherwise. We want to
minimize

∑
ij xijdij subject to the constraint that the xij ’s describe a tour. We

have a linear objective function and if the constraint of being a tour had been a
linear constraint describable in a simple way we could have solved the problem
exactly efficiently since linear programming can be done in polynomial time. As
TSP is NP-complete this is too much to hope for and the approach is to use

1Since we have undirected edges there is no difference between the edge (i, j) and (j, i) and
thus we assume that xij = xji.

129
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an iterative method adding more and more relevant linear constraints on the
variables xij . Consider the linear constraints

0 ≤ xij ≤ 1∑
j

xij = 2, for i = 1, 2 . . . n.

These are clearly true for any xij ’s encoding a correct tour. On the other
hand there are values of the variables that satisfy these conditions, but do
not correspond to tours. There are basically two different reasons for variable
assignments not corresponding to tours. The first is that the xij take values
that are not either 0 or 1 and in particular taking xij = 2

n for all i and j gives a
feasible solution. What turns out to be a more serious problem (we do not here
enter the discussion why) is that even in the case when xij do only take the
values 0 and 1 they might still not code a tour. The problem is that the edges
with xij = 1 might not give one complete tour but many short disjoint tours.

Suppose that we, although we know that we do not have all the necessary
constraints, solve the linear program and obtain an optimal solution. This
solution probably does not code a tour. In this case we add additional linear
constraints violated by the given optimal solution but which are true for all
solutions that correspond to tours. Examples of such constraints are

∑
ij, i∈S j 
∈S

xij ≥ 2,

for any nonempty set S which is not all nodes. This is called a subtour elim-
ination constraint and makes sure that we do not have closed subtour on the
elements in S. Clearly any such constraint is valid for a correct coding of a
tour. These constraints are exponentially many and it is not feasible to include
them all. However, when we get an optimal solution which is a subtour on a
certain S we can include this particular constraint. Running the program again
gives a new optimal solution (with larger optimum) and if this solution does
not correspond to a feasible solution either we add more constraints and iterate.
Added constraints are called “cuts” and there are many other types of cuts that
can be added. For a more thorough discussion on this topic we refer to [3].

This approach gives the most efficient algorithms for solving TSP optimally
and [3] reports solving a 13509 city problem given by actual cites in the US.
The problem was solved on a network of computers and the computation time
corresponded roughly to 10 years computing time on a 400 Mhz Digital Alpha
Server 4100. Solving problems of size less than 100 is not a challenge for the best
programs these days and even problems of size around 1000 are solved routinely
with running times of the order of hours.

In this chapter we will discuss heuristics that get a reasonable solution quite
quickly. With the above in mind this is interesting only in the case of at least
1000 cities and we should really think of n in the range 104 to 106. We should
keep in mind that for the larger size we have problems storing all pairwise
distances and algorithms running slower than O(n2) start to be impractical.
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16.1 Theoretical results on approximation

As stated above TSP is NP-complete even in the case of 2-dimensional Euclidean
distances. A lot of energy has been spent on trying to get efficient approximation
algorithms with provably good properties. We say that an algorithm is a C-
approximation algorithm if it, for each input x, finds a tour that is of length at
most C · opt(x) where opt(x) is the length of the optimal tour.

The following algorithm is a classical result in the area established already
in 1976 by Christofides [10].

Theorem 16.1. TSP with triangle-inequality can be approximated within 1.5
in polynomial time.

Proof. We outline the algorithm. First construct the minimal spanning tree.
The, consider the nodes which have odd degree in the minimal spanning tree
and find a minimal weight perfect matching on those nodes where the weight
of edge (i, j) is given by dij . Consider the graph of the minimal spanning tree
together with this matching. This forms a graph with all degrees even. It is
well known that such a graph has an Euler tour (i.e. a tour that uses each edge
exactly once) and such a tour can be found in linear time. We construct this
Euler tour and let the TSP tour be the sequence of vertices as they appear on
this Euler tour. When a node appears more than once all occurrences after the
first are ignored. This creates short-cuts, but since the triangle inequality holds
the length of the constructed tour is at most the cost of the spanning tree plus
the cost of the matching.

We claim that this cost is at most 1.5 the cost of the optimal tour. This
claim is established by the fact that the cost of the spanning tree is at most the
cost of the optimal tour and that the cost of matching is at most half the cost
of the optimal tour. We leave the task to verify these claims to the reader.

The final fact needed to establish the theorem is that a minimal weight
matching for general graphs can be found in polynomial time. We did not cover
this problem in our section on matchings but it can in fact be found in time
O(n3).

Theorem 16.1 still represents the best provable factor when we have no
structure apart from the triangle inequality. However for Euclidean problems
we can do better.

Theorem 16.2. For 2-dimensional TSP with Euclidean distances and any ε > 0
we can find a 1 + ε approximation in polynomial time.

We do not prove this theorem but refer to the original paper by Arora [4].
The running time is O(n(log n)O(1/ε)) and is based on dynamical programming.
It has not yet been found to be practical for interesting values of ε.

On the negative side, one can establish that Theorem 16.2 cannot be ex-
tended to general distance functions that only satisfy the triangle inequality.
We have the following result, established by Lars Engebretsen [18]. It applies to
instances where distances are 1 and 2 and note that any such distance function
automatically satisfies the triangle inequality.

Theorem 16.3. Unless P = NP , for any ε > 0 one cannot approximate TSP
with distances 1 and 2 within 4709/4708− ε in polynomial time.
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Now we turn to the question of solving these problems in practice. There
are two main approaches which can be combined. We have heuristics for con-
structing tours and local optimization techniques to improve already constructed
tours.

16.2 Tour construction heuristics

There are very many heuristics for constructing tours. The paper [27] singles
out four, since they consider other heuristics dominated by these. A heuristics
dominates another if it finds better tours and runs faster. The heuristics are

1. Nearest neighbor. Start from any vertex and keep visiting the nearest
vertex that has not been visited.

2. Greedy. Keep picking the shortest edge subject to the constraint that
edges picked so far does not give a node of degree greater than two and
does not create a cycle of length less than N .

3. Clarke-Wright. Start with a pseudo-tour in which an arbitrarily chosen
vertex is the hub and the salesman returns to the hub after each visit
to another city. For each pair of non-hub cities define the savings to
be the amount by which the tour would be shortened if the salesman
went directly between the two cities. We now proceed as in the greedy
algorithm. We go through the non-hub city pairs in non-increasing order
of savings, performing the bypass so as it does not create a cycle of non-
hub cities or cause a non-hub city to become adjacent to more than two
other non-hub cities. When we have a tour we terminate.

4. Christofides. Described in the proof of Theorem 16.1.

To evaluate these strategies one can prove worst case bounds. Above, we
established the Christofides is never off by more than a factor 1.5. The other
heuristics are much worse in this respect and the worst case performances are
between Θ(logn/ log logn) and Θ(logn). Another parameter is the running
time of the heuristics and here Christofides has running time O(n3) while the
others can be implemented in time O(n2) or possibly O(n2 logn). Various tricks
can be used to make the algorithm run quicker in parallel and in practice they
run in time o(n2) (at least for Euclidean instances) and thus they do not even
look at all possible edges.

We now turn to the experimental evaluation of these heuristics. We are
interested in two parameters; running time and performance. Since we cannot
exactly know the optimal value on each instance, it is not obvious how to mea-
sure performance. We use instead excess over something called the Held-Karp
lower bound. This lower bound is obtained through linear programming tech-
niques. It is never smaller than 2/3 of the optimum but it is usually much better
and experimentally it seems to be within a single percent of the true value.

The experiments were done mostly on random instances. Either on random
points in the plane with Euclidean distances or on a random distance matrix
where each dij is picked uniformly and independently in [0, 1]. Since the latter
distribution does not satisfy the triangle inequality it does not make sense to use
Christofides in this case since it heavily relies on the triangle inequality while
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Average Excess over Held-Karp Lower Bound

n = 102 102.5 103 103.5 104 104.5 105 105.5 106

Random Euclidean Instances

CHR 9.5 9.9 9.7 9.8 9.9 9.8 9.9 - -

CW 9.2 10.7 11.3 11.8 11.9 12.0 12.1 12.1 12.2

GR 19.5 18.8 17.0 16.8 16.6 14.7 14.9 14.5 14.2

NN 25.6 26.2 26.0 25.5 24.3 24.0 23.6 23.4 23.3

Random Distance Matrices

GR 100 160 170 200 250 280 - - -

NN 130 180 240 300 360 410 - - -

CW 270 520 980 1800 3200 5620 - - -

Table 16.1: The quality of the ours for our 4 tour construction heuristics.

Running time in Seconds 150 Mhz SGI Challenge

n = 102 102.5 103 103.5 104 104.5 105 105.5 106

Random Euclidean Instances

CHR 0.03 0.12 0.53 3.57 41.9 801.9 23009 - -

CW 0.00 0.03 0.11 0.35 1.4 6.5 31 173 670

GR 0.00 0.02 0.08 0.29 1.1 5.5 23 90 380

NN 0.00 0.01 0.03 0.09 0.3 1.2 6 20 120

Random Distance Matrices

GR 0.02 0.12 0.98 9.3 107 1400 - - -

NN 0.01 0.07 0.69 7.2 73 730 - - -

CW 0.03 0.24 2.23 22.0 236 2740 - - -

Table 16.2: The running times for our 4 tour construction heuristics.

the other heuristics do not. The quality of the tours are given in Table 16.1 and
the running times are given in Table 16.2 Thus the tours are not very good
but are, at least in the Euclidean case, acceptable. Running times are, however,
very good and in the Euclidean case, even a million cities instance requires only
minutes on the faster heuristics.

16.2.1 Local Optimization

A tour constructed by the above heuristics might be optimized using local op-
timization. Three main techniques are commonly used.

1. 2-opt. For each pair of edges in the tour try to exchange them.

2. 3-opt. Delete any set of three edges and try to reconnect the tour in all
possible ways and see if any alternative produces a shorter tour.
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Figure 16.1: Exchanging x’s to y’s on a tour.

3. Lin-Kernighan. A rather complicated local search strategy described in
next section.

Although both 2-opt and 3-opt are rather obvious to describe an efficient
implementation requires more care. In particular one should not consider the
Ω(n3) possible choices for three edges in 3-opt explicitly since for n = 106 this
would give 1018 cases which is impractical.

16.2.2 Lin-Kernighan

We make a slightly simplified but largely correct description of the algorithm
proposed by Lin and Kernighan . We are given a suggested tour and we are
trying to find a tour with lower cost. We delete some edges and replace them
by some new ones. We do not limit the number of edges deleted but we restrict
how they are found.

Consider the change as a switch from edges x1 x2..xs to y1 y2 .. ys where yi
has a vertex common with xi and xi + 1 and ys has a vertex common with xs
and x1 (See fig 16.1).

The decision of x1 y1 x2 y2 ... can be viewed as a tree. If the entire tree is
searched we will find an optimal solution.

Lin-Kernighan wants to describe a part of the tree as follows:

1. The cost
∑t

i=1 c(xi)− c(yi) should always be positive, i. e. changing from
the x-edges to the y-edges decreases the total cost, but at intermediate
stages this does not produce a tour.

2. For t ≥ 3 choose xt such that if yt goes to the open endpoint of x1 we get
a tour.

3. Do total backtracking on level 1 and 2, otherwise choose the yi with the
lowest cost or an yi that completes the tour.

If a better tour is found the basic tour is updated and we start all over again
searching for an even better tour.

There are some details to take care of in the description. In particular is
it true in Step 2 that there is a direction which satisfies this property and if
so, how to determine this direction? The latter is clearly no problem since we
can just try the two directions and see which one works. We leave the former
problem to the reader.

For some details on how to get an efficient implementation we refer to [27].
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Average Excess over Held-Karp lower bound

n = 102 102.5 103 103.5 104 104.5 105 105.5 106

Random Euclidean Instances

2-Opt 4.5 4.8 4.9 4.9 5.0 4.8 4.9 4.8 4.9

3-Opt 2.5 2.5 3.1 3.0 3.0 2.9 3.0 2.9 3.0

LK 1.5 1.7 2.0 1.9 2.0 1.9 2.0 1.9 2.0

Random Distance Matrices

2-Opt 34 51 70 87 125 150 - - -

3-Opt 10 20 33 46 63 80 - - -

LK 1.4 2.5 3.5 4.6 5.8 6.9 − − -

Table 16.3: Quality of tours for local optimization heuristics.

Running Times in Seconds on a 150 Mhz SGI Challenge

n = 102 102.5 103 103.5 104 104.5 105 105.5 106

Random Euclidean Instances

2-Opt 0.03 0.09 0.34 1.17 3.8 14.5 59 240 940

3-Opt 0.04 0.11 0.41 1.40 4.7 17.5 69 280 1080

LK 0.06 0.20 0.77 2.46 9.8 39.4 151 646 2650

Random Distance Matrices

2-Opt 0.02 0.13 1.02 9.4 108 1400 - - -

3-Opt 0.02 0.16 1.14 9.8 110 1410 - - -

LK .05 0.35 1.9 13.6 139 1620 - - -

Table 16.4: Running times for local optimization heuristics.

16.2.3 Evaluation of local optimizations

There is again the choice of a theoretical and a practical evaluation. Since we
are taking a rather practical approach we are really more interested in the latter
but we should keep in mind that our overall perspective is theoretical. It turns
out that if we do not assume the triangle inequality there are instances which
are 1/4

√
n (2-opt) and 1/4n1/6 (3-opt) longer than optimal and still there are

no local improvements. There are also examples of instances where the number
of iterations of 2-opt before one reaches a locally optimal tour are as large as
2n/2. If we consider only Euclidean instances the situation is not as bad, but a
locally optimal solution can still be a factor Ω(log n/ log logn) longer than the
best tour.

Let us now turn to the experimental evaluation. We generate a starting tour
by the greedy heuristic and then we perform local improvements. The excess
over the Held-Karp bound is found in Table 16.3 and the running times are
given in Table 16.4. The tables give, in our mind, very impressive numbers.
Especially impressive is the combination of very good quality tours and the low
running times. For the moment however, let us concentrate on a small detail.
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Take the simplest optimization rule, 2-opt. On Euclidean instances, it runs in
clearly subquadratic time. Implemented naively it would use Ω(n2) steps per
iteration. This would lead to Ω(n3) overall running times since the number of
iterations turn out to be Θ(n) in practice. Let us briefly discuss some tricks
used in obtaining these very fast running times.

For a detailed description it is convenient to think of the tour as directed, so
let us take some arbitrary direction of a given tour. A switch in 2-opt is given
by two edges (t1, t2) and (t3, t4) that are switched to (t1, t3) and (t2, t4). Note
that if we connect t1 to t4 we create two disjoint cycles (remember that we think
of the tour as directed). For the switch to be profitable we need

dt1t3 + dt2t4 < dt1t2 + dt3t4 .

This implies that we need that dt1t3 < dt1t2 or dt2t4 < dt3t4 or possibly both.
The first condition would imply that one of the neighbors of t1 is changed to a
closer neighbor and the second gives the same conclusion for t4. Since the two
tuples (t1, t2, t3, t4) and (t3, t4, t1, t3) give the same switch we can go through
the edges of the present tour and try to change a given edge to an edge that is
shorter. Since most vertices are connected to one of their closest neighbors this
limits the number of possible choices severely. This observation only speeds up
the search without making oversimplifications.

One simplification connected with the above operation is to, for each i, store
the k closest cities to city i and only use these for updates. Storing such a
neighborlist will supply most candidates and be very efficient. It turns out that
already k = 20 is sufficient in many circumstances and using a k above 80 tends
to add very little. Another shortcut is to use a bit bi to tell whether at all it is
useful to try to find a new neighbor for city i. These bits are all true initially
but if we try to find a new neighbor of i and fail we make bi false. It is not
made true again until one of the neighbors of i in the tour change their status.
With this convention we might miss some fruitful moves but the speedup is
significant.

It turns out that with all these tricks, the main bottleneck is to update the
tour. If we simply store the tour in an array, each 2-opt move can cost time
Ω(n) leading to a quadratic running time. The method proposed is to keep a
two level tree of degree

√
n. The vertices of the tour are given by the leaves

of the tree read in a certain order. The children of each node are sorted from
left to right. To get the correct order for the TSP tour you should process the
middle level nodes from left to right but for each middle level node there is a
bit that tells you whether you should read its children from left to right or the
other way around. It is easy to see that you can update this structure at a cost
of O(

√
n) for each local optimization step.

Clearly to get the good running times of 3-opt and Lin-Kernighan a number
of similar tricks have to be used. We refer to [27] for details.

If we have more computer time to spend and are interested in obtaining even
better solutions there are a number of general approaches one can try. Let us
mention a few famous approaches and define them with a few words.

1. Tabu search. Suppose we work with a local search algorithm like 2-opt.
The problem is that we get stuck in a local optima and we cannot continue.
The idea with tabu search is to escape the local minima by allowing the
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algorithm to go to worse solutions. To avoid cycling, when doing such a
move one somehow creates some tabus (i.e. disallowing some moves in
the future). This can be done in a number of different ways and we again
refer to [27] for some details related to TSP.

2. Simulated annealing. Simulated annealing is a randomized local search
strategy where we allow the search to go to worse solutions. It is modeled
after physical systems and the system is guided by a temperature. The
probability of going to a worse solution is smaller than that of going to
a better solution and the ratio of the probabilities of going to various
solutions is guided by the temperature and their total costs. For high
temperatures it is quite likely that the algorithm chooses to go to worse
solutions while when the temperature reaches 0 the system never goes to a
worse solution. The idea now is to start at a high temperature and slowly
cool the system and hope that the system reaches a good solution.

3. Genetic algorithms. This set of algorithms are inspired by evolution.
We have a population of individuals which in this case are possible tours.
These tours can then combine through mating and the most viable (i. e.
shortest) offspring is more likely to survive. This is simulated for a number
of generations. The best tour ever produced is the answer used. To make
this idea competitive for TSP we have to add a non-evolutionary property
by allowing an individual to improve itself. This is achieved by running a
local optimization of the individuals after mating.

4. Neural networks. This is also a loosely defined set of algorithms where
one makes an artificial nervous system and tries to train this nervous
system to perform well. This has not been very successful so far for TSP
and one reason could be that these algorithms are really best for tasks for
which humans still are superior to computers. Driving a car or recognizing
a face are typical such tasks while combinatorial optimization is not.

We are really looking for an algorithm that produces better tours than Lin-
Kernighan but to make a fair comparison we have to remember that none of
the above approaches can compete with Lin-Kernighan in terms of speed. One
way to make the comparison more fair is to allow Lin-Kernighan to start with
many different starting tours and perform local improvements until it gets to
a local optimum. We would then simply choose the best among a number of
runs. It turns out that there are really two methods that can compete with Lin-
Kernighan. One is simulated annealing for some range of the parameters. This
is, however, in the range where we spend a fair amount of time to find really
good solutions for n in the range from 1000 to 10000 and the algorithm gets im-
practical for larger n. The more serious competitor is a genetic algorithm called
Iterated Lin-Kernighan (ILK) that produces offspring from a single parent by
making a suitable change and then runs Lin-Kernighan as a local optimization
routine. This is rather similar to applying Lin-Kernighan to many different
starting tours but experience seems to indicate that it is superior. Our final set
of experimental results comes for comparing Lin-Kernighan (with independent
starting points) to ILK. We keep a parameter that is the number of indepen-
dent runs and the number of iterations respectively. We make this a function
of n and run our algorithms on random Euclidean instances. The quality of the
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Average Excess over Held-Karp lower bound

Indep. iterations 102 102.5 103 103.5 104 104.5 105

1 1.52 1.68 2.01 1.89 1.96 1.91 1.95

n/10 .99 1.10 1.41 1.62 1.71 - -

n/10.5 .92 1.00 1.35 1.59 1.68 - -

n .91 .93 1.29 1.57 1.65 - -

ILK iterations

n/10 1.06 1.08 1.25 1.21 1.26 1.25 1.314

n/10.5 .96 .90 .99 1.01 1.04 1.04 1.08

n .92 .79 .91 .88 .89 .91 -

Table 16.5: The quality of solutions of repeated and iterated Lin-Kernighan.

Average Excess over Held-Karp lower bound

Indep. iterations 102 102.5 103 103.5 104 104.5 105

1 .06 .2 .8 3 10 40 150

n/10 .42 4.7 48.1 554 7250 - -

n/10.5 1.31 14.5 151.3 1750 22900 - -

n 4.07 45.6 478.1 5540 72400 - -

ILK iterations

n/10 .14 .9 5.1 27 189 1330 10200

n/10.5 .34 2.4 13.6 76 524 3810 30700

n .96 6.5 39.7 219 1570 11500 -

Table 16.6: The running times of repeated and iterated Lin-Kernighan.

tours and the running times are found in Table 16.5 and Table 16.6 respectively.
We suspect that the better running times for ILK are due to the fact that the
Lin-Kernighan procedure starts from a better tour each time.

16.3 Conclusions

It is clear that by a combination of good technique, insightful ideas and good
programming TSP can be solved very efficiently and accurately. It can be solved
exactly for problems of sizes in the range of single thousands and within a few
percent for sizes up to a million. One would almost be tempted to conclude that
TSP, at least for Euclidean instances is easy in practice. Clever implementations
of Lin-Kernighan or even 3-opt will take you a very long way and unless you are
looking for optimal or very close to optimal solutions this is probably all you
need.

We also would like to point to the tremendous improvements in the perfor-
mances the best algorithms over the last decade. A natural reason is of course
the improvement in hardware, but our opinion is that improvements in soft-
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ware and algorithms have helped at least as much. In our view there are also
many existing ideas that have not yet been pushed to their limits and probably
also new ideas to be discovered. Thus we should expect further improvements
in algorithms and software. This together with the constant improvement in
hardware will probably make it possible to solve TSP optimally on much larger
instances in a not too distant future. A hope that Euclidean instances with
100000 cities should be solvable optimally within 10 years does not seem overly
optimistic, but it is an amateur’s guess.

This chapter also sheds some light on the practical shortcomings of the
theory of NP-completeness. That a problem is NP-complete implies that there
is no algorithm that runs in polynomial time and always outputs the optimal
solution. It does not exclude the possibility that there is a linear time algorithm
that solves 99% of the instances we are interested in!
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Chapter 17

Planarity Testing of Graphs

17.1 Introduction

We are interested in the following problem: given an undirected graph G, de-
termine if G is planar (“can be drawn on a paper without having any edges
cross”).

The algorithm developed in this chapter attempts to embed G in the plane.
If it succeeds it outputs the embedding (at this point we are deliberately vague
about exactly what this means) and otherwise it outputs “no.” This is done
by embedding one path at a time where the endpoints on the path are vertices
that have already been embedded. Which path to embed, and how to embed it,
is chosen in a greedy fashion. The difficulty is to show that the greedy choice
used always finds an embedding, assuming one exists. The complexity of the
algorithm is O(|V |2).

Hopcroft and Tarjan [24] present an algorithm that solves the problem in
time O(|V |) based on a previous algorithm [5, 21]. The algorithm presented
here uses the same basic ideas but is less complicated.

17.2 Some fragments of graph theory

Let G = (V,E) be a planar graph that has been embedded in the plane. The
graph divides the plane into regions called facets. We let F be the set of facets.
Note that the infinite region surrounding the graph is also a facet. See Fig-
ure 17.1.

The following relation, known as Euler’s formula, holds for any planar
graph G = (V,E) (except for |V | = 0) where c is the number of connected
components in G:

|V |+ |F | − |E| = 1 + c.

This can easily be proven by induction.

Lemma 17.1. If G = (V,E) is a planar graph, then |E| ≤ 3|V | − 6.
Proof. We use a simple counting argument. Assume that G has been embedded
in the plane and that F is the set of facets. An edge e ∈ E touches a facet
F ∈ F if e is in F’s cycle (i. e. the cycle that forms the boundary of F). Define H
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A

B

C
1 2

3 4

Figure 17.1: A graph embedded in the plane. V = {1, 2, 3, 4}, E ={
{1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}

}
, and F = {A,B,C}.

as { (e,F) | e touches F } and we want to establish bounds on |H |. Since every
edge touches at most two facets we have |H | ≤ 2|E|, and since every facet is
touched by at least three edges we have 3|F | ≤ |H | which implies

3|F | ≤ 2|E|.
Combining this with Euler’s formula (and observing that G has at least one
connected component) proves the lemma.

From Euler’s formula and the above lemma it follows that a connected planar
graph has |E| = Θ(|V |), and for any embedding |F | = O(|V |).

An undirected graph is biconnected if it is connected and at least two vertices
must be removed to make it disconnected. Using depth-first search one can find
all biconnected components of a graph (this induces a partition of E) in time
O(|V | + |E|). The following lemma explains the importance of biconnected
components in planarity testing.

Lemma 17.2. Let G be an undirected graph. Then G is planar if and only if
each biconnected component is planar.

This is easy to prove simply by observing that each biconnected component
can be embedded in the plane separately.

17.3 A high-level description of the algorithm

The main part of the algorithm is the algorithm Embed which attempts to
embed a biconnected graph in the plane.

Algorithm Embed

1. If |E| ≥ 3|V | − 6 then output “no” and halt.
2. Find a (simple) cycle in G and embed it in the plane.

3. For each connected component Cj of un-embedded edges, let Vj be the set
of embedded vertices that are incident on edges in Cj , and let Fj be the
set of possible facets for Cj (a facet F is possible for Cj if all vertices in
Vj are on the bounding cycle of F).

4. If |Fj | = 0 for any j, then output “no” and halt.
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5. If |Fj | = 1 for some Cj , then take any path in Cj between two vertices
in Vj and embed it in the single facet in Fj . If there are components left
then go to 3, otherwise output the embedding.

6. If all components have |Fj | ≥ 2 then pick a component Ci and a path from
it and embed the path in some facet in Fi. If there are components left
then go to 3, otherwise output the embedding.

The assumption that Embed deals with a biconnected graph implies that |Vj | ≥
2 for each component Cj in step 3.

There are several issues remaining to take care of. First of all we need to
specify how to choose a component and a facet in step 6. Then we need to
prove that the algorithm does not make bad choices in this step, that is, it
finds an embedding if one exists. Finally, we need to show that the complexity
of the algorithm is O(n2). We end this section by answering the first of these
questions: in step 6 the component Ci, the path, and the facet in Fi can be
chosen arbitrarily. In the following sections we argue that if an embedding exists
then the algorithm finds it, and show that by somewhat careful bookkeeping the
algorithm has complexity O(n2).

Algorithm Embed assumes that the graph is biconnected. To handle the
case when G is not biconnected we introduce some pre and post processing.

Algorithm Main

1. If |E| > 3|V | − 6 then output “no” and halt.
2. Divide G into biconnected components Gj = (Vj , Ej).

3. Run algorithm Embed on each component Gj . If Embed returns “no” for
any Gj then output “no” and halt.

4. Combine the embeddings returned by Embed to a single embedding and
output it.

17.4 Step 6 of Embed is sound

In this section we show that the choices in step 6 of the algorithm Embed can
be made arbitrarily. The following is easy to check.

Lemma 17.3. If we run the algorithm on a biconnected graph G, then, at any
stage, the part that has been embedded is a biconnected graph.

Now we get to the main lemma.

Lemma 17.4. Let G be a biconnected graph which is given to the algorithm
Embed. Assume that the algorithm reaches step 6 at time T and that we choose
to embed a path from a component Ci that can be embedded in several facets. If
G can be embedded by putting Ci in facet R and facet B is another possible facet
in Fi, then G can be embedded by putting Ci in B.

Proof. Both R and B are bounded by simple cycles since the embedded part of
G is biconnected. We divide the vertices on these cycles into three groups: red,
blue, and purple. The red vertices are those that occur in R’s cycle but not in
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C
i

R

B

Figure 17.2: = red, = blue, = purple. The component Ci has both R
and B as possible facets. (Only the vertices and edges belonging to R and B are
shown.)

B’s, the blue those that occur in B’s cycle but not in R’s, and the purple vertices
are those that appear in both cycles. See Figure 17.2 for an example.

Since Ci has both R and B as possible facets, Vi must be a subset of the
purple vertices. The components Cj that are un-embedded at time T and for
which Vj consists only of purple vertices are called purple components.

Assume that we are given an embedding E which is consistent with the partial
embedding that the algorithm has produced at time T and which embeds Ci

in R. Consider the components that are un-embedded at time T and which E
puts in either R or B. The purple ones are called active and the others are
called inactive. We claim that we can get another embedding, where Ci is
in B, by “reflecting” all active components, that is, flipping them from R to
B and vice versa. Clearly this operation cannot cause a conflict between two
active components or two inactive components. The only possibility is a conflict
between an active component and an inactive component. We show that no such
conflict occurs in R, and by symmetry not in B.

Consider R’s cycle. It is divided into segments in the following way. A purple
segment is a maximal path of purple vertices. A red segment is a path of length
≥ 3 that has purple endpoints but all internal vertices are red (note that the
endpoints of a segment are also endpoints of other segments).

Let Cl be an arbitrary active component in B and Ck an arbitrary inactive
component in R. Assume that flipping Cl causes a conflict with Ck. Since Ck

is inactive, Vk contains at least one red vertex that belongs to some segment
S. If Vk ⊆ S, then there is no conflict with Cl, since Cl does not attach to any
internal vertex of S. Thus, if there is a conflict, there must be some vertex (red
or purple) in Vk that is not in S. However, in this case it is easy to see that at
time T R is the only possible facet for Ck, and this contradicts the assumption
that we have reached step 6.

The following theorem follows by straight-forward induction from Lemma 17.4.
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Theorem 17.5. Algorithm Main finds a planar embedding of G if one exists,
and output “no” otherwise.

17.5 Analysis of the algorithm

First it is necessary to specify how a (partial) embedding is represented. For each
embedded vertex we have a list of its embedded neighbors and facets ordered
clockwise. We call this a neighbor–facet list.

We also need some data structures for internal use in Embed. Rather than
recomputing the components Cj and the sets Vj and Fj we maintain a list of all
un-embedded components, and for each component Cj a list Fj of its possible
facets. For each facet F we maintain a list LF of components that have F as a
possible facet. The sets Vj are not necessary to maintain.

Analysis of Main
Step 1 can certainly be done in time O(|V | + |E|) = O(|V |2) and with just

about any reasonable representation of the input it can be done in time O(|V |).
Step 2 can be done by depth-first search and hence in time O(|V | + |E|)

which is O(|V |) by step 1.
A call to Embed costs O(|Ej |2) which is shown below. Since

∑
j |Ej | =

|E| = O(|V |), the cost of step 3 is O(|V |2).
Finally we claim without proof that step 4 can be done in time O(|V |).
Analysis of Embed
The input is a biconnected graph G = (V,E). We need to show that embed

can takes time O(|E|2).
Step 1 is easily done in O(|V |+ |E|), which is O(|E|) since G is connected.

As before, this can in fact be done in time O(|V |).
Let n = |V |. After step 1 we have |E| = O(n).
To find a cycle in step 2 only requires depth-first search which takes time

O(n). This is also sufficient time to construct the neighbor–facet lists for the
vertices in the cycle, since each such list contains only two vertices and two
facets. Again using depth-first search, we find all the connected components Cj

and add them to a list Comps. For each Cj on Comps, let Fj be the list of the
two facets A and B (inside and outside the cycle). Let LA and LB both be the
list of all components. There are O(n) lists of size O(1) and O(1) lists of size
O(n). The lists are easy to construct in time O(n).

The steps 3 through 6 form a loop which is executed at most |E| = O(n)
times, since each iteration embeds at least one edge. We want to show that
every step can be done in time O(n).

Step 3 is actually unnecessary. We already have the lists that are needed,
except for Vj , and these sets are not needed explicitly.

Step 4 only involves checking if Fj is empty for any j, which is clearly doable
in time O(n) since there are O(n) such lists. The same thing is true for checking
if |Fj | = 1 for any j in step 5. If the algorithm checks if lists are empty or only
contain one element after every update and maintains a list of components for
which |Fj | = 1, then these steps only cost O(1).

The only thing we need to worry about in step 5 and step 6 is the cost
of finding the path in Ci and performing the necessary updates of our data
structures. The path in Ci can be found by depth-first search in time linear in
the size of Cj , which is certainly O(n).
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Figure 17.3: The facet F is split into F1 and F2 by embedding a new path.
= type I, = type II, = type III.

Embedding the path in a facet F splits it in two: F1 and F2 (see figure 17.3).
Let u and v be the endpoints of the path, and let K be the cycle that is the
boundary of the facet F, and let P be the path that is to be embedded in F.

Let w be u’s neighbor on the new path. Update u’s neighbor–facet list by
replacing F by the sublist 〈F1, w,F2〉. Do similarly for v. Then, starting at u
walk along K clockwise until v is reached. This can be done using the neighbor–
facet lists. As we do this we replace each occurrence of F in an intermediate
vertex’s list by F1. Also, mark each internal vertex on this u, v-path as “type I.”
Then walk from v to u clockwise along K replacing F by F2 and mark internal
vertices as “type II.” The cost of this traversal is O(deg(x)) for each vertex x on
K. Since there are O(n) edges in the graph the combined cost for the traversal
is O(n).

Then mark all the internal vertices on P as “type III”1 and construct their
neighbor–facet lists (which is easy since they have two neighbors and F1 and F2
as their only facets). This clearly costs O(n).

Finally, Comps must be updated, the lists Fj must be modified for all com-
ponents Cj that have F as a possible facet, and the lists LF1 and LF2 must be
constructed. This is accomplished as follows. Make two empty lists LF1 and
LF2. Remove the component Ci, from which P was chosen, from Comps. Ci

has been split into components Cik by the embedding of P . These components
can be found by a depth-first search in Ci. Each new component is added to
Comps. Note that each Cik has at least one type III vertex, so the only facets
that could be possible for a new component is F1 or F2. Do a depth-first search
of each component Cik to find Vik . By looking at the type labels on the vertices
in Vik the lists Fik can be constructed as follows.

• If Vik contains both a type I vertex and a type II vertex, then Fik is set to
an empty list (in this case we could halt the algorithm since it is impossible
to embed Cik).

• If Vik contains a type I vertex but no type II vertex, then set Fik to 〈F1〉
and add Cik to LF1.

1The type III marking is not necessary, but it helps in the discussion.
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• If Vik contains a type II vertex but no type I vertex, then set Fik to 〈F2〉
and add Cik to LF2

• If Vik contains neither a type I vertex nor a type II vertex, then set Fik
to 〈F1,F2〉 and add Cik to LF1 and LF2.

It remains to handle all the “old” components Cj that had F as a possible
facet. Note that Cj cannot attach to a type III vertex. For each component
Cj on LF, do a depth-first search to check if Vj contains any type I or type II
vertex.

• If Vj contains neither type, then remove F from Fj and add F1 and F2
(i. e. , Cj attaches only to u and v), and add Cj to LF1 and LF2.

• If Vj contains both type I and type II, then remove F from Fj .

• If Vj contains type I but not type II, then remove F from Fj , add F1 to
Fj , and add Cj to LF1.

• If Vj contains type II but not type I, then remove F from Fj , add F2 to
Fj , and add Cj to LF2.

Both for old and new components are searched in linear time and no edge
appears in more than one component. This means that there are O(n) insertions
and deletions. We do not go into such detail as to show how the data structures
should be implemented to allow each operation in O(1) time. This is however
possible using various cross-references between items in lists.

To summarize, the initial step of Embed costs O(n), and each of the O(n)
iteration costs O(n) showing that the complexity of Embed is O(n2).
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Chapter 18

Sorting

18.1 Introduction

When studying algorithms on sorting, searching and selection there are at least
two interesting characteristics. The first is whether the algorithm is compar-
ison based or whether it uses general operations, like arithmetic and indirect
addressing. The other interesting property is whether the algorithm is efficient
in the worst case or only in the average case. In this chapter we consider sorting
from these two perspectives.

18.2 Probabilistic algorithms

We here consider probabilistic algorithms which always yield the correct answer,
while the running time is a random variable. On main parameter of study is
the expected running time.

We have two sources of randomness.

1. Random input.

2. The algorithm makes its own random choices.

Consider quicksort . Remember that the basic step of quicksort is to choose
x from the list and then perform the following operations.

1. S1{y|y < x}
2. S2{y|y ≥ x}
3. Return Qs(S1), x,Qs(S2)

If x always is the first element in the list, the algorithm is of type 1. If x is
chosen randomly from the list, the algorithm is of type 2.

In general type 2 is better than type 1 since it is easier to control the inter-
nal random choices than to make sure that the input is random. Comparison
algorithms of type 1 can, however, be converted to type 2 by making a random
permutation of the inputs before applying the type 1 algorithm.
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18.3 Computational models considered

We consider three different computational models.

1. Comparison based algorithms that are efficient in the worst case.

2. Comparison based algorithms that are efficient in the average case.

3. General algorithms efficient for random input.

We could also discuss general algorithms for worst case inputs but this turns
out not to be very fruitful in that it is hard to use general operations in an
efficient way for sorting if the input has no special structure.

It is well known that the time complexity for sorting algorithms is O(n log n).
Both mergesort and heapsort are of this type, and if we only count comparisons
they give the constant 1 (provided that the base of the logarithm is 2).

The bound n logn is tight, since a sorting algorithm that uses T comparisons
can give at most 2T answers. By the answer we mean here how to permute
the input to make the numbers appear in sorted order. Since there are n!
permutations we need 2T ≥ n! and using Stirling’s formula, this gives T ≥
n log2 n− n log2 e+ o(n).

For model 2, essentially the same lower bound applies, and thus randomness
does not help sorting, at least not for comparison based algorithms.

Let us now turn to the third model i.e general algorithms on random inputs.
We assume that we are given n inputs drawn independently from the same
probability distribution. We assume that the probability distribution is known
and we claim that in this case which distribution we have is of small significance.

18.4 The role of the Distribution

In the section following this one, we assume the distribution of the input to be
uniform on [0, 1]. If the input is from another distribution we transform it. As an
example assume that the inputs are chosen from N(0, 1) (normally distributed
with mean 0 and standard deviation 1). We then replace x by P (x) = Pr[y < x]
where y is N(0, 1). This transforms the distribution of the data to be uniform
on [0, 1] while preserving the order of the elements.

This transformation works for any distribution such that Pr[y < x] can be
calculated efficiently. It is not hard to see that in practice it is sufficient to have
an approximation of this number.

18.5 Time complexity of bucketsort

Bucketsort is a deterministic algorithm that works well for random inputs. It is
a general algorithm in that it uses arithmetic and indirect addressing. As dis-
cussed above we assume that the inputs x1, x2, . . . xn are uniformly distributed
on [0, 1].

Bucketsort has n buckets (Bj)nj=1 and if we let �x� be the smallest integer
not smaller than x we have the following description.

1. For i = 1, 2, . . . n put xi into Bj where j = �xi ∗ n�.
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2. For j = 1, 2, . . . n sort Bj .

3. Concatenate the sorted buckets.

We first claim that the algorithm is obviously correct and we are interested
in estimating its running time.

Theorem 18.1. When given n inputs drawn uniformly and independently from
[0, 1], bucketsort runs in expected time O(n).

Proof. The only operation that might take more than O(n) time is sorting the
lists Bj . To analyze this part, assume that Bj contains Nj elements. Even if
we use a sorting algorithm running in quadratic time the total running time for
sorting the buckets is

O(n) + c

n∑
j=1

N2
j . (18.1)

We use a combinatorial argument to estimate this number. N2
j is the number

of pairs (i, k) (unordered and taken with replacement) such that both xi and
xk are put into Bj. This means that the sum in (18.1) is the total number of
pairs (i, k) such that xi and xk are put into the same bucket. We have n pairs
(i, i) that always land in the same bucket and n2 − n pairs (i, j) where i �= j
that land in the same bucket with probability 1/n. This means that:

E

[
n∑
i=1

N2
i

]
= n ∗ 1 + (n2 − n) ∗ 1/n ≤ 2n (18.2)

This concludes the proof that general probabilistic algorithms can sort nicely
distributed data in linear time.
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Chapter 19

Finding the median

19.1 Introduction

Consider the problem of finding the median of n elements, i. e. the element with
order number n/2. The most straightforward method is to sort the elements
and then choose element number n/2. As sorting has complexity O(n logn) the
time required for finding the median is also O(n logn).

However, the information we want is just the element with order number
n/2 and we are not really interested in the order among the larger or smaller
elements. Algorithms for median finding needing only O(n) comparisons are
available and we describe a number of such algorithms here. We start with a
simple randomized algorithm.

19.2 The algorithm QuickSelect

Inspired by quicksort we propose the following randomized algorithm, called
QuickSelect(S, k):

1. Choose a random x uniformly in S.

2. Let S1 = {y ∈ S : y < x} and S2 = {y ∈ S : y > x}.

3. Return




QuickSelect(S1, k) if |S1| ≥ k,
QuickSelect(S2, |S2|+ k − |S|) if |S2| ≥ |S|+ 1− k,
x otherwise.

When we analyze the complexity of the algorithm we assume that all ele-
ments in |S| are different. If any members are equal, we get the answer quicker,
but the algorithm is more cumbersome to analyze.

Let T (n) be the expected time it takes to find the k’th element in S, given
that |S| = n. The x, which we select uniformly at random, is the ith element
in the ordering of the elements of S with probability 1/n for all i. We can use
this to obtain an expression for T (N) by conditioning on i:

T (n) = n− 1 +
n∑
j=1

E[extra time | i = j] Pr[i = j] (19.1)
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We observe that the extra time needed is

E[extra time] =



T (n− i) if 1 ≤ i ≤ k − 1,
0 if i = k,
T (i− 1) if k + 1 ≤ i ≤ n,

(19.2)

which gives us the expression

T (n) = n− 1 + 1
n

k−1∑
i=1

T (n− i) +
1
n

n∑
i=k+1

T (i− 1) (19.3)

The most simple way to solve this recurrence is to guess the correct solution.
Since we are confident that we have a very efficient algorithm we try to prove
that T (n) ≤ cn by induction. When we substitute this into Eq. (19.3) we get

T (n) ≤ n− 1 + c

n

(
k−1∑
i=1

(n− i) +
n∑

i=k+1

(i− 1)
)

(19.4)

If we can show that the right hand side of this equation is at most cn, we have
also shown that T (n) ≤ cn. To obtain an upper bound on the right hand side
remember that the sum of an arithmetic series is the number of terms times the
average of the first and last terms and hence

k−1∑
i=1

(n− i) +
n∑

i=k+1

(i− 1) =

1
2
((k − 1)(n− 1 + (n− (k − 1))) + (n− k)(k + n− 1)) =
1
2
(n2 + 2nk − 2k2 + 2k − 3n) ≤ 1

2
(n2 + 2nk − 2k2) ≤ 3n2

4
,

where the last inequality follows since 2(nk − k2) is maximized when k = n/2.
If we plug this into Eq. (19.4) we obtain the relation

T (n) ≤ n− 1 + c

n
· 3n

2

4
≤ n

(
1 +

3c
4

)
. (19.5)

Now provided c ≥ 4 this is bounded by cn and hence we have proved

Theorem 19.1. Quickselect uses, in the expected sense, at most 4n compar-
isons.

We get a couple of immediate questions. The first one is whether the analysis
is tight. The reason one might expect that it is not is that we have derived a
bound independent of k and we would think that it is easier to find the maximum
than to find the median. The analysis is indeed not tight and if k = cn the
expected number of comparison [31] is 2(1 − c ln c − (1 − c) ln(1 − c))n + o(n)
and in particular for the median we get (2 + 2 ln 2)n.

The second question that arises is whether there are more efficient random-
ized algorithms. This turns out to be the case and we discuss one in the next
section.

The final question is whether we need randomness to have an algorithm using
only O(n) comparisons. This turns out not to be the case and we end this section
by describing a couple of deterministic time linear algorithms. For practical
implementations, however, we recommend Quickselect or variants thereof.
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19.3 Outline of a better randomized algorithm

The reason that Quickselect runs in linear time is that the random element x is
often of “middle size” by which we mean that it is not too far from the median.
In those cases the size of problem in the recursive call is decreased by a constant
factor. To decrease the running time even further we would like to spend some
extra effort that makes x even more likely to be close to the median. In many
practical implementations one chooses three random elements y, z and w and
lets x be the median of these 3 elements. Already this gives an improvement in
the constant but to get the best constant we should be even more careful how
to choose x. We therefore take the following as our first step.

1. Choose r = n3/4 random elements R and let x be the median of R.
Partition S with respect to x, i.e. construct S1 = {y|y < x} and S2 = {y|y > x}.

Let us analyze this heuristically. The expected number of elements of R
that are larger than the median of S is r/2 and the standard deviation of this
number is O(

√
r) = O(n3/8). Thus we expect that if we inserted the median

of S into the ordered list of R that it would be O(n3/8) positions away from x.
Since one position in R corresponds to n1/4 positions in S we expect x to be
O(n5/8) positions away from the median of S (counted as positions in S). This
means that the larger of S1 and S2 will be of size n/2 + k where k = O(n5/8).
Assume that S1 is the larger set. The median is now the k’th largest element
in S1 and to give an intuition how to find such an element let us discuss how to
find the second largest element among m elements.

Suppose that m is a power of two and we find the maximum by a tennis
tournament. In other words we first make m/2 disjoint comparisons and then
compare the winners in m/4 pairs. We then keep pairing up the winners until
we have the largest element at the end. The second largest element must have
lost to the largest and since the largest was compared to only logm elements we
can find it in another logm comparisons. Extending this method we can find the
k’th largest element in m + (k − 1) logm comparisons. Applying this method
we can find the k largest element in S1 in n/2 + O(n5/8 logn) comparisons.
Since the first step needs n + o(n) comparisons we get a total of 3n/2 + o(n)
comparisons. Although this argument is only heuristic it can be made exact
but we omit the details. Details and an argument that 1.5 is the best possible
constant can be found in [19].

Theorem 19.2. The median can be found by a randomized algorithm which
does on the average 1.5n+ o(n) comparisons.

We turn next to deterministic algorithms.

19.4 A simple deterministic algorithm for me-

dian in O(n)

The main ingredient in the probabilistic median finding algorithms was to find
an element x that was close to the median. This is also the key in our first
deterministic algorithm. The difference here is that we have to be sure to find
an element that is fairly close to the median. It will cost us more and the result
will not be as close to the median.
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Figure 19.1: The two different shadings illustrate elements larger and smaller
than x0. We do not know how the non-shadowed elements are related to x0.

19.4.1 Algorithm description

In this algorithm we assume that n = 5m.
Idea: Partition the n elements into m groups with 5 elements in each group.

Find the median in each group. Find the median of the m medians from the
5-groups. Call this last median x0.

The result so far is illustrated by the rectangle of figure 19.1 where the
elements are arranged so that the 5-element groups are placed columnwise in
the rectangle. The largest elements are at the top and to the left. The elements
in the upper left of the rectangle must all be larger than or equal to x0. Similarly,
the elements in the bottom right are all smaller than x0. What is achieved here
is the first step of a partitioning of the whole set around the element x0. We
now partition the rest of the elements by comparing them with x0. The set is
now partitioned into two parts and the median must be in the largest of the
two parts. We continue the search in this part but we no longer search for the
median.

A more formal description for finding the median, or an element with order
k, is the following.

Let F (S, k) = find and return element of order k from set S. |S| = n.
Assume n = 5m. If not, one group is a little bit smaller.

• Partition S into groups with 5 elements each.
• Let S1 = {medians from these groups}, |S1| = m

• x0 = F (S1,m/2)

• S2 = {x|x ∈ S, x < x0} S3 = {x|x ∈ S, x > x0} If |S2| ≥ k then F (S2, k)
If |S3| ≥ n− k + 1 then F (S3, k + |S3| − n). Otherwise, the answer is x0.

19.4.2 Algorithm analysis

M(n) = the number of comparisons needed to find the kth element of n ele-
ments.
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We need to find the median of 5 elements. This can be done with 7 comparisons.

M(n) ≤ (n/5)×(number of comparisons for median of 5 elements) +
M(n/5) + (4n/10) + M(max(|S3|, |S2|))

The second term comes from finding the median of medians (element x0

above). The third term is the number of comparisons to complete the parti-
tioning, the number of uncertain elements in the figure. The last term is the
continued search among the remaining elements. The number of elements left
cannot be larger than (7n/10) because both S2 and S3 have at least (3n/10)
elements (see figure 19.1) so the largest of these must have at most (7n/10)
elements.

M(n) ≤ 7n/5 +M(n/5) + 2n/5 +M(7n/10)

M(n) ≤ 9n/5 +M(n/5) +M(7n/10)

The solution of a relation of this type where

M(n) ≤ cn+M(an) +M(bn)

and a+ b < 1 is

M(n) ≤ cn

1− (a+ b)

With c = 9/5, a = 1/5 and b = 7/10 we get

M(n) ≤ 18n

This algorithm was created in 1972 by Blum, Floyd, Pratt, Rivest, and
Tarjan [6]. Being a little bit more careful, the constant 18 can be improved
significantly. However, we get a better constant by trying a completely different
approach.

19.5 “Spider factory” median algorithm

19.5.1 Some preliminaries

We now describe an algorithm which has complexity 5n+o(n). It was developed
in 1976 by Schönhage, Pippenger and Paterson [46].

This algorithm uses the term “spider factory” which is a device that from a
set of unordered elements produces partial orders with 2k + 1 elements where
k elements are larger and k elements are smaller than one element m. In the
graphic image of this partial order, m is pictured as the body of the spider
and the other elements are connected to m with legs, each leg denoting that
a relation between two elements has been established. Legs pointing upwards
connect elements > m and legs pointing downwards connect elements < m to
the body. (The desired result of any median finding algorithm is such a spider
with k = n/2.)

The production cost of the spider factory is the following:

• Initial cost, before spider production can begin: O(k2)
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k elements >=m

k elements <=m

m

Figure 19.2: A spider with 2k + 1 elements

a b c d

Figure 19.3: A list of 4 spiders sorted on the middle element, a ≤ b ≤ c ≤ d.

• Residual cost, when no more spiders can be created: O(k2)

• Cost per output spider: 5k
A suitable choice of k is k ∼ n1/4. Details of the spider factory are given in
section 19.5.4.

19.5.2 Algorithm

Run the spider factory until no more spiders are produced and arrange the
spiders in a list sorted with respect to the middle elements of the spiders. Let n
be the total number of elements and let r be the number of residual elements,
i. e. the number elements that are left when all possible spiders are produced.
The number of spiders in the spider list is then

s =
n− r

2k + 1
= O(n/n1/4) = O(n3/4)

Now, consider the lower legs and the body of the leftmost spider, Sl. These k+1
elements are all smaller than p1 elements where p1 = k + (s− 1)(k + 1) (upper
legs of leftmost spider and upper legs and body of the other spiders). Each of the
elements in Sl could be larger than at most p2 elements where p2 = sk − 1 + r.
As long as p1 > p2 the median cannot be one of the elements in Sl and these
elements can be discarded. In the same way the elements of the upper legs and
body of the rightmost spider must all be larger than the median and can be
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discarded. The remaining parts of these two spiders are returned to the factory
and their elements used for building new spiders. Evaluating p1 > p2 gives the
simple condition s > r. The procedure of

• chopping off partial spiders at ends of list
• returning remainders to the factory
• producing new spiders
• sorting spiders into list

successively reduces the number of remaining elements and the size of the list
and is continued as long as s > r. When the procedure stops, run the simpler
algorithm of section 19.4 on the remaining elements.

19.5.3 Analysis

Let t be the number of spiders produced. Then t ≤ n/(k + 1) ∼ n3/4 since for
discarding k + 1 elements at each end of the list, two spiders are used. Thus
each spider allows us to eliminate k+1 elements and as at most n elements are
eliminated the total number of spiders produced is at most n/(k + 1) ∼ n/k =
n/n1/4 = n3/4.

The cost of this algorithm has 4 terms

• Initial cost: O(k2) = O(n1/2)

• Residual cost: O(k3) = O(n3/4)

• Cost for producing the t spiders: 5tk = 5n3/4n1/4 = 5n

• Cost for inserting spider elements in the sorted list: t log s = O(n3/4 logn3/4)

The initial cost is the cost to start the spider production and is explained in
the next section. The number of residual elements in the factory when spider
production stops is O(k2), this also is shown in the next section. The total
residual is then O(k3) because at this stage, s ∼ k2 and the remaining number
of elements is s(2k + 1) + k2 = O(k3). The cost of finding the median of these
remaining elements is O(k3).

The dominating cost here is producing the spiders and thus the overall cost
for the algorithm for large values of n is ∼ 5n.

Theorem 19.3. The median of n elements can be found by 5n+ o(n) compar-
isons.

19.5.4 The spider factory

When creating the spiders a crucial idea is to compare the medium valued
elements with each other and successively create partial orders which eventually
can be used to construct the spiders that leave the factory. By “medium valued
elements” we mean elements which have been found to be smaller than some
number of elements and larger than some number of elements, these numbers
differing with 0 or 1. The following procedure is used. For illustration, see figure
19.4.
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1
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4

Figure 19.4: Illustration of steps 1, 2, 3 and 4, creating partial orders of types
H0, H1, H2 and H3.

• Begin with the unordered elements (instances of H0).

• Compare elements pairwise and mark the smallest element, the “loser” in
each pair (instances of H1 are created).

• Compare the marked elements of the pairs and combine pairs into groups
of 4 elements. This time we mark the largest element, the “winner” of
each comparison (instances of H2 are created).

• The marked elements of the quadruples are compared, the losers are
marked and groups of eight elements are formed (instances of H3).

These steps are continued so that

• Each group H2i is built from two groups H2i−1 and the winners in the
comparisons are marked.

• Each group H2i+1 is built from two groups H2i and the losers are marked.

Lemma 19.4. Hj contains 2j elements.

Proof. Obvious from the construction of Hj

Lemma 19.5. An instance of H2l with center element v contains at least 2l−1
elements which are > v at least and 2l − 1 elements which are < v and thus a
spider with k = 2l − 1 can be output from H2l.
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Figure 19.5: The center elements of 4 instances of H2p−2 used to build one
instance of H2p with center element v.

Proof. The proof is by induction. Suppose the lemma is true for l = p− 1 and
show that this implies that it is true for l = p. An instance of H2p is built from
two instances of H2p−1 and these are built from four instances of H2p−2. v is
the center point of one of these. Let the other three center points be u1, u2 and
u3. See figure 19.5. The number of elements > v are

• u1 itself, 1 element

• The elements > v in v:s instance of H2(p−1), 2p−1 − 1 elements according
to the assumption of the lemma.

• The elements > u1 in its instance of H2(p−1), 2p−1 − 1 elements also
according to the lemma.

Summing the three terms we get the total number of elements > v

1 + 2p−1 − 1 + 2p−1 − 1 = 2p − 1.

In the same way, we can count the number of elements of H2p that are < v
by using < instead of > and u2 instead of u1. We get the same result, 2p − 1.
We have shown that if the lemma is true for l = p − 1, then it is also true for
l = p. It is very easy to check that the lemma is true for some small numbers,
l = 0, 1, 2 and therefore it is true for all values of l.

The spider factory builds instances of H0, H1, . . . , H2l−1 and whenever 2
instances of H2l−1 are available, an instance of H2l is made and a spider with
k = 2l − 1 is output.

In order to estimate the complexity of the spider production we need to
investigate what happens to the elements of H2l that are not part of the spider
and in particular we must look at how many of the edges within an H2l are
broken when the spider is created.

Creating the spider from H2l, its center v is the center of the spider. We
now look at the 4 instances of H2l−2 with the centers v, u1, u2, and u3.

• H2l−2(u3) just stays in the factory for further use, we cannot know how
its elements are related to v.

• H2l−2(u2): u2 and all elements that we know are smaller go to the spider,
the rest stays in the factory.
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• H2l−2(u1): u1 and larger elements go to the spider, the rest stays in the
factory.

• H2l−2(v): v is the body of the spider, elements known to be larger or
smaller are in the spider.

The cost of the production is the number of comparisons, which is equiva-
lent to the number of edges between elements. We count the edges when they
leave the factory as part of a spider and when they are destroyed in the spider
production. Each spider leaving the factory has 2k edges. The edges lost are
F>(i) for removing from H2i the center element and elements larger than the
center element and F<(i) for edges lost when removing smaller elements. F>(i)
and F<(i) can be expressed recursively as

F>(i) = 1 + 2F>(i− 1), F>(1) = 1

and
F<(i) = 2 + 2F<(i− 1), F<(1) = 2

and the solutions are
F>(i) = 2i − 1

and
F<(i) = 2× 2i − 2

The cost of removing both larger and smaller elements is

F>,<(i) = F>,<(i− 1) + F>(i− 1) + F<(i− 1) + 1, F>,<(1) = 1

F>,<(i) = F>,<(i− 1) + 3× 2i−1 − 2 =

F>,<(1) +
i−1∑
j=1

(3× 2j − 2) =

1 + 3(2i − 1)− 2(i− 1) ≤ 3(2i − 1)
The cost for the lost edges is 3(2i− 1) = 3k per spider. To get the total cost

for each produced spider we add the cost for the output edges, 2k, and we get
5k.

We can now specify the terms of the total cost of the algorithm:

• Cost per produced spider: 5k.
• Initial cost, the production of the first H2l ∼ 22l ∼ k2.

• The maximum residual in the factory should be one instance of each of
H0, H1, . . . , H2l−1 because whenever 2 instances of Hj exist, they are com-
bined into a Hj+1. As Hi has 2i elements the residual have at most∑2l−1

i=0 2i ≤ 22l ∼ O(k2) elements. The cost for calculating the median of
the residual is then O(k2).

Another, more complex, algorithm along the same lines from 1976 by the same
authors has complexity 3n+ o(n) and a very recent (1994) modification of this
algorithm by Dor and Zwick [15] has complexity 2.95n+ o(n). A lower bound
is 2n − o(n) and was obtained 1985 by Bent and John. Also this bound was
improved by Dor and Zwick [16] to (2+ ε)n− o(n) for very small (around 2−30)
ε.
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Searching

We now assume that we have a fixed set of elements x1, x2, . . . xn and we repeat-
edly want to determine whether different elements x appear in this set. Thus
time can be spent to preprocess the set to make later searches efficient. The
standard form of preprocessing is sorting but later we will also consider other
methods.

In a comparison-based computation model it is not difficult to show the
number of comparisons needed to find some element x is log2 n. This follows
since we have n different answers and thus need these many different outcomes
of our set of comparisons. This bound is actually tight, since binary search finds
an element in at most �log2 n� comparisons and thus there is little to add in
this model.

We next consider two other methods. The first is almost comparison based
and is more efficient in the case when the inputs are random while to other is
based on hashing.

20.1 Interpolation search

The underlying principle of interpolation search is that if we are trying to locate
.023612 in a set of 1000000 elements which are random numbers from [0, 1]
it makes little intuitive sense to compare it to x500000 since that element is
probably close to .5 and thus we are pretty sure that our element will be among
the first half. It make a lot more sense to compare it to x23612 since this is the
approximate place we expect to find .023612. The same idea is then applied
recursively and we each time interpolate to find the best element to use for the
next comparison. The algorithm maintains a left border J and a right border r
and works as follows.

1. Start with J = 0, r = n+ 1, Jv = 0, and rv = 1.

2. Set g = �J+ (x− Jv)(r − J)/(rv − Jv)�. If g = r change g to r − 1.

3. If xg < x, set J = g and Jv = xg. If xg > x, set r = g and rv = xg. If
xg = x we are done. If r − J ≤ 1 report failure.

4. Repeat from step 2.

163



164 CHAPTER 20. SEARCHING

To analyze this algorithm rigorously is rather delicate and we are content with
a heuristic argument.

The correct measure to study is the expected number of positions between
the sought element and the closes of the two borders r and J. Assume this
distance is m at some point. Look at the random variable which is that actual
number of positions between the sought element and the closest border. By
definition the expected value of this random variable is m and the standard
deviation is O(

√
m). This means that the guess g will be around O(

√
m) po-

sitions wrong. This indicates that the measure of progress will go from m to
O(

√
m) in one iteration and hence to O(m1/4) in two iterations etcetera. Since

the measure is at most n initially, it will be roughly n2−i

= 22
−i logn after the

i’th iteration. We conclude that after roughly log logn iterations the correct
position should be found. This is in fact correct and for the details we refer
to [23]. Even though we have not done the complete proof we take the liberty
of stating the theorem.

Theorem 20.1. There is an absolute constant D such that interpolation sort,
when applied to data uniformly distributed in [0, 1] has an expected number of
iterations which is D + log logn.

20.2 Hashing

The setting is that we have elements x1, x2, . . . xn from some universe U . We
want to store it in a table which has room for m elements. We have a hash
function h, and for each xi, h(xi) determines where in the table we are to
store xi. If we have many xi mapping to the same place in the table there are
a number of alternatives on how to proceed but we assume here that we let the
entry in the table be the head of a linked list in which we store the elements.
This implies that access time is proportional to the number of elements that
map onto a given position and the key is to keep this number small.

The weakest demand we can have on h is that it should spread the elements
uniformly in the table, i. e.

∀iPr
x
[h(x) = i] = 1/m, (20.1)

where the probability is taken over a random input. As we have stated a number
of times before it is not so satisfactory to rely on the randomness of the input
and hence we should seek other solutions when possible and this is the case here.

Instead of having a fixed function h we will have a family, H , of possible
functions and we want our estimates to be true, not for a random input, but for
every input sequence and over the choice of a random h ∈ H . The first condition
one would ask for is that each element is mapped to a random position.

∀x, i Pr
h∈H

[h(x) = i] = 1/m. (20.2)

This is good but clearly not sufficient since the family H consisting of the m
constant functions satisfy this property and they are obviously useless as hash
functions. The key condition is obtained from looking at pairs of elements and
asking that they are mapped independently of each other.
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Definition 20.2. Let H be a family of hash functions. Then, H is a family of
pairwise independent hash functions if

∀x1 �= x2, i1, i2 Pr
h∈H

[
h(x1) = i1 ∩ h(x2) = i2

]
=

1
m2

. (20.3)

Functions satisfying the property above are also called universal hash func-
tions. They were introduced by Carter and Wegman [9] and are of great impor-
tance, both for theoretical investigations and for practical implementations.

Example 20.3. Let U = Z-
2 and m = 2k. Consider functions of the form

h(x) =Mx+ b, (20.4)

where M is a k× J matrix with elements in Z2 and b ∈ Zk
2 . We let H be the set

of functions obtained by varying M and b in all possible ways. Then in fact H
is a set of universal hash functions. Namely consider x1 �= x2 from U and take
any i1, i2 ∈ Zk

2 . We claim that the probability that h(x1) = i1 and h(x2) = i2 is
exactly 2−2k. Let us sketch a proof of this.

Since x1 and x2 are different there is some coordinate which is different and
let us for concreteness assume that the first coordinate of x1 is 0 and the first
coordinate of x2 is 1. First note that just by the existence of b in the definition
of h, Pr[h(x1) = i1] = 2−k for any i1. Now we want to estimate the probability
that Pr[h(x2) = i2] conditioned upon this. Since the first coordinate of x1 is 0,
h(x1) is not dependent on the first column of M . Furthermore since the first
coordinate of x2 is 1, when the first column of M varies over all 2k possible
values h(x2) varies over all 2k possible values. It follows that the probability
that h(x2) takes any particular value, even the dependent on h(x1) taking a
particular value is 2−k and thus we have a set of universal hash functions.

Example 20.4. Let p be a prime which is greater than all x ∈ U . Choose a, b
independently and uniformly at random from Zp and set

h(x) = (ax+ b mod p) mod m. (20.5)

We claim that this almost specifies a set of universal hash functions. Let us
argue this informally. Fix x1 and x2. We claim that the values of ax1 + b and
ax2 + b when we vary a and b over all possible choices this pair takes all p2

values exactly once. To see this note that the system

ax1 + b ≡ y1 mod p (20.6)
ax2 + b ≡ y2 mod p (20.7)

has one unique solution (a, b) for any pair (y1, y2). This follows since the de-
terminant of the system is x1 − x2 and since x1 �= x2 and p ≥ max(x1, x2) this
is nonzero modulo p. Since, for each pair (y1, y2), there is exactly one pair of
values for a and b, we have that h(x1) and h(x2) are independent over randomly
chosen a and b. Thus,

Pr
[
h(x1) = i1 ∩ h(x2) = i2

]
= Pr

[
h(x1) = i1

]
Pr
[
h(x2) = i2

]
. (20.8)

Now, write p as cm + d, where d < m. Given an x, we want to compute
Pra,b

[
h(x) = i

]
. If i ≤ d, this probability is (c+1)/p, but if i > d, the probability
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is c/p. Thus, Pra,b
[
h(x) = i

]
is not the same for all i, which implies that h does

not fulfill the requirements of a universal hash function. The difference between
Pra,b

[
h(x) = i

∣∣ i ≤ d
]
and Pra,b

[
h(x) = i

∣∣ i > d
]
is 1/p and if p is large this

is very small, and we consider h as an “almost” universal hash function.

We now collect a couple of simple facts on universal hash functions.

Theorem 20.5. For a family H of universal hash functions, for any two x1, x2 ∈
U , Prh∈H

[
h(x1) = h(x2)

]
= 1/m.

Proof. Since

Pr
h∈H

[
h(x1) = h(x2)

]
=

m∑
i=1

Pr
h∈H

[
h(x1) = i ∩ h(x2) = i

]
=
1
m
, (20.9)

the probability that two elements collide is 1/m, for any two elements in U .

Corollary 20.6. If we use a random h from a family of universal hash func-
tions, with m ≥ n, the expected time to find an element x is O(1). This is true
for any set of n inputs.

Proof. We just have to check the expected length of the linked list in which we
store x is O(1). By the previous corollary the probability that any other fixed
elements is mapped to the same list is 1/m. Since there are n−1 other elements
the expected number of elements in the list is at (n− 1)/m ≤ 1.

We emphasize that the above corollary is true for any fixed element in any
list and the randomness is only over h ∈ H . If we fix a choice h and look among
the n different elements we cannot, however, hope that all elements map to lists
of constant length. For an average h it will be true for most elements however.
Next we investigate the possibility of no collisions.

Corollary 20.7. The expected number of collisions is n(n− 1)/2m.
Proof. There is a total number of

(
n
2

)
pairs of n elements. The probability that

each pair collides is 1/m. The corollary follows by the linearity of expectation.

What does this last result imply? We study two candidates:

Corollary 20.8. For m > n2/2, there exists a “perfect” hash function, i. e. a
hash function without any pair of elements colliding.

Proof. This actually follows without too much thought. Namely, if m > n2/2,
the expected number of collisions is less than 1. This implies that it must exist
some hash function which is collision free.

Conjecture 20.9. For m < n2/2 often have collisions.

This does not follow from the results above, since the expected value gives
us no information on how the collisions occur. It seems likely that the con-
jecture is true, but to really prove it, we would have to show something like
Pr[no collision] ≤ 2m/n2 or Pr[no collision] ≤ e−n

2/(2m). From all we know
upto this point it could be that we have very many collisions a small fraction of
the time (giving the large expected value) while most of the time there are no
collisions. We do not enter into such details of hashing since the situation gets
complicated. We simply state (without proof) that for most families of hash
functions the conjecture seems, based on practical experience, to be true.
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20.3 Double hashing

The problem we want to address in this section is the storage of n elements of
data in a memory of size O(n) and still having an access time that is O(1) in
the worst case. From standard hashing we could only get that the time was
O(1) for many, or even most, elements. The solution to this problem is to use
the idea twice and it is therefor called double hashing . Fix a set H of universal
hash functions.

First we use a random h ∈ H with m = n. This creates a set of linked lists
and assume that Ni is length of list i. Since

n∑
i=1

Ni(Ni − 1)
2

(20.10)

is the numbers of pairs of elements that map to the same list, we know, by
Corollary 20.7 that the expected value of this number is n2/2m which in our
case is n/2. Thus at least half of all h ∈ H have this number at most n. Fix one
such h. Note that h can be found efficiently since we just keep picking random
h and calculating the number of collisions. Once we get one with at most n
collisions we keep it. The expected number of retries is constant. For all the
linked list that are of size at most 3 (any other constant would do equally well)
we just keep the linked list, while for other values of Ni we are going to replace
the linked list by a second level of hashing. This time without collisions. Given
any list Li of length Ni we choose and mi with mi > Ni(Ni − 1)/2 and find
a hash function hi mapping U to [mi], which exists by Corollary 20.8, without
collisions1. We store the description of hi for the head of the linked list and
then use mi words of storage to store the items in Li. Most of these words will
be empty but this is of no major concern (at least in theory).’ We only need
the fact that

n∑
i=1

mi ≤
∑
Ni>3

1 +
Ni(Ni − 1)

2
≤ 7n

6

where we used the fact that (20.10) is at most n and since each term that we
consider is at lest 6, there are at most n/6 terms and thus the extra 1’s add up
to at most n/6.

Now we claim that the worst case access time in this data structure is O(1).
To see this fix any x and consider i = h(x). Either the entry i is the header for
a linked list of size at most 3 or it is a description of a hash function hi. In the
latter case we compute hi(x) and we find x in the small hash table.

1We might want to double mi if we have trouble finding the hi quickly. This depends
on the parameters in question and the constants involved. Since we only care about O(n)
storage, doubling mi only affects the constant but not the result.
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Chapter 21

Data compression

The basic problem is to compress a long string, in order to get a shorter one.
For a compression algorithm A we denote the result of A applied to x by A(x).
We want to be able to recover the original information and hence we have a
companion decompression algorithm with a corresponding function DA(x). We
have two types of compression algorithms.

• Lossless algorithms that satisfy DA(A(x)) = x for all x.

• Lossy algorithms where DA(A(x)) is only close to the original x. Close
is defined in a suitable way depending on what x represents.

Lossy algorithms are usually applied to items such as pictures while for
text and string information we usually want lossless algorithms. We assume
throughout this chapter that compression algorithms are self-delimiting in that
there is no end-of-file marker that is used. Each algorithm knows by itself when
to stop reading the input. This implies in particular that there are no inputs
x1 and x2 such that A(x1) is a prefix of A(x2).

21.1 Fundamental theory

Given a fixed string x, how can it best be compressed? In this situation there can
exist special purpose algorithms and that do extremely well on this particular
input and thus one might fear that studying the compression of a single string
is meaningless. In particular for each string x the there is a lossless compression
algorithm Ax which compresses x to a single bit. The key to avoiding this
problem is to measure also the size of the compression (or to be more precise
decompression) algorithm. Since any input to the decompression algorithm can
be incorporated into the source code we can simply study programs without
input and look for programs that output x without input.

Definition 21.1. The Kolmogorov complexity, K(x) is the size (in bits) of the
smallest inputless program that outputs x.

This is not a mathematically strict definition in that we have not specified
the meaning of “program”. It seems like if we consider programs written in Java
we get one function KJava while using programs written in C we get a different

169
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function KC . Looking at more formal models of computation like a Turing
machine we get a third function KTM which might behave rather differently
compared to the first two. Let us first compare the first two notions.

Theorem 21.2. There are two absolute constants A and B such that for any
string x we have KJava(x) ≤ KC(x) +A and KC(x) ≤ KJava(x) +B.

Proof. We prove only the second inequality, the first being similar. We claim
that we can write a “Java simulator” in C. This program takes as input a text
string and checks if it is a correct Java program that does not take any input. If
the answer to this is affirmative the program simulates the actions of the Java
program and gives the same output as the Java program would have produced.
We hope the reader is convinced that such a program exists. Suppose the size
of this program is S. Now take any program of size K written in Java. By
hardwiring the program into the above simulator we can create a C-program of
size K + S′1 with the same output. By choosing the shortest program in Java
that outputs x we can conclude that KC(x) ≤ KJava(x) + S′ and the theorem
follows by setting B = S′.

Note that the above proof does not use anything specific of C and Java
but only the property that they are universal programming languages that can
simulate each other. Thus the theorem can be generalized to prove that many
notions of “program” give rather closely connected variants of Kolmogorov com-
plexity. This remains true even when using formal models of computation such
as a Turing machine but the details of such simulations get cumbersome and we
omit them.

The moral of Theorem 21.2 together with its generalizations is that the
choice of notion of “program” has little importance for K(x) and the reader
can choose his favorite programming language to be used in the definition of
Kolmogorov complexity. For the duration of these notes we leave this choice
undefined in that we, in any case, only specify programs on very high level.

Let us state the immediate application to data compression.

Theorem 21.3. For any lossless compression algorithm A :

Length(A(x)) ≥ K(x)− CA,

where CA is a constant that depends only on A.

Proof. A program that outputs x is given by the decompression algorithm DA

together with A(x). The size of this program is essentially the size of A(x) plus
the size of the code for DA and thus the total size is Length(A(x)) + CA for
some constant CA that depends only on A. Thus we have put our hands on one
small program that outputs x and by the definition of Kolmogorov complexity
we have K(x) ≤ Length(A(x)) + CA and the theorem follows.

Theorem 21.3 gives a bound on how much we can compress a string x. It
turns out that the bound is mainly of theoretical interest. The problem being
that K(x) is not computable.

1One could hope that the size of this program would be bounded by K + S but this might
not be the case due to silly details. In particular the statement of reading an input (like
gets(s);) need to be replaced by an assignment strcpy(s,”. . .”); and we might get a different
additive term than the size of the string we are using in the assignment.
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Theorem 21.4. K(x) is not a computable function.

Proof. Before we attempt a formal proof let us recall a standard “paradox”.
Consider describing integers by sentences in the English language. We allow
descriptions like “ten” but also “the smallest integer that can be written as the
sum of two cubes of positive number in two different ways”2. Clearly some inte-
gers require very long description since there are only 26l different descriptions
of length l. Now consider the description “the smallest integer that cannot be
described with less than one thousand letters”. There must be such an integer,
but the problem is that now we have a description with less than 1000 letters
for this very integer and thus we appear to have a paradox. The problem when
trying to present this paradox in a formal setting is how to capture the infor-
mal notion of ”description”. One mathematically precise way would be to let
a description of x be a program that outputs x and thus the minimal length
description of x has length K(x). The above integer would then be the smallest
y such that K(y) ≥ 1000. The problem this is not a description in the form of
a program outputting y. If Kolmogorov complexity was a computable then it
would be easy to turn this description into the required program outputting y
and we would have a true paradox. As we are about to prove this is not true
and hence there is no paradox. Let us now turn the formal proof of the theorem.

Assume for contradiction that K can be computed by a program of size c.
Consider the following program.

for i=1,. . . do
if (K(i)) > 2c +1000 then output i and stop

od

Using the assumed subroutine for K we can write a program of size slightly
larger than c (to be definite of size at most c+ log c+ 500) executing the high
level routine above. The log c bits are needed to specify the number c. Con-
sider the output of this program. Assuming that we have a subroutine that
correctly computes K it must be an integer i such that K(i) ≥ 2c+ 1000. On
the other hand since the program is of size c+ log c+500 we have, by definition
of Kolmogorov complexity, that K(i) ≤ c+ log c+500. We have reached a con-
tradiction and thus we conclude that the cannot exist a program that computes
Kolmogorov complexity.

The above theorem just says that K(x) cannot be computed exactly and
thus it does not exclude the possibility of a program P such that for any x it
is true that K(x)/2 ≤ P (x) ≤ K(x). An easy variant of the above proof shows
that also this P cannot exist and in fact it is possible to prove much stronger
theorems on the inapproximability of K. We leave the details to the interested
reader.

As a final conclusion of this chapter let us just note that although Kol-
mogorov complexity is a nice theoretical basis for data compression it is of little
practical value since it, or any function close to it, cannot be computed. In our
next section we turn to the question of compressing strings which are formed
by some random process.

2A description of 1729
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21.2 More applicable theory

In many situations it is useful to view the input as coming from a probability
distribution. Two such examples are

• random strings of given length

• texts in English of given length.
In the first example we have a probability distribution that is mathematically
easy to describe while in the second situation we do not. In either case, however,
we have a random variable X and for each possible value x of X we have an
associated probability px of seeing this value. In the case of random strings px
is given by a closed formula and in the case of English texts the value exists
although we have problems of finding the exact value.

In a similar way we can view pictures of various origins as probability dis-
tribution and we are interested in a compression algorithm that compresses a
random value of X efficiently. The natural number that measures the success
of a compression algorithm in this situation is to look at the expected size of
the compressed string.

Definition 21.5. For a compression algorithm A and probability distribution
X let EA(X) the expected length of the output of A when fed a random value
of X as input. In other words, if the probability that X takes the value x is px
then

EA(X) :=
∑
x

px · Length[A(x)].

It turns out that possible behavior of EA(X) can, in many situation, be
estimated quite well. We have the following key definition.

Definition 21.6. The entropy of a random variable X is denoted by H(X) and
defined by

H(X) := −
∑
x

px log px.

Observe that entropy is a property only of the random variable X and that
it is a real number. As an example consider a random variable that takes t
different values each with probability 1/t. A straightforward calculation shows
that X has entropy log t. On the other hand we the t different outcomes can be
coded as 1, 2 . . . t and thus X can be coded with log t bits. It is not difficult to
see that we cannot do better in this case and also in general there is a relation
between entropy and code length.

Theorem 21.7. For any compression algorithm A and any random variable X
we have

EA(X) ≥ H(X).

Proof. Suppose x is coded with lx bits. Then by basic properties of prefix-free
codes we have ∑

x

2−lx ≤ 1. (21.1)
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We omit the proof of this fact but encourage the interested reader to prove it.
We have that

EA(X) =
∑
x

pxlx (21.2)

and thus we want to find the minimal possible value of this sum under the
constraint (21.1). Note that we are here treating px as given constants while we
try to find the optimal values of lx for all x. By standard analysis we know that
for the optimum of such constrained optimization the gradient of the objective
function is parallel to the gradient of the constraint. Since the derivative of
2−lx is − ln 2 · 2−lx , while the gradient of the objective function is given by the
probabilities px, the optimal point satisfies ln 2 · 2−lx = λpx for some parameter
λ. Since

∑
x px = 1 and

∑
x 2

−lx = 1 for the optimal point we have λ = ln 2.
This gives lx = − log px and∑

x

pxlx = −
∑

px log px = H(X)

is the desired optimum. Hence this is a bound on the performance on any
compression algorithm and the theorem follows.

The above theorem gives a good lower bound for EA(X) and let us next
turn to upper bounds. If we know the value of px then the above proof suggests
that we should code x with − log px bits. If this number is an integer for all x
then it is always possibly to create such a code and we have a tight result. In
general, the optimal prefix-free code can be constructed as the Huffman-code
and it can be proved that we lose at most an additive 1.

Theorem 21.8. The Huffman-code of a probability space X has an expected
code length that is at most H(X) + 1.

We omit the proof of this theorem.
Note that this is not a symbol-by-symbol Huffman-code but it is a gigantic

Huffman-code treating each possible string as a different symbol. Thus this is
not very useful for the obvious reason that any construction procedure would
have to enumerate all different possible inputs and this is, in most cases, not
feasible. In particular, if x is an English text of length 10000 characters we
have 2610000 possible x to consider. On top of the obvious problem of too many
possible x we have the additional problem of not knowing the explicit values of
px.

One approach in practice is to break the input into pieces of fixed size (e.g.
3) and then to code each piece separately. In this case the relevant probability
space is the set of all trigrams (segments of 3 letters). The probabilities of
all trigrams can be estimated by doing frequency counts on long texts. Note,
however, that this makes the performance sensitive to the type of text. If we
have constructed a Huffman-code based on English text taken from a typical
book this algorithm would probably perform poorly if we try to compress source
code or a text in Swedish. Our next attempt is therefor to discuss algorithms
which do not need any information on the input space but still performs well in
theory and practice.
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21.3 Lempel-Ziv compression algorithms

Ziv and Lempel invented two compression algorithms of rather related nature
around 20 years ago. Many variations of these algorithms have been proposed
since then, but since we are only interested in the basic ideas we describe here
only the simplest variants of the algorithms. The algorithms have the following
basic properties.

• They do not need any information on the input space.
• They are provably “optimal” in many simple situations. In particular,
if the strings being compressed are obtained from independent random
symbols, the compression ratio is asymptotically optimal.

• They compress most occurring strings significantly.
• They are fast and easy to implement.

Before we proceed, let us just remind the reader that there are some strings that
are not compressed at all. This is true for any lossless compression algorithm
since lossless compression algorithms are permutations of strings and thus if
some strings are mapped to shorter strings some other strings must be mapped
to longer strings. We now proceed to discuss the two algorithms which, due to
their years of publication are known as LZ77 and LZ78, respectively.

21.3.1 LZ77- The sliding window technique

We introduce the technique by an example. Suppose we are in the middle of
compressing a text and we are about to process the second “e” of the text shown
below

. . e c o s y . . e c o n o m i c
The algorithm locates the longest prefix that has appeared so far in the

text. In this case this is “eco” which started, say, 27 positions earlier. The
token (27,3,”n”) is constructed which is the instruction to copy the string of
length 3 that started 27 positions to the left and then add the symbol “n”. This
way “econ” is coded and the algorithms proceeds to find the longest matching
of “omic..” etc.

In theory we allow matchings of arbitrary length from anywhere earlier in
the text. In practice we limit how far back in the text we search for matchings
(i.e. limit the buffer size) and also limit the length of the matching. As an
example if we limit the buffer size to 2048 and the size of the matching to be at
most 8 character we can code the two integers using 14 bits. There are many
variants of this algorithm and we refer to [44] for a discussion of some.

Let us point out that the algorithm allows the matching string to go right
of the current position and thus in particular a string of many equal symbols is
coded very efficiently. In particular, given a string of N a’s.

a a · · · a

the first token is (0,0,”a”) and the next is (1,N-2,”a”) which codes the rest of
a’s.
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Finally we remark that the algorithm is asymmetric in that decoding is more
efficient than coding. The decoder needs only to keep the buffer of decoded text
and copy the appropriate parts. The coder needs to find the required matchings.

21.3.2 LZ78 - The dictionary technique

The principle is the same as in LZ77 in that we are looking for matchings with
previous text. In this case the matchings are located by storing substrings of
the text in a dictionary.

The dictionary is either initialized as empty or containing all one-symbol
strings. When encoding a subset of text we look for the longest prefix of the
current text that is stored in the dictionary and then we add one symbol. The
concatenated string (the part from the dictionary together with the extra sym-
bol) is then stored in the next position of the dictionary. Thus if we are in the
same position as in the previous algorithm we might have stored “eco” at posi-
tion 291 in the dictionary and in this case “econ” would be coded as (291,”n”).
The string “econ” is then stored in the first free slot of the dictionary.

This algorithms is a little bit more symmetric than LZ77 in that both the
coder and the decoder have to maintain the dictionary. Only the coder, however,
needs to find matching prefixes. The decoder again only copies appropriate
strings.

In theory LZ78 uses a dictionary of unlimited size. In practice one usually
has a fixed upper bound. When the dictionary is full one either works with this
static dictionary or simply starts over again with the empty dictionary. Again
there are a large number of variants and we refer to [44] for some of them.

21.4 Basis of JPEG

Just as a teaser let us describe JPEG in a few words. It is a lossy compression
algorithm used to compress pictures. The pixels are divided in blocks of size
8 × 8 and the cosine transform of the 8 × 8 matrices given by pixel-values in
blocks are calculated. The cosine transform is a real valued variant of the Fourier
transform and has rather similar properties.

The result of a cosine transform is 64 real numbers but for efficient storage
these numbers are rounded to integer multiples of predefined quantities. The
resulting integers are then coded with Huffman like codes. We again refer to
[44] for details.
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