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1 TSP and Held-Karp Integrality Gap

The heuristic for linear programming for hard problems. Relax x ∈ {0, 1} to
xi ∈ [0, 1]

xij =

{
1 an edge in tour between i and j

0 otherwise

Held-Karp:

min
∑
dijxij∑

j 6=i
xij = 2 ∀i

∑
i∈S
j /∈S

xij ≥ 2 (*)

We want to make an integer linear programming (ILP) with exponential
number of constants into an LP with few constraints. LP: xij ∈ [0, 1] By being
clever you can write down a few constraints that imply (*). This was not done
in the lecture but let us sketch how to do this. We want to say that for any
nodes s and t there is a unit flow from s to t using xij as capacities. This
is coded by variables yijst which is supposed to give the flow from vertex i to
vertex j in this flow. We have the following constraints.

1. yisst = 0 for all i. No flow into s.

2.
∑
j ysjst = 1. Flow one out of s.

3. ytjst = 0 for all j. No flow out of t.

4.
∑
i yitst = 1. Flow one into t.

5.
∑
i yikst =

∑
j ykjst for k 6= s, t. Flow conservation at other nodes.

6. 0 ≤ yijst ≤ xij . The xij are capacities.
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This gives a polynomial size LP and implies the constraints (*).
The benefits of an LP-relaxation for a hard problem:

Always give you an idea of the optimal value. LP has at least as good optimum
as ILP and we can always solve the LP efficiently.

Sometimes we can use LP solution to find a good integer solution.

Key Question: How good is this estimate?
Key Notation: Integrality gap. Instances with good fractional solution.

Bad integral solution.

Figure 1: Three parallel lines of edges with cost one. Triangles at the end also
with edges of length one hook up the end-points.

A different way of picturing the same graph is seen below. This is done by
drawing one triangle large and the other, small edges, are still of cost one.

Figure 2: Cost of outer edges is 1

An optimal tour needs to return to the start. In Figure 2, we need to traverse
one of the long paths between the inner triangle and the outer triangle twice to
get to the starting point. The length of the tour is thus roughly 4n since the
cost of the outer edges can be neglected. A fractional solution, with length 1/2
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on triangles edges, 1 on all other edges as can be seen in Figure 1 has the cost
about 3n. We get the following theorem.

Theorem 1. The integrality gap for Held-Karp relaxation is at least 4/3.

The upper bound for the integrality gap is more complicated and we only
state the theorem.

Theorem 2. Held-Karp is within a factor 3/2.

The Held-Karp relaxation, after a minor modification, works also for asym-
metric TSP, i.e. where dij 6= dji might be true, but we do have triangle inequal-

ity. For ATSP Held-Karp can be proved to be within a factor of O( log(n)
log(log(n)) )

of OPT while the worst instances has a gap of a factor of 2. Which of the two
bounds that is the better is a question for future research.

As for algorithm independent hardness results it is known that TSP is NP-
hard to approximate within 123/122 while the bound for ATSP is 75/74. Help-
Karp may be the best algorithm, but this remains to be seen.

2 Max-Cut

The Max-Cut problem is to find the cut which cuts the maximum number of
edges by cutting a graph into two pieces.

Figure 3: Maximum cut

To tell if it is possible to cut all the edges in a graph is the same as de-
termining whether the graph is bipartite or not, and this is easy to tell. By
using random cuts we cut half of the edges in the graph, we want to do better
than that. We want to maximize the number of cut edges and this number is
captured by the following expression

max
∑

(i,j)∈E

1− xixj
2

, xi ∈ ±1.

We relax this to

max
∑
i,j∈E

1− yij
2

,
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where y is a symmetric, positive, semidefinite matrix with yii = 1, i.e.

yi,j =


1 ? · · · ?
? 1 · · · ?
...

...
. . .

...
? ? · · · 1


Solving this will give an 0.878 approximation for Max-Cut and let us give

some details.
Recall properties of a symmetric, positive, semidefinite matrix. What do the

eigenvalues of symmetric matrix look like?

Symmetric: Real eigenvalues

Positive, semi definite: λi ≥ 0 for i = 0, 1, · · · , n− 1 .

The following conditions are equivalent:

E1:
∑
ij

yijzizj ≥ 0 ∀ z ∈ Rn.

E2: y = V TV for some matrix V .

If yij = xixj for some x ∈ {±1}n is this PSD? Looking at E2 we realize that
Y = (xT 0)

(
x
0

)
and thus we know that we have a relaxation.

Is the relaxation solvable in polynomial time? (This is previously why we
used LP). The answer is yes. Let us explain the meta reason for this. Remember
for previous lectures, why is LP easy?

• No local maximas

• Ax ≤ b (nice convex domain)

Could we reuse this idea? We need to check that the set of positive semidef-
inite matrices is a convex domain and in particular that if Y 1 is PSD and Y 2

is PSD then so is λY 1 + (1 − λ)Y 2 for any λ ∈ [0, 1]. This is easy to see by
condition E1 as if

zTY 1z ≥ 0 zTY 2z ≥ 0

both hold then

zT (λY 1 + (1− λ)Y 2)z = λzTY 1z + (1− λ)zTY 2z ≥ 0.

If Vi ∈ Rn is the i’th column of V in Y = V TV then Yij = (Vi, Vj) (the inner
product) and yii = 1 implies ‖Vi‖ = 1. Thus one way to formulate the relaxation
is that we have gone from ±1 (unit vectors in R1) to unit vectors in Rn.

We need to turn this vector solution back into a Boolean solution. To do this
we pick a random unit vector r ∈ Rn. Set xi = sign((vi, r)). In the picture we
see the situation when the vectors all happen to lie in the same two-dimensional
space.
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Figure 4: The vectors vi in two dimensions.

Intuition: If
1−(vi,vj)

2 gives a large contribution to objective function then vi,
vj point opposite and it is likely that xi 6= xj . Let us try to make this formal.

OPT: Best Max-Cut. SDP-OPT: Optimal value of SDP.

1. SDP-OPT ≥ OPT (it is a relaxation)

2. Expected value of constructed solution is ≥ 0.878. SDP-OPT ≥ 0.878
OPT

Let us sketch why this the case. Suppose we have an edge (i, j) and the

angle between Vi and Vj is θ. Then
1−(vi,vj)

2 = 1−cosθ
2 . It is not difficult to see

that

Prob[xi 6= xj ] =
θ

π

and as

min
θ

θ
π

1−cos(θ)
2

≈ 0.878

this gives the desired conclusion. This was done rather quickly and will be
discussed again at the beginning of next lecture.
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