
Transcript of lecture 1

Computational model and sorting

2014-09-24, 14:15-15:00

Notes by Jonatan Asketorp (asket@kth.se).

Random Access Machine

Unit-cost RAM is the main model used in this course. This is similar to C or
any other standard imperative language.

• Any operation costs one unit.

• Indirect addressing available.

A variation is the log cost RAM where an operation on an integer x costs
log(1 + x), this is more accurate but more tedious.

Interesting model: Boolean circuit

Boolean circuits are bit oriented with input bits, x1, ..., xn and operands

∧ = ”and”

∨ = ”or”

¬ = ”negation”

The size is measured as the number of logic gates.

1



Example: XOR

which has size 3.

Turing machines

Will not be used in this course.

Interesting model: Comparison model

A common claim is that it requires nlog(n) time to sort n integers. However,
this is only true in the comparison model where the only way to get information
about the input is asking “Is xi ≥ xj?”

Theorem 0.1 Sorting requires log2(n!) comparisons in this model where ! is
the factorial function n! = n ∗ (n− 1) ∗ (n− 2) ∗ ... ∗ 1.

Proof: The output is an ordering l1, l2, l3, ..., ln (i.e, a permutation of n) where
xi1 ≥ xi2 ≥ xi3 ≥ ... ≥ xin .

There are n! possible answers and the correct answer is found by using
information about the input. If we ask T questions ”xi ≥ xj?” we have 2T

possible answer sets and each answer set gives an output. Note that each output
is possible!

The number of answer sets is ≥ the number of outputs which means that
2T ≥ n! and T ≥ log2(n!).

An approximation of n! by Stirling’s formula is n! ∼ (n
e )n. This gives us

that log2(n!) ∼ n log2 n− n log2 e + o(n).

Sorting algorithms

Quicksort is average case O(n log n) but it gives the wrong leading constant.
Mergesort and Heapsort, are sorting algorithms that gives the optimal constant
one in front of n log n.

2



Sort n numbers with 64 bits each.

How long does it takes to sort these?
Proposed algorithm:

• Initialize 264 counters to 0.

• for i = 1 to n increase counter Cxi
.

• Read off answer.

Time n + O(1). An objection to this is that in real life n is between 220 and
245 as smaller n are “easy” and larger n we cannot even read the input. This
algorithm is ”cheating” as the O(1) is the dominating term.

Radix sort

Sorts n numbers in range 0...nk − 1 in time ∼ kn.

Bucket sort

Bucket sort is a similar algorithm.

• Make n buckets, say n = 222.

• Put elements in bins given by the first log n bits (22 bit).

• Sort bins recursively, now with 42 bit numbers.

There will be 3 levels of recursion and the time in n is 3n + book-keeping.

Is sorting in reality O(n) time?

Think about what is the best/worst combination of n and w (the number of
bits in the numbers)? For w ≤ 3 log n sorting can, as discussed above, be done
in linear time! On the other hand if w is very large then each comparison
may take a very long time. One model that strikes a reasonable balance is the
following. We want to sort n numbers each with w bits and we allow simple
machine operations of w-bit numbers at unit cost. The current world record in
this model is an algorithm that sorts in O(n log log n) time by A. Andersson, T.
Hagerup, S. Nilsson and R. Raman. A link to this is available on the homepage.
It currently is unknown whether it can be done in O(n)!

Circuit model sorting

A circuit model of n w-bit numbers with m = wn input bits. Can sorting be
done in O(m) size? This is also unknown.

3



What we did not have time for

Given n random integers each w bit, i.e. xi ∈ 0...2w − 1 randomly. It is easy
to sort in O(n) time. See bucket sort with n buckets. Let sx be the log n most
significant bits in x and simply place x in Bsx and sort the buckets by almost
any method (even a with a quadratic sorting algorithm for the buckets, this can
be proved to run in expected time O(n)). The proof was skipped but a sketch
is a available in the course notes in Section 18.5.

4


