Notes by Johan Wikström.

Hashing

Why sort?

Searching: for a set S, |S| = n. Ask $x \in S$? Binary search answers this in $O(\log(n))$ time but we want to do better.

Alternative: Hashing

Get nice function h, store info on x in h(x).

$$h: U \to [m] = \{0, 1, ..., m - 1\}$$

- $w \approx n$ usually.
- h should spread S nicely.
- Best of all worlds $h(x) \neq h(y), x \neq y, x, y \in S$

If h is a fixed function there are always bad sets S. Take $S = \{x | h(x) = i\}$ for some i. No nice theory for fixed functions!

Instead, use set of hash functions $h_{\alpha}, \alpha \in T$. Pick a random α and use h_{α} . For each S, a random α is good.

Carter-Wegman pair-wise independent hashing

Pair-wise independence was introduced by Carter and Wegman in the 1970'ies and is defined by the following property. $a, b \in [m], \forall x \neq y$

$$P[h_{\alpha}(x) = a \wedge h_{\alpha}(y) = b] = \frac{1}{m^2}$$

Canonical example

 $U = \{0, 1\}^{\ell}, m = 2^t$ Input ℓ bits, output t bits

$$h_{M,r}(x) = Mx + r$$

- M is $t \times \ell$ matrix
- r is a t bit vector
- + is mod 2, i.e. + is XOR
- * is mod 2, i.e. * is AND

Theorem 1 $h_{M,r}$ is a family of pairwise independent hash functions, i.e. they have the Carter-Wegman property.

Proof: For intuition let us study the case $x = 0^{\ell} = 00...0 \Rightarrow h_{M,r}(x) = r$ $y = 1000... \Rightarrow h_{M,r}(y) = r + m_1$, where m_1 is the first column of M. It is not difficult to see that r and $r + m_1$ are two independent random vectors of t bits.

The strategy of the proof is as follows.

- 1. Do t = 1
- 2. Observe that output bits behave independently to get general t.

When $t = 1, x \neq y \in \{0, 1\}^{\ell}$ a, b are two bits and M is simply a row vector of ℓ bits. The key equations are

$$Mx + r = \sum_{i=0}^{\ell-1} m_i x_i + r = a$$
$$My + r = \sum_{i=0}^{\ell-1} m_i y_i + r = b$$

Now there exists one *i* such that $x_i \neq y_i$. We can without loss of generality assume that i = 0 and $x_0 = 0$ and $y_0 = 1$. Fix $m_1, ..., m_{\ell-1}$ and we claim that probability over m_0 and *r* that we get *a* and *b* is 1/4. In other words exactly one value of *r* and m_0 that gives the desired bits *a* and *b*. To see this, note that we need

 $m_0 * x_0 + r = a + \sum_{i=0}^{\ell-1} m_i x_i + \text{and - are the same in mod } 2$ $m_0 * y_0 + r = b + \sum_{i=0}^{\ell-1} m_i y_i.$

Since $x_0 = 0$ and $y_0 = 1$, this is equivalent to

$$r = a + \sum_{i=0}^{\ell-1} m_i x_i$$
$$m_0 + r = b + \sum_{i=0}^{\ell-1} m_i y_i$$

and the first equation gives a unique value for r and the second then gives a unique value of m_0 . As there are four potential values of r and m_0 this gives probability 1/4.

Prove for general t using t = 1

Look at fig 1. The fact that the equations are independent implies that the probability that you get the vectors a and b is $(\frac{1}{4})^t = (1/2^t)^2$ as the theorem claims.

Figure 1: The red and green bits in the output h(x) are independent

More theorems on hashing

Theorem 2 The expected number of collisions under h_{α} is $\frac{n(n-1)}{2m}$

This expectation is over random α and is true for all S.

Proof: A collision is a pair (i, j) such that $i \neq j, h_{\alpha}(x_i) = h_{\alpha}(x_j)$. Let

$$E_{ij} = \begin{cases} 1 & x_i \text{ and } x_j \text{ collide} \\ 0 & \text{otherwise} \end{cases}$$

then # collisions is $\sum_{i < j} E_{ij}$. We need to calculate the expectation of this.

$$E[\sum_{i < j} E_{ij}] = \sum_{i < j} E[E_{ij}]$$
$$= \sum_{i < j} P[h_{\alpha}(x_i) = h_{\alpha}(x_j)]$$
$$= \frac{n(n-1)}{2} \frac{1}{m}$$

since $P[h_{\alpha}(x_i) = h_{\alpha}(x_j)] = \frac{1}{m}$. The theorem follows.

We have the following immediate corollary.

Theorem 1 If $m > \frac{n(n-1)}{2}$ there exists a h_{α} with no collisions.

Proof: We have

$$E[\# \text{ collisions}] = \frac{n(n-1)}{2*m} < 1$$

and thus there must be some h without collisions as otherwise this expected value would be at least 1.

Theorem 2 If $m \ge n(n-1)$ at least half of all h_{α} has no collisions.

Proof: Indeed

$$E[\# \text{ collisions}] \le \frac{1}{2}$$

and if more than half of the h_{α} would have one collision this expected value would be greater than $\frac{1}{2}$.

Two level hashing(called double hashing in old lecture notes)

Figure 2: When we get more that two elements that hash to the same value, hash one more time into a smaller hash table.

To be more precise if more than two elements map to i, pick h_{α_i} with minimal range that hashes these elements *perfectly*. In other words look at the set

$$S_i = \{x \in S, h_\alpha(x) = i\}$$

and this set is split perfectly under h_{α_i} . Two level hashing answers " $x \in S$?" in O(1) time by the following high level algorithm.

Compute h(x), if marked "collision" compute $h_{\alpha_h(x)}(x)$ to check if it's there.

Theorem 3 The two-level hashing can be implemented with O(n) space.

Proof: We need to check how much space is needed for all small perfect hash tables given by h_{α_i} . Let s_i be the number of elements hashing to i. We know that h_{α_i} can be implemented with space $s_i(s_i - 1)$. Total extra space needed is $\sum_{i=0}^{n-1} s_i(s_i - 1)$. Note that his is twice the number of collisions of the outer hash function h. and the expected of such collisions is $= \frac{n(n-1)}{2m}$ when hashing to [m]. As in our case we have m = n the expected number of collisions is

 $\Rightarrow \frac{n(n-1)}{2n} = \frac{n-1}{2} \approx \frac{n}{2} \\ \Rightarrow E[\text{Extra space needed}] = \frac{2*n}{2} = n$

Preparing for next lecture

Finding median of 2m + 1 numbers, "middle element"

Attempt 1, sort output - middle element in takes $n \log n$ times.

Faster?

In a modification of Quicksort we can ignore all recursive calls where you know the median can't be. Gives O(n) and we can reduce constant before n by selecting pivot cleverly.