
Lecture 2, 25-09-2014

Notes by Johan Wikström.

Hashing

Why sort?

Searching: for a set S, |S| = n. Ask x ∈ S? Binary search answers this in
O(log(n)) time but we want to do better.

Alternative: Hashing

Get nice function h, store info on x in h(x).

h : U → [m] = {0, 1, ...,m− 1}

• w ≈ n usually.

• h should spread S nicely.

• Best of all worlds h(x) 6= h(y), x 6= y, x, y ∈ S

If h is a fixed function there are always bad sets S. Take S = {x|h(x) = i} for
some i. No nice theory for fixed functions!

Instead, use set of hash functions hα, α ∈ T . Pick a random α and use hα.
For each S, a random α is good.

Carter-Wegman pair-wise independent hashing

Pair-wise independence was introduced by Carter and Wegman in the 1970’ies
and is defined by the following property. a, b ∈ [m],∀x 6= y

P [hα(x) = a ∧ hα(y) = b] =
1

m2

Canonical example

U = {0, 1}`,m = 2t Input ` bits, output t bits

hM,r(x) = Mx+ r

• M is t× ` matrix

• r is a t bit vector

• + is mod 2, i.e. + is XOR

• * is mod 2, i.e. * is AND

Theorem 1 hM,r is a family of pairwise independent hash functions, i.e. they
have the Carter-Wegman property.

Lecture 2, 25-09-2014

Proof: For intuition let us study the case x = 0` = 00...0 ⇒ hM,r(x) = r
y = 1000... ⇒ hM,r(y) = r + m1, where m1 is the first column of M . It is not
difficult to see that r and r+m1 are two independent random vectors of t bits.

The strategy of the proof is as follows.

1. Do t = 1

2. Observe that output bits behave independently to get general t.

When t = 1, x 6= y ∈ {0, 1}` a, b are two bits and M is simply a row vector
of ` bits. The key equations are

Mx+ r =

`−1∑
i=0

mixi + r = a

My + r =

`−1∑
i=0

miyi + r = b

Now there exists one i such that xi 6= yi. We can without loss of generality
assume that i = 0 and x0 = 0 and y0 = 1. Fix m1, ...,m`−1 and we claim that
probability over m0 and r that we get a and b is 1/4. In other words exactly
one value of r and m0 that gives the desired bits a and b. To see this, note that
we need

m0 ∗ x0 + r = a+

`−1∑
i=0

mixi + and - are the same in mod 2

m0 ∗ y0 + r = b+

`−1∑
i=0

miyi.

Since x0 = 0 and y0 = 1, this is equivalent to

r = a+
`−1∑
i=0

mixi

m0 + r = b+

`−1∑
i=0

miyi

and the first equation gives a unique value for r and the second then gives a
unique value of m0. As there are four potential values of r and m0 this gives
probability 1/4.

Prove for general t using t = 1

Look at fig 1. The fact that the equations are independent implies that the
probability that you get the vectors a and b is (1

4)t = (1/2t)2 as the theorem
claims.

Lecture 2, 25-09-2014

Figure 1: The red and green bits in the output h(x) are independent

More theorems on hashing

Theorem 2 The expected number of collisions under hα is n(n−1)
2m

This expectation is over random α and is true for all S.

Proof: A collision is a pair (i, j) such that i 6= j, hα(xi) = hα(xj). Let

Eij =

{
1 xi and xj collide

0 otherwise

then # collisions is
∑
i<j Eij . We need to calculate the expectation of this.

E[
∑
i<j

Eij] =
∑
i<j

E[Eij]

=
∑
i<j

P [hα(xi) = hα(xj)]

=
n(n− 1)

2

1

m

since P [hα(xi) = hα(xj)] = 1
m . The theorem follows.

We have the following immediate corollary.

Theorem 1 If m > n(n−1)
2 there exists a hα with no collisions.

Proof: We have

E[# collisions] =
n(n− 1)

2 ∗m
< 1

and thus there must be some h without collisions as otherwise this expected
value would be at least 1.

Theorem 2 If m ≥ n(n− 1) at least half of all hα has no collisions.

Lecture 2, 25-09-2014

Proof: Indeed

E[# collisions] ≤ 1

2

and if more than half of the hα would have one collision this expected value
would be greater than 1

2 .

Two level hashing(called double hashing in old
lecture notes)

Figure 2: When we get more that two elements that hash to the same value,
hash one more time into a smaller hash table.

To be more precise if more than two elements map to i, pick hαi
with minimal

range that hashes these elements perfectly. In other words look at the set

Si = {x ∈ S, hα(x) = i}

and this set is split perfectly under hαi
. Two level hashing answers “x ∈ S?”

in O(1) time by the following high level algorithm.

Compute h(x), if marked ”collision” compute hαh(x)(x) to check if it’s there.

Theorem 3 The two-level hashing can be implemented with O(n) space.

Proof: We need to check how much space is needed for all small perfect hash
tables given by hαi

. Let si be the number of elements hashing to i. We know
that hαi

can be implemented with space si(si − 1). Total extra space needed

is
∑n−1
i=0 si(si − 1). Note that his is twice the number of collisions of the outer

hash function h. and the expected of such collisions is = n(n−1)
2m when hashing

to [m]. As in our case we have m = n the expected number of collisions is

Lecture 2, 25-09-2014

⇒ n(n−1)
2n = n−1

2 ≈ n
2

⇒ E[Extra space needed] = 2∗n
2 = n

Preparing for next lecture

Finding median of 2m+ 1 numbers, ”middle element”

Attempt 1, sort output - middle element in takes n log n times.

Faster?

In a modification of Quicksort we can ignore all recursive calls where you know
the median can’t be. Gives O(n) and we can reduce constant before n by se-
lecting pivot cleverly.

