
DD2440 ADVANCED ALGORITHMS
LECTURE 3: LINEAR-TIME MEDIAN-FINDING

ALGORITHMS

Notes by Didrik Lundberg (lecture by Johan Håstad).

1. Quickselect

How do we efficiently find the median in an array of numbers? This
problem, and in general the problem of finding the kth smallest element in
an array S of size |S| = n, is solved by a class of algorithms called selection
algorithms. Depending on k and the size of S, the kth smallest element
can be the minimum, maximum or median element. We will however only
discuss finding the median element in this lecture.

Quickselect(S, k) is an interesting selection algorithm which is related
to the Quicksort algorithm. Similar to how Quicksort works, in Quickselect
set S is divided into two partitions by cleverly choosing a pivot element.
Unlike Quicksort however, we can discard one of the partitions, the one we
know will not contain the median, instead of passing a recursive call to both.

Quickselect loosely works like this: Let x be a random element in S. Then
we can define the partitions S0 = {y ∈ S, y < x} and S1 = {y ∈ S, y ≥ x}.
If the array S is already sorted, we can partition it into x, S0 and S1 thusly:

................︸ ︷︷ ︸
S0

, x,︸ ︷︷ ︸
S1

If the array S is not already sorted, we can perform this partition simply
by doing n−1 comparisons, where we check (for every element except x) if it
belongs to S0 or S1, by using the definitions of these sets. Depending on our
choice of x and the resulting partition, we end up in one of three situations:

(1) If |S0| ≥ k: call Quickselect(S0, k);
(2) If |S0| = k − 1: return x;
(3) If |S0| < k − 1: call Quickselect(S1, k − (|S0|+ 1)).

As mentioned earlier, Quicksort has two recursive calls (one for each parti-
tion), but in this case we only need to make one recursive call. One of the
partitions will not be interesting to us, since we can be entirely sure that it
does not contain the median.

Theorem 1.1. The expected number of comparisons for Quickselect is
less than or equal to 4|S|.

Proof. We need |S|− 1 comparisons to find S0 and S1, and on top of this we
have our recursive call. Let us calculate the expected size of this recursive
call. We have three cases:

(1) If |S0| = 0, ..., k − 2: recursive call size is n− |S0|+ 1;
(2) If |S0| = k − 1: no recursive call is made;

Date: October 6, 2014.
1

(3) If |S0| ≥ k: recursive call size is |S0|.
This gives us the expression

1

n

k−2∑
i=0

n− (i+ 1) +
1

n

n∑
i=k+1

i

for the expected size of the recursive call. Let us now recall that the sum of
an arithmetic sequence is equal to number of terms × average term, where
average term = first term+last term

2 . The expression for our arithmetic series
(disregarding for the moment the factor 1

n) then becomes

(k − 1)
n+ 1− k + n− 1

2
+ (n− (k − 1))

k + n− 1

2

= (k − 1)
2n− k

2
+ (n− (k + 1))(

k + n− 1

2
)

≤ 2nk2

2
+

(n− k)(n+ k)

2

=
n2 + 2nk − 2k2

2
,

which in the worst case is equal to

3n2 − (n− 2k)2

4
≤ 3n2

4
.

However, we also have a factor 1
n , giving us the expected size of recursive

call 1
n
3n2

4 = 3n
4 . The total cost is then

|S| − 1︸ ︷︷ ︸
n−1

+ 4 · 3n
4︸ ︷︷ ︸

by induction

= n+ 3n− 1 ≤ 4n .

�

2. More efficient algorithms

Can we achieve a better constant than 4? Here are two examples of ideas
for creating other algorithms that have better efficiency:

(1) Choose x to be the median of n
3
4 elements (x can be found in O(n

3
4)

comparisons). Then, S0 and S1 will be very close to n
2 in size (shown

below). We end up with a recursive call of size n
2 +O(n).

................︸ ︷︷ ︸
≈n

2

, x,︸ ︷︷ ︸
≈n

2

(2) Play a “cup” to find the winner (the smallest or largest element),
as shown in Figure 1. Whether we compete for being the smallest
or largest element, the next “best” element will be found among the
log(n) elements which lost to the winner. We can then play a cup
among these to find out who is the next best, meaning n−1+log(n)
comparisons in total to find next best. A similar procedure is taken
for the third best, and so on.

2

Figure 1. “Cup” comparisons between elements.

3. The most efficient algorithms

Theorem 3.1. There is a provably optimal randomized algorithm that finds
median in 3n

2 +O(n) comparisons.

Proof. One may want to consult the original paper by Floyd and Rivest
[2]. �

Is there a deterministic algorithm which runs in O(n)? If we want to look
for such an algorithm, a good start would be looking for a good pivot x. To
make the presentation simpler suppose |S| = n = 5m (that the size of S is
divisible by five - five is the smallest integer for which the following scheme
works). Then divide S into m groups. Compute the m medians in these
groups. Let x be the median of these m medians.

Figure 2. Ordering of elements by division into m columns
of size 5. Only the central column and the central row are
shown explicitly.

So, for each column we know that the upper elements are larger than the
middle element, and that the lower elements are smaller. For the middle row
of the m medians, we know that elements to the right of x are larger and
elements to the left are smaller. If we were to compare all the elements to
x, we would have one area in which all elements are smaller than x (the red
area), and one area in which all elements are larger than x (the green area).
In addition to this, there are two areas of which we do not know anything
about in this regard.

The number of elements which we know to be larger than x is then 3n
10 , as

is the number of elements which we know to be smaller than x. The areas
whose relation to x is unknown both have a size of 2n

10 .
3

Now, we utilize x as a pivot. The partition into S0 and S1 is done in the
same fashion as in Quickselect. We will need to do comparisons in all the
unknown parts, but we have a favourable situation where there are a lot of
elements we have already related to x. Then finally we make a recursive call
on our remaining set of interest, where we know the median can be found.
The size of this set of elements will be less than or equal to 7n

10 . The algorithm
can be described in short in four steps:

(1) Find median in each group of 5 (takes 6n
5 comparisons),

(2) Set x to be the median of these medians (takes T (n5) comparisons),
(3) Partition S0 and S1 in the same fashion as for Quickselect (takes 2n

5
comparisons),

(4) Do recursive call on set of interest (takes ≤ T (7n10) comparisons).
Since we are interested in calculating the efficiency of the algorithm, we are
looking for a function T (n) that solves

6n

5
+ T (

n

5
) +

2n

5
+ T (

7n

10
) ≤ T (n) ,

with the boundary condition T (1) = 0 (finding the median in a list of 1
element requires zero comparisons). We set T (n) = c · n on the left-hand
side of the above equation and get

8n

5
+

9nc

10
≤ nc ,

8n

5
≤ nc

10
,

16 ≤ c .

Now we can compare the above algorithm with the efficiency of other al-
gorithms. What is the smallest c that any deterministic algorithm has
achieved? In 1995, Zwick and Dor achieved c ≈ 2.95 with the “green spider
factory” selection algorithm [3]. This is the best upper bound a deterministic
algorithm has achieved at this point.

Let us have a look at the partially ordered sets in Figure 1. Each vertex is
one element, and each edge means that a comparison has been made between
the two elements, where the highest ordered element is placed above the
other.
Where and how can we tell what the median is?

In the leftmost graph, we see that vertex D is the median, since three
elements are larger than D, and three elements are smaller, by the transitive
property of the partial order. The rightmost graph does not have a clearly
identifiable median, however.

Theorem 3.2. If the median is known, then we must have made n − 1
comparisons.

Proof. The theorem is intuitively very clear; even if you were given the cor-
rect median by a psychic medium you would need n−1 comparisons to verify
it! We need to know how many elements are bigger than, and smaller than,
the median. For each element, we have one comparison that shows this. �

4

Figure 3. Two partially ordered sets.

So n − 1 comparisons is a theoretical lower bound, in the sense that it
would be logically impossible to be more efficient. This is only a start to
calculating an actual, practical lower bound, which is far from trivial to do.
In 1985, Bent and John gave a 2n + o(n) lower bound for median-finding
algorithms [1], refined to 2n + ε by Zwick and Dor (again) in 1996 [4],
which holds today. Note that this lower bound is smaller than 2.95.

References

[1] Samuel W. Bent and John W. John, Finding the median requires 2n comparisons,
in Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,
pages 213-216. 1985.

[2] Robert Floyd and Ronald Rivest, Expected Time Bounds for Selection, in Communi-
cation of the ACM, pages 165-172, 1975.

[3] Uri Zwick and Dorit Dor, Selecting the median, in Proceedings of 6th SODA, pages
88-97. 1995.

[4] Uri Zwick and Dorit Dor, Median selection requires (2+ε)n comparisons, in Proceedings
of 37th FOCS, pages 125-134. 1996.

5

