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1 Integer factorization and primality
Given integer N is it prime? If not, what are it factors? Why do we care about
this problem? There are at least two reasons as follows.

1. Basic mathematical problem.

2. Our ability to find primes quickly and our inability to factor very large
numbers are the key reasons that the RSA encryption system works.

Let us start with a simple question and look at factoring 32-bit integers. The
first algorithm that comes to mind is trial division: Try to divide by 2, 3, 4, ...

√
N

and see if any division gives an integer answer.
The number of operations required this is about

√
N which in this case is

about 216 ≈ 65000 and as a computer does about 230 operations per second this
takes less than a millisecond. If we, on the other hand, want to factor a 100-bit
number this requires 250 operations which would need 220 (about two weeks).
Factoring a 200-bit number by this method not feasible.

We can consider the following improvement: Only divide by primes ≤
√

N .
To evaluate this algorithm we need to know how many primes there are ≤ M .

The prime number theorem tells us that this is roughly
M

lnM
and thus the

improvement is only by a factor lnN and is minor and we need to turn to other
algorithms. We note for the future that random number with t bits is prime

with probability roughly
1

0.7t
.

It turns out that it is much easier to check whether a number is prime than
to factor a number that we know is composite so let us turn to this problem
first. We have the following theorem.

Theorem 1 If N is prime then for 1 ≤ a ≤ N − 1 we have aN−1 ≡ 1 mod N .

As example note the following examples.

• N=7, 26 = 64 ≡ 1 mod 7 7 looks prime.

• N=15, 214 = 16384 ≡ 4 mod 15 15 is not a prime.
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Note that in the second case we can conclude that 15 is not prime but do
not get any indication how to find its factors. To be able to use the Fermat
theorem we need two additional properties

1. Need to check whether aN−1 mod N equals one quickly.

2. Need to converse, i.e. something similar to that if N is not prime then
aN−1 ≡ 1 mod N only for few or no a.

Answers:

1. Is true.

2. Almost true, there are a few bad N ’s, but for random N it works fine.

Let us turn to computing aN−1 mod N , N ≥ 2100. Note that aN−1 has at least
N bits and thus we cannot write down this integer. Crucial observation: If doing
some multiplications and we want the answer mod N then we need only know
partial results mod N and thus the size of numbers do not have to become large.
However, computing aN−1 without thinking requires N − 2 multiplications and
we have to be more clever. Let us show how to this by an example and compute
246 mod 47. First note that 46 = 101110 in binary and consider the following
numbers in binary

1. 1=1

2. 2=10

3. 5=101

4. 11=1011

5. 23=10111

6. 46=101110

We compute 2 to these powers mod 47.

1. 21 = 2

2. 22 = 4

3. 25 = 32

4. 211 = (25)2 · 2 = 1024 · 2 = 372 = 27 mod 46

5. 223 = (211)2 · 2 = 272 · 2 = 729 · 2 = 24 · 2 = 1

6. 224 = (223)2 = 12 = 1

As each exponent is either twice the previous exponent or that number plus
one we can get always get from one to the next by squaring and, if needed, one
multiplication. We summarize this fact as follows.
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Theorem 2 ab mod N for n-digit numbers a, b, N can be computed by n squar-
ings, and ≤ n multiplications mod N .

In practice for 1000-digit numbers this can be done in less than second.
Let us recall a useful fact. For a prime p a number g is a generator if the

numbers g, g2, g3, . . . gp−1 are all numbers 6= 0 mod p. Two examples

• p = 5, g = 2, 2,4,3,1

• p = 7, g = 3, 3,2,6,4,5,1

We have p − 1 numbers. Looking at gi is taking every i’th element (and
wrapping around).

What is g
p−1
2 for a generator g? Looks to be p− 1 (or equivalently -1), but

is this always the case? We have (g
p−1
2 )2 = gp−1 ≡ 1 mod p by Fermat. and

thus this number is a solution to x2 = 1. For a prime, a degree d equation has
at most d solutions and thus for N prime, x2 = 1 mod N has only the obvious
solutions 1 and -1. In our case as g

p−1
2 6= 1 we must have g

p−1
2 = −1.

If N is not prime other things can happen and in particular x2 = 1 mod 8
has the solutions x = 1, 3, 5, 7.

As stated above, for most N it is the case that for most a, 1 ≤ a ≤ N − 1,
aN−1 6= 1 mod N . Exceptions are known as "Carmichael numbers” and Gary
Miller and Michael Rabin (MR) showed how to take care of all numbers.

Miller-Rabin

1. If N is even output "not prime" unless N = 2.

2. Otherwise N − 1 = 2` · s, s odd.

3. Pick random a, 1 ≤ a ≤ N − 1 and compute x0 ≡ as mod N ,

4. xi+1 = x2
i mod N, i = 0, 1, ..., `− 1.

Note that x` = a2`·s = aN−1 mod N . Guess prime iff: x` ≡ 1 and x0 ≡ 1 or
last xi 6= 1 equals −1. Otherwise we know that N is composite.

We have the following two theorems.

Theorem 3 If N is prime the MR always says "probably prime".

Theorem 4 If N is composite the probability that MR says “probably prime” is

≤ 1
4
.

In other words,
3
4

of all a witness that N is composite. If we try 50 random

a’s then the probability of an incorrect answer is at most 2−100 =
(

1
4

)50

.

Finally we give the following algorithm for picking your own 1000-bit prime:
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1. Pick random own 1000-bit number N .

2. Run MR on N . If composite, try again.

Note that we can me algorithms more efficient by first doing trial division
with small factors.
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