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Lecturer: Johan H̊astad Scribes: Anton Andersson

5.1 The Chinese remainder theorem (CRT)

With N = pq and GCD(p, q) = 1, then

x =
{

x1 mod p
x2 mod q

has a unique solution modulo N that can be found efficiently (polynomial time with regard to log N).

Efficiently solve it for the special cases

(x1, x2) = (1, 0) ⇒ solution u1

(x1, x2) = (1, 0) ⇒ solution u2

We can then calculate a general solution x

x = x1u1 + x2u2 mod N

since
x = x1u1 + x2u2 = x1 · 1 + x2 · 0 mod p
x = x1u1 + x2u2 = x1 · 0 + x2 · 1 mod q

We can compute u1 and u2 by running the extended Euclidean algorithm on p and q. We get a and b such
that

1 = ap︸︷︷︸
u1

+ bq︸︷︷︸
u2

since
1 = ap + bq mod p = 0 + bq mod p ⇒ bq = 1 mod p
1 = ap + bq mod q = ap + 0 mod q ⇒ ap = 1 mod q

5.2 Modular division

What is 2
3 mod 7 ?

3 · 2
3 = 2 mod 7

3 · x = 2 mod 7

We see that x = 3 does it!

What is 2
3 mod 6 ?

3 · x = 2 mod 6
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This has no solution and this should not be a surprise. Already in the real numbers we know that 2
0 is not

defined. It is bad with a zero in the denominator. The Chinese remainder theorem states that modulo 6 is
the same as modulo 2 and modulo 3 at the same time and 2

3 modulo 6 when we look at it modulo 3, this is
2
0 .

5.3 Efficient modular division

Think of 2
3 as 2 · 1

3 . How do we compute modular inverses?

Use the extended Euclidean algorithm

GCD(p, b) = 1 ⇒ 1 = cp + db ⇒ d =
1
b

5.4 Factorization

We want to factor N = p · q in less than linear time with regard to p (which is the time complexity for trial
division).

5.4.1 Pollard’s ρ algorithm - magic and simple algorithm

Algorithm:
x0 = 4711
xi+1 = x2

i + 1 mod N

Compute GCD(x2i − xi, N) for i = 1, 2, ... until you find a factor (GCD(x2i − xi, N) 6= 1, the value of
GCD(...) is a factor of N)

CRT: modulo N ∼ modulo p & modulo q. Squaring is pretty random; xi modulo p looks like random
numbers until we get a repeat.

x0 = 4711
x1 = Some number mod p
...
x2711 = x414

x2712 = x415

Iterating xi mod p is equivalent to running around a loop. x2i is running twice as fast as xi. When they
meet up x2i − xi is divisible by p and GCD(x2i − xi, N) contains the factor p (we are not sure that this is a
prime but that can easily be checked).

Heuristic statement: Pollard ρ finds the factor p in ∼ √
p time. This is based on the heuristic assumption

that the xi behave like random numbers and the key is to analyze how many random numbers are needed
until we get a repeated value.

5.4.2 Collision probability

How many random numbers (x′is mod p) are needed to get a repeat?
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This is analogous to the birthday problem (what’s the probability of collision of birthdays in a group of a

certain size?). The probability of no collision is ∼ e
−t2
2p , t = #numbers and p is the nunber of possibilities..

t ∼
√

2p → P (no collision) = e−1

t ∼
√

10p → P (no collision) = e−5

5.4.3 Implementation

x = 4711
y = 4711
repeat

x = xˆ2 + 1 mod N
y = yˆ2 + 1 mod N
y = yˆ2 + 1 mod B
i f (GCD(x−y ,N) != 1) re turn GCD(x−y ,N)

The squaring and modulo calculations are considerably faster than the GCD calculation, thus we want to
perform few calls to GCD. We can achieve this by multiplying together a few consecutive x2i − xi mod N
before calling GCD on the product.

5.4.4 General factorization

Find nontrivial solution ( x 6= ±y) to x2 = y2 mod N.

N divides x2 − y2 = (x− y)(x + y) but not either factor. GCD(N,x− y) is a factor of N .

First idea: Small numbers are often squares, d
√

Ne ( d e means round up to next integer).

Example:

N = 21
d
√

21e = 5
52 = 25 = 4 = 22mod 21
GCD(5− 2, 21) = 3
GCD(5 + 2, 21) = 7
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How large is d
√

Ne2 −N ?

d
√

Ne −
√

N ∼ 1
2

d
√

N
2

d
√

N
= 2

√
N

⇒ d
√

Ne2 −N ≈
√

N
2

+ 1
2 ∗ 2

√
N −N =

√
N

In the last step we assume that the ceiling operation adds an average of 1
2 to

√
N and substitute d

√
Ne2

with a Taylor expansion.

What is the probability that a number of size T is a perfect square?

There are b
√

T c perfect squares ≤ T , which means that the probability is ∼ 1√
T

.

In our case we have T ∼
√

N , which gives us a probability of ≈ N− 1
4 that

√
N is a square, and a time

complexity of N
1
4 ≥ √

p where p is the smallest prime and thus Pollard’s ρ algorithm is better.

Example:
N = 161
d
√

161e = 13
132 = 169 = 8 mod 161 (not a square)
d
√

2 ∗ 161e = 18
182 = 324 = 2 mod 161 (not a square)
132 · 182 = (13 · 18)2 = 8 · 2 = 42

13 · 18 mod 161 = 73
GCD(73− 4, 161) = 7
GCD(73 + 4, 161) = 13

Example:
N = 123
112 = 121 = −2 mod 123
122 = 144 = 21 = 3 · 7 mod 123
162 = 256 = 10 = 2 · 5 mod 123
182 = 324 = −45 = −5 · 32 mod 123
192 = 361 = −8 = −23 mod 123

We can find squares by combining the above

(11 · 19)2 = −2 · −23 = 24 = 42 mod 123
(11 · 16 · 18)2 = −2 · 2 · 5 · −5 · 32 = (2 · 3 · 5)2 mod 123

5.4.5 Quadric Sieve

Idea: Generate many (∼ 106) ai such that bi = a2
i are small mod N . One good alternative is to use.

bi = (i + d
√

Ne)2 −N

Factor all bi and combine to form perfect squares. More about this in next lecture.


