
Integer Factoring

Lecture: Johan Hstad
Notes: Konrad Ilczuk

1 Introduction

How do we factor integers? This problem is often occurring in cryptography
where one wishes to factor large numbers. There exists various methods
to do this, some more efficient than others, some working better for large
integers, other for small. This lecture covers the Pollard-ρ algorithm and
the Quadratic Sieve.

2 Pollard-rho

• Given an integer to factor N .

• Set x0 to anything.

• xi+1 = 1 + x2i mod N .

Finds the factor p in time ≈ √p.
This method is particularly effective for finding small factors and is easy

to implement as a first step for the first project in the course avalg14.

3 Quadratic Sieve

The Quadratic Sieve is the fastest factoring method for numbers below
100 digits and is the second fastest(second to General Number Field Sieve)
existing today.

As many other factoring algorithms it boils down to finding a solution
to x2 ≡ y2 mod N with x 6≡ ±y. This is good as in this case N divides
x2 − y2 = (x + y)(x − y) and as, by assumption, N does not divide either
factor we have that gcd(N, x+ y) gives a non trivial factor in N .

The simplest way would be to directly look for a number a, such that
a2 mod N is a square. We will, however, construct this number in stages.

1



4 Intuition

Given an integer N = 123 we can obtain this by combining equations:

• 112 mod 123 = −2

• 122 mod 123 = 3 ∗ 7

• 162 mod 123 = 2 ∗ 5

• 182 mod 123 = −5 ∗ 32

• 192 mod 123 = −8 = −22

By trial and error we see that one possibility is to use (11 ∗ 16 ∗ 18)2 =
(2 ∗ 5 ∗ 3)2, the product of the first, third and forth equation above. This
gives a solution to x2 ≡ y2 mod N with x = 11 ∗ 16 ∗ 18 and y = 2 ∗ 3 ∗ 5.

The problem is how to make this systematically if we have a thousand
of primes. We want to find a subset of equations to make all small primes
to the ”right”(in the above equations) ”pair up”. The idea is to use linear
algebra, mod 2 to express it as an exponent vector. Putting such vectors as
rows in a matrix allows us later to compute a solution by finding the linear
dependency using Gaussian Elimination. To control the size of the matrix
we chose a smoothness bound B, implying that we only consider primes
bounded by B.

-1 2 3 5 7
11 1 1 0 0 0
12 0 0 1 0 1
16 0 1 0 1 0
18 1 0 0 1 0
19 1 1 0 0 0

Fig.1 Exponent vector mod 2 table for our example. In this the smooth-
ness factor B has been chosen to 7.

Having this matrix, the objective is to find a sum of these row-vectors,
with all coefficients even.

The overall strategy is:

1. Generate useful equations

2. Find how to combine by multiplying some equations, example: (11 ∗
16 ∗ 18)2 = (2 ∗ 5 ∗ 3)2

2



The left hand side is always an even square and the problem is to pair up
the right hand side. Let us start by describing how to generate equations.

We want to generate bi = (i+d
√
Ne )2−N for i = −a, . . . 0 . . . a. and use

all numbers that factor in our factor base. The interval defined by [−a,+a]
is also known as the sieving interval.

The naive way to do this is to use trial division on each number bi but
this is too costly and we proceed by sieving. Let us give the idea.

Suppose b3 is divisible by 7, then as

bi = i2 + 2id
√
Ne + (d

√
Ne )2 −N (1)

is polynomial in i we know that b10 is also divisible by 7. Even further, all
such that i ≡ 3 mod 7 has 7 as factor! This suggests the following procedure.

• Store log bi as float in position i of an array

• Subtract log p from all bi, i = i0, i0 + p, i0 + 2p for each root i0 mod p
of the polynomial given in (1).

You also want to repeat for factors pt for any t > 1 subtracting additional
terms log p.

After this is done for each prime p ≤ B consider elements in the array
that has been reduced to a very small number. These probably can be
factored in the factor base. You go back and recreate the number bi and
find the actual factorization by trial division.

To save time note that you only have consider p’s which divide any
constructed bi. For this to be possible it needs to be the case that x2−N ≡
0 mod p is solvable. This is the same as saying that

(
N
p

)
= 1 (where this

is the Lagrange symbol). Please remember that x2 = d is solvable mod p if
and only if d(p−1)/2 ≡ 1 mod p

If p ≡ 3 mod 4 then a solution can be found quite efficiently as
√
d =

d(p+1)/4 . If p ≡ 1 mod 4 the situation is more complicated and we refer to
the web. In particular there is an efficient algorithm designed by Shanks
and Tonelli.

It is worth noting, that if N is composite then, heuristically (this is hard
to prove formally), the probability that x 6≡ ±y is least one half.

Out of curiosity one could ask what happens if one applies this algorithm
to an N which is prime. The answer is that everything will work nicely apart
from the fact that x ≡ ±y will always hold.

3


