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1 Arithmetics

In this lecture we want to examine how to perform fast arithmetic (multiplication and
division) of n-bit integers.

Table 1: Some examples of time complexity for performing arithmetic operations

Operation Complexity
Addition and subtraction O(n)

Naive multiplication O(n2)
Naive division O(n2)

The naive division is defined as: given a, b ∈ N, n-bit integers, find a decimal number
x such that |a/b− x| ≤ 2−n.

1.1 Multiplication

We can think about an integer as a polynomial with different coefficients. Consider the
following equations

a =

n−1∑
i=0

ai2
i (1)

PA(x) =

n−1∑
i=0

aix
i (2)

(3)

and note that they are almost the same. Use β = 2t for some t and we have

n
t −1∑
i=0

aiβ
i. (4)

Thus, we can understand that multiplying two integers is approximately the same
thing as multiplying two polynomials.

How should we perform the polynomial multiplication PA · PB , of two degree d− 1
polynomials? Instead of multiplying them coefficient by coefficient we use the following
method



1. Evaluate at 2d− 1 point xi, where d is a constant.

2. yi = PA(xi) · PB(xi)

3. Interpolate yi with P (xi) = yi.

Karatsuba uses d = 2. Using this method the two steps 1 and 3 each takes O(n) and the
complexity is dominated by the recursive call in step 2. The overall complexity turns
out to be O(nγ) where γ = logd 2d− 1.

For small d (2,3 etcetera) the choice of good points affect constants in running time.
But if d is close to n we need to be more careful.

1.1.1 Discrete Fourier Transform

Definition 1. Let f0, f1, . . . , fm−1 be a sequence of length m, then the discrete Fourier
transform (DFT) of this sequence is

f̂j =

m−1∑
k=0

fkw
kj , (5)

where j = 0, ...,m − 1 and w is an mth root of unity, i.e. wm = 1, wi 6= 1 for 1 ≤ i ≤
m− 1.

Example 1. If we have w = e2πi/m, w will be an mth root of unity. In the figure below
the these roots are shown in the unit circle when m = 12.

Figure 1: The roots of w = e2πi/m when m = 12.

There are some important computational advantages when using DFT, namely (they
will be described in more detail below)

1. Easy to compute (with fast Fourier transform (FFT))

2. Polynomial evaluation: f ≈ f0 +f1 ·x+f2 ·x2 + · · ·+fm−1 ·xm−1 then f̂j = f(wj).

3. Easy to invert

3. The DFT is easy to invert, because it is almost its own inverse.
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Theorem 1.
m−1∑
j=0

f̂jw
−ij = m · fi. (6)

Proof.
m−1∑
j=0

m−1∑
k=0

fkw
jkw−ij =

m−1∑
k=0

fk

m−1∑
j=0

wkj−ij

 = m · fj , (7)

because sum inside the parenthesis is m if (k = i) and 0 otherwise.

1. The DFT is easy to compute with FFT.

Theorem 2. If m is a power of 2 then DFT can be computed in O(m logm) operations.
This is called the fast Fourier transform.

Let m = 2+, and w an mth root of unity. Now we will think of this as making m/2
dimensional FFT:s of odds and evens. Setting σ = w2 we see that σ is m/2th root of
unity. Let

fej =

m
2 −1∑
k=0

f2kσ
kj . (8)

be the transform of the even elements. Note that as w2kj = σkj this is in fact a partial
sum from the full transform. Similarly we have for the odd elements

foj =

m
2 −1∑
k=0

f2k+1σ
kj . (9)

By identification of terms we then have the complete transform

m−1∑
k=0

fkw
kj =

m/2−1∑
k=0

f2kw
2kj +

m/2−1∑
k=0

f2k+1w
(2k+1)j = fej + wjfoj , (10)

and
f̂j = f̂ej + wjfoj = f̂ej−m/2 + wj f̂oj−m/2. (11)

where j = m/2,m/2 + 1, . . . ,m− 1.
Thus we can calculate the Fourier transform with the help of a divide and conquer

strategy. By recursion we compute the transforms of the odd and even terms and then
we use (10) and (11) to complete the calculation. Since the latter costs O(m) arithmetic
operations, if we let T (m) be the number of operations needed for a transform of size
m we get

T (m) = 2T (m/2) +O(m), (12)

which solves to T (m) = O(m logm), as stated in Theorem 2.

1.1.2 Some Final Notes on the Fourier Transform

When solving the Fourier transform we want integer result. All the intermediate results
are floating point complex numbers (pairs of reals). The rule is to do calculations with
enough accuracy to make rounding to closest integer the correct result. O(log m) bits
is enough. In practice, even double is good enough.

For multiplication d = m = n/log n, for each coefficient log n bits. M(n) =
O(m logmM(log m)) = O(nM(log n)), i.e. n operations on O(log n) bit numbers.
Some efforts in increasing the efficiency has been made

• Schönhage-Strassen 1971: Do not use complex numbers⇒M(n) = O(n log n log log n)

• Fürer 2005: M(n) = O(n log n 2O(log∗ n))
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1.2 Division

Compute 1/y with n bits of accuracy when 1 ≤ y ≤ 2. x/y is found by inversion and
multiplication.

Put x0 = 1/2, and let
xi+1 = 2xi − yx2i . (13)

xi will then become better and better approximations of 1/y. |xi − 1/y| ≤ 2−2i i.e. xi
will be 1/y with 2i bits of accuracy. If we massage the product xi+1 y we can rewrite it
as

xi+1 y − 1 = 2xiy − x2i y2 − 1 = −(xiy − 1)2. (14)

Now we have that |x0y − 1| ≤ 1/2 as x0 = 1/2 and 1 ≤ y ≤ 2. Then, by induction

|xi+1y − 1| = |xi − 1|2 ≤ (2−2i)2 = 2−2i+1

. (15)

So log n iterations gives n bits of accuracy! Each iteration cost O(M(n)), i.e. the cost
of multiplication. Thus, we get the following theorem

Theorem 3. Cost of division is O(log n M(n)), where M(n) is the cost of multiplica-
tion.

We can do better yet, tough, since xi will have error ≈ 2−2i we compute it with
2i + 5 bits of accuracy. Then the cost of division is

∑log n
i=0 M(2i + 5) = O(M(n)).

4


	Arithmetics
	Multiplication
	Discrete Fourier Transform
	Some Final Notes on the Fourier Transform

	Division


