
Communication Complexity: Problem Set 3

Due: October 21, 2012. Submit as a PDF �le by e-mail to lauria at kth dot se with
the subject line Problem set 3: 〈your name〉. Name the PDF �le PS3_〈YourName〉.pdf
(with your name coded in ASCII without national characters). Solutions should be written
in LATEX or some other math-aware typesetting system. Please try to be precise and to the
point in your solutions and refrain from vague statements. In addition to what is stated
below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two to three people are allowed, but you
should write down your own solution individually and understand all aspects of it fully. For
each problem, state at the beginning of your solution with whom you have been collaborating.
Reference material: For some of the problems, it might be easy to �nd solutions on the
Internet, in textbooks or in research papers. It is not allowed to use such material in any way
unless explicitly stated otherwise. You can refer without proof to anything said during the
lectures on in the lecture notes, except in the obvious case when you are speci�cally asked to
show something that we claimed without proof in class. It is hard to pin down 100% formal
rules on what all this means�when in doubt, ask the lecturer.
About the problems: Some of the problems in the problem sets are meant to be quite
challenging and you are not necessarily expected to solve all of them. A total score of around
70 points should be enough for grade E, 125 points for grade C, and 180 points for grade A
on this problem set. Any corrections or clari�cations will be posted on the course webpage
www.csc.kth.se/utbildning/kth/kurser/DD2441/semteo12/.

1 (10 p) Recall that for a function f : {0, 1}n × {0, 1}n 7→ {0, 1}, where we can view the inputs x
and y as integers in [0, 2n−1], we let Mf denote the n×n-matrix with (i, j)-entry Mi,j = f(i, j).
We de�ne the rank of f as rank(f) = rankR(Mf ), i.e., the rank of the matrix Mf computed
over the �eld of reals. Prove that the deterministic two-party communication complexity of f is
upper-bounded by D(f) ≤ rank(f) + 1.

2 (10 p) A decision tree T over variables x1, . . . , xn is a binary tree such that every internal
vertex is labelled by a variable xi and the two edges to its left and right child are labelled
0 and 1, respectively, and such that all leaves are labelled by 0 or 1. T de�nes a function
fT : {0, 1}n 7→ {0, 1} in the natural way by letting fT (α) be the value of the leaf reached when
walking from the root of T along edges according to α. More formally, given an assignment
α = (α1, . . . , αn) to the variables x1, . . . , xn, we start at the root and at each internal vertex v,
which is labelled by xi, say, we follow the edge to the child of v whose edge is labelled by αi,
until we reach some leaf, the label of which is the value of fT (α). T is a decision tree for f if
fT = f . The depth of a tree T is the length of a longest path in T from the root to some leaf,
and the decision tree complexity dtc(f) of f is the smallest depth of any decision tree for f .

For arbitrary functions f : {0, 1}n 7→ {0, 1} and g : {0, 1}n × {0, 1}n 7→ {0, 1}, let the com-
posed function F : {0, 1}n×{0, 1}n 7→ {0, 1} be de�ned by F (x, y) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)).
Prove that the deterministic two-party communication complexity D(F ) is upper-bounded by
D(F ) = O

(
dtc(f) ·D(g)

)
.
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3 (10 p) Let P and Q be arbitrary probability distributions over some common �nite domain
Ω = {ω1, . . . , ωn}. Recall that the total variation distance V (P,Q) of P and Q is de�ned as
V (P,Q) = 1

2

∑
ω∈Ω|P (ω)−Q(ω)|.

3a Prove that (as claimed in class) an alternative de�nition of total variation distance is
V (P,Q) = maxΩ′⊆Ω′

{
P (Ω′) − Q(Ω′)

}
(where for a subset Ω′ ⊆ Ω we use the short-hand

P (Ω′) =
∑

ω∈Ω′ P (ω)).

3b Prove that total variation distance is a metric on probability distributions � i.e., it is
symmetric, non-negative, non-zero unless P = Q, and satis�es the triangle inequality
V (P1, P2) ≤ V (P1, Q) + V (Q,P2) � and that it always holds that 0 ≤ V (P,Q) ≤ 1.

4 (10 p) Let P and Q be arbitrary distributions over Ω = {ω1, . . . , ωn}. Let ‖x‖ denote the usual

Euclidean norm ‖x‖ = ‖(x1, . . . , xn)‖ =
√∑n

i=1 x2
i . Prove that the Hellinger distance h(P,Q)

is the norm of the vector with ith coordinate equal to the di�erence of the square roots of the
probabilities of seeing ωi according to P and Q, normalized by dividing by

√
2. That is, prove

h(P,Q) =
∥∥(√

P (ω1)/2−
√

Q(ω1)/2, . . . ,
√

P (ωn)/2−
√

Q(ωn)/2
)∥∥ . (1)

Then use the equality (1) to argue that Hellinger distance is in fact (as claimed in class) a metric
on probability distributions � i.e., it is symmetric, non-negative, non-zero unless P = Q, and
satis�es the triangle inequality � and that 0 ≤ h(P,Q) ≤ 1.

5 (20 p) It is known that total variation distance is lower-bounded by Hellinger distance by
V (P,Q) ≤ h(P,Q)

√
2− h2(P,Q) for any P and Q. In [BJKS04], this was combined with

the inequality V (P,Q) ≥ 1 − 2δ (for particular P and Q) to yield the desired lower bound

h(P,Q) ≥
√

1− 2
√

δ. When doing the calculations on a late-night �ight home from a week of
hard work in Rome, the main lecturer for some reason instead got the (slightly better) bound

h(P,Q) ≥
√

1−
√

2δ. Is this correct? Derive the best bound you can to answer this question!

6 (30 p) As Troy mentioned in his guest lectures, the (non-generalized) discrepancy method (cov-
ered in lecture 3) does not work very well for set disjointness. Show that although we know that
R(DISJn) = Θ(n), using discrepancy we can never get a better lower bound than O(log n).

7 (40 p) Prove or disprove each of the claims below, where X, Y, Z are always assumed to be
arbitrary random variables over �nite domains and x, y, z arbitrary outcomes of these random
variables. For full credit, you should provide for each subproblem (a) a formal proof of the claim
if it is true, or if the claim is false a concrete counter-example with a proof that this is indeed
a counter-example; (b) an intuitive, brief explanation why the claim is true or false. For partial
credit, you can provide either the formal proof or the intuitive explanation, where a compelling
informal argument will give higher scores than formal symbol manipulation.

For instance, suppose that the claim is �the entropy H(X) is maximized for random vari-
ables X that are uniformly distributed over their domain.� Then this claim is true, and a formal
proof could go via Kullback-Leibler divergence as we did in class. The informal explanation could
be that �H(X) measures the `uncertainty' of X, and for a �xed domain size this uncertainty is
maximized when X is equally likely to be any element in the domain.�

7a H(X | Y ) = H(Y | X).
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7b I(X;Y | Z) = I(Y ;X | Z).

7c I(X;Y ) ≤ H(X).

7d I(X;Y ) ≤ I(X;Y | Z).

7e H(X | Y = y) ≤ H(X).

8 (30 p) When we did the proof of the linear randomized communication complexity of set disjoint-
ness, we wanted to lower-bound the mutual information I(X, Y ; Π(X, Y )) of the inputs (X, Y )
and the protocol Π run on these inputs with respect to some well-chosen probability distribu-
tion µ. However, we instead obtained a bound on I(X, Y ; Π(X, Y ) | D) for a distribution ζ
on ((X, Y ), D) such that (X, Y ) was a product distribution conditioned on D and the marginal
distribution on (X, Y ) agreed with µ. We then proved that the inequality

I(X, Y ; Π(X, Y )) ≥ I(X, Y ; Π(X, Y ) | D) (2)

holds in this setting.
A natural question is how much slack there is in (2), or, expressed di�erently, how much

we lose when going from the left-hand side to the right-hand side of the inequality. In order to
prove a strong lower bound, clearly we do not want this loss to be too large. Prove that happily,
the di�erence between the left- and right-hand sides in (2) can never be more than the entropy
H(D) of the random variable on which we are conditioning.

9 (40 p) Use the discrepancy method (as described in lecture 3) to prove that as n goes to in�nity,
99.9% of all functions f : {0, 1}n × {0, 1}n 7→ {0, 1} are super-hard in the sense that they have
two-party randomized communication complexity R(f) = Θ(n).

10 (40 p) Let STRICT-MAJ-XOR be the function that takes two n-bit strings x and y and evaluates
to true if a strict majority of the bitwise exclusive ors evaluate to true. Formally,

STRICT-MAJ-XOR(x, y) =

{
1 if |{i ∈ [n] : xi ⊕ yi = 1}| > n/2,
0 otherwise.

(3)

Try to �gure out whether STRICT-MAJ-XOR is easy or hard in the two-party randomized public-
coin communication model, and then prove the best upper bound you can (if you think the
function is easy) or the best lower bound you can (if it is hard). For a full score, you should get
an optimal bound (up to constant factors hidden in the asymptotic notation), but you do not
have to prove that the bound you get is in fact optimal.
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