
Algebraic Gems in TCS: Problem Set 3

Due: Friday Jan 16, 2015, at 23:59. Submit your solutions as a PDF �le by e-mail to jakobn
at kth dot se with the subject line Problem set 3: 〈your full name〉. Name the PDF
�le PS3_〈YourFullName〉.pdf (with your name coded in ASCII without national characters),
and also state your name and e-mail address at the top of the �rst page. Solutions should
be written in LATEX or some other math-aware typesetting system. Please try to be precise
and to the point in your solutions and refrain from vague statements. Write so that a fellow

student of yours can read, understand, and verify your solutions. In addition to what is
stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solution individually and understand all
aspects of it fully. You should also acknowledge any collaboration. State at the beginning
of the problem set if you have been collaborating with someone and if so with whom. (Note
that collaboration is on a per problem set basis, so you should not discuss di�erent problems
on the same problem set with di�erent people.)
Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes should be fair game, though, unless you are speci�cally asked to show
something that we claimed without proof in class. It is hard to pin down 100% formal rules
on what all this means�when in doubt, ask the lecturer.
About the problems: Some of the problems are meant to be quite challenging and you are
not necessarily expected to solve all of them. A total score of around 100 points should be
enough for grade E, 150 points for grade D, 200 points for grade C, 250 points for grade B,
and 300 points for grade A on this problem set. Any corrections or clari�cations will be
given at piazza.com/kth.se/fall2014/dd2442/ and any revised versions will be posted on
the course webpage www.csc.kth.se/DD2442/semteo14/.

1 (20 p) For non-negative integer vectors i = (i1, . . . , in) and j = (j1, . . . , jn) and variable vec-
tors x = (x1, . . . , xn) and y = (y1, . . . , yn), let xi =

∏n
`=1 x

i`
` ,
(
i
j

)
=
∏n

`=1

(
i`
j`

)
, and x + y =

(x1 + y1, . . . , xn + yn). Show that the coe�cient of xjyi−j in (x+ y)i equals
(
i
j

)
.

Remark: Note that we want the solution not only to claim that this equality holds (this is already
in the problem statement) but to explain why or at least explicitly show that this is indeed true,
and to do so in a convincing manner.

2 (40 p) Let x = (x1, . . . , xn) and z = (z1, . . . , zn) be vectors of variables and i = (i1, . . . , in)
a vector of non-negative integers, and let wt(i) =

∑n
`=1 i`. De�ne the ith Hasse derivative of

p(x) ∈ F[x], denoted p(i)(x), to be the coe�cient of zi in the polynomial p(x + z) ∈ F[x, z].
Prove the following basic properties of Hasse derivatives:

2a For polynomials p(x), q(x) ∈ F[x] it holds that p(i)(x) + q(i)(x) = (p+ q)(i)(x).

Page 1 (of 4)

DD2442 Seminars on Theoretical Computer Science: Algebraic Gems in TCS � Autumn 2014, period 1�2
Jakob Nordström

https://piazza.com/kth.se/fall2014/dd2442/
http://www.csc.kth.se/DD2442/semteo14/


2b If p(x) ∈ F[x] is homogeneous of degree d, then either p(i)(x) is homogeneous of degree
d− wt(i) or p(i)(x) = 0.

2c Let Hp(x) denote the homogeneous part of p(x) ∈ F[x] of highest total degree. Then either(
Hp

)(i)
(x) =

(
Hp(i)

)
(x) or

(
Hp

)(i)
(x) = 0.

2d For p(x) ∈ F[x] it holds that
(
p(i)
)(j)

(x) =
(
i+j
i

)
p(i+j)(x).

3 (30 p) Looking back at our lectures on Kakeya sets in �nite �elds, we spent quite some time on
de�ning the Hasse derivative and exploring its properties, but once we got started on the proof
of the (almost) optimal Kakeya set size bound it seems we somehow never really used that we
had Hasse derivatives instead of standard derivatives (except that it made our lives signi�cantly
more complicated). This raises the obvious question of whether we actually needed to go through
all the pain of Hasse derivatives in the �rst place. Clearly, there must be some reason they are
there in [DKSS13], but this paper also contains a number of other results on Kakeya-ish sets for
curves and statistical Kakeya sets and what have you, and so maybe that was where the Hasse
derivative was really needed.

So. . . The moment of truth: Did we ever actually need the Hasse derivatives for the proofs
to go through? Or would the standard derivative have worked equally well for the limited sets
of results in the beginning of [DKSS13] that we covered in class? Answer these questions, and
back up your answer with a formal argument.

4 (40 p) For a function f : Fn
2 → F2 and vectors y1, . . . ,y` ∈ Fn

2 , let

Tf (y1, . . . ,y`) =
∑
∅6=I⊆[`]

f
(∑

i∈Iyi

)
. (1)

Prove that f is a degree-d polynomial with constant term 0 if and only if for all y1, . . . ,yd+1 ∈ Fn
2

it holds that Tf (y1, . . . ,yd+1) = 0.

5 (20 p) Let f : Fn
2 → F2 be a function and y ∈ Fn

2 a �xed vector. For uniformly and independently
sampled random vectors y1,y2, . . . ,yd+1 ∈ Fn

2 , de�ne

Ty
f (y2, . . . ,yd+1) = Tf (y,y2, . . . ,yd+1) + f(y) , (2)

with Tf (y,y2, . . . ,yd+ 1) given by (1);

g(y) =

{
1 if Pry2,...,yd+1

[
Ty
f (y2, . . . ,yd+1) = 1

]
≥ 1/2,

0 otherwise,
(3)

and

η = Pr
y1,y2,...,yd+1

[
Tf (y1,y2, . . . ,yd+1) 6= 0

]
, (4)

where we recall that η in (4) is the probability of detecting that f is not a degree-d polynomial
and that g in (3) is the �majority-vote� function trying to correct f to pass the polynomiality
test. Show that the distance between f and g is δ(f, g) ≤ 2η.
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6 (40 p) In Lectures 18�19 we proved the [AKKLR05] result for testing of degree-d polynomials
with constant term 0. Then, when starting to discuss the paper [BKSSZ09] in Lecture 20, we
happily claimed that in fact the same analysis would sort of work for any degree-d polynomials
regardless of what the constant term is. Your task is now to verify this claim.

To this end, go over our exposition of the result in [AKKLR05] carefully, and for every
de�nition, lemma, theorem, or similar explain if and how the statement needs to be modi�ed,
what if any modi�cations are needed in the proofs, and how the parameters of the low-degree
tester are a�ected as a result of this.
Remark: You do not need to provide a fully written out proof of [AKKLR05] for general degree-d
polynomials, but you should provide enough details so that a fellow students of yours could in
principle produce such a detailed write-up based on the exposition we did in class and your
description of the required modi�cations. In particular, if a lemma goes through without any
modi�cation whatsoever, then just stating so is �ne, provided that a short explanation is also
given why no change is needed. Analogously, if some proof needs to be adjusted in some way,
then a brief explanation of how the adjustment should be made is su�cient�there is no need to
repeat an entire proof.

7 (30 p) Another discrepancy between [AKKLR05] and [BKSSZ09] regarding the description of
the test was whether it was guaranteed to pick a subspace of maximal dimension or not. Again,
we handwaved that this did not really make much of di�erence. Formally, let f : Fn

2 → F2 be a
function and consider the following two tests:

Test Td,`: Pick uniformly and independently at random a full-rank matrix M ∈ Fn×`
2 and a

vector b ∈ Fn
2 , let A =

{
Mx + b

∣∣x ∈ F`
2

}
, and accept f if and only if f�A is a degree-d

polynomial.

Test Td,≤`: Same as above, except M ∈ Fn×`
2 is picked uniformly and independently at random

among all matrices regardless of rank.

Prove that if n ≥ d+ 1, then

Pr
[
Td,d+1 rejects f

]
≥ Pr

[
Td,≤d+1 rejects f

]
≥ 1

4
Pr
[
Td,d+1 rejects f

]
.

8 (30 p) Recall that a hyperplane in Fn
2 is a set of points A = {x ∈ Fn

2 | Lc(x) = b} for some
b ∈ F2 and some Lc(x) = 〈c,x〉 =

∑n
i=1 cixi for c ∈ F2. We say that the hyperplanes A1, . . . , A`

are linearly independent if the corresponding linear parts Lc1 , . . . , Lc` are linearly independent.
Prove the following basic properties of hyperplanes:

8a There are exactly 2n+1 − 2 distinct hyperplanes in Fn
2 .

8b Among any 2`−1 distinct hyperplanes there are at least ` linearly independent hyperplanes.

8c For any linearly independent hyperplanes A1, . . . , A` there is an a�ne, invertible transform
that sends Ai to the hyperplane {y | yi = 0} for i = 1, . . . , n (i.e., an invertible matrix
M ∈ Fn×n

2 and a b ∈ Fn
2 such that x is sent to y =Mx+ b).
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9 (150 p) In our very �nal lecture, we omitted proofs for a number of important claims in the
exposition of [BKSSZ09]. Your task in this problem is to �ll in the missing details to establish
these claims.

9a Prove for the test Td,` in Problem 7 that if k ≥ `, then Pr
[
Td,k rejects f

]
≥ Pr

[
Td,` rejects f

]
.

9b Pick uniformly and independently at random a full-rank matrix M ∈ Fn×`
2 and a vector

b ∈ Fn
2 , and denote ax = Mx + b for x ∈ F`

2. Prove that for any �xed x,y ∈ F`
2,

x 6= y, it holds that ax is uniformly distributed over Fn
2 and ay is uniformly distributed

over Fn
2 \ {ax}.

9c Let p(x) ∈ F2[x] be a polynomial and let y = Mx + b be an invertible a�ne transform
on Fn

2 . Prove that the polynomial q(x) ∈ F2[x] de�ned by q(x) = p(Mx + b) has exactly
the same total degree as p(x). When and why is this important in the proofs in [BKSSZ09]?

9d Recall that a k-�at is an a�ne subspace of Fn
2 of dimension k. Consider the following two

experiments:

1. Pick a uniformly random k-�at B ⊆ Fn
2 .

2. Pick a uniformly random hyperplane C ′ ⊆ Fn
2 and then a uniformly random k-�at

C ⊆ C ′.

Show that the k-�ats B and C have exactly the same distribution.

9e Show that any function f : Fn
2 → F2 has a unique representation as a multilinear polynomial

in F2[x] (i.e., , a polynomials with all individual variable degrees being 0 or 1).

9f Recall that two hyperplanes A and A′ in Fn
2 are complementary if A∪A′ = Fn

2 . Prove that
if A1, . . . , A` are linearly independent hyperplanes for ` > d and A is a hyperplane that is
not complementary to any Ai, then it holds that∣∣A ∩⋃`

j=1Ai

∣∣
|A|

> 1− 2−d .

Actually, looking more closely at this part of the proof in [BKSSZ09], it seems we do not

have the guarantee that A is not complementary to any Ai. What happens to the above
claim in that case? Is it still true that Sublemma 7 in our notes (Claim 15 in [BKSSZ09])
holds? Or if it does not, is there some way to �x the argument? Or do we have a guarantee
that A is not complementary to any Ai after all?

Remark: Solving this subproblem completely yields about a third of the total amount of
points on this problem.

9g For a �xed hyperplane Ai ⊆ Fn
2 and a uniformly random z ∈ Fn

2 , de�ne the random variable

Yi = Yi(z) =

{
1 if z ∈ Ai,

0 otherwise.

Prove that if Ai 6= Aj are not complementary hyperplanes, then Yi and Yj are independent.
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