
Chapter 4

Proof Complexity and Resolution

In this chapter, we give a very brief overview of some of the central concepts in
proof complexity. We then proceed to define the resolution proof system and state
the results mentioned in Chapter 2, as well as some other results relevant to this
thesis, in a more formal setting. As already noted, we refer to, for instance, the
books [12, 28, 30] or the survey papers [15, 76, 83] for more details.

4.1 A Proof Complexity Primer

We assume the existence of an infinite set Vars of boolean (or propositional logic)
variables ranging over {0, 1}, where we identify 0 with FALSE and 1 with TRUE ,
respectively. We use the traditional set of logical connectives: negation ¬, conjunc-
tion ∧, disjunction ∨, implication → and bi-implication (or equivalence) ↔.

The set prop of propositional logic formulas is the smallest set X such that

• x ∈ X for all propositional logic variables x ∈ Vars,

• if F,G ∈ X then
(
F ∧G

)
,
(
F ∨G

)
,
(
F → G

)
,
(
F ↔ G

)
∈ X,

• if F ∈ X then
(
¬F
)
∈ X.

We write Vars(F ) to denote the set of variables of a formula F , i.e., Vars(x) = {x},
Vars(¬F ) = Vars(F ), Vars(F ∧G) = Vars(F ) ∪ Vars(G), and analogously for the
other connectives.

Let α denote a truth value assignment, i.e., a function α : Vars 7→ {0, 1}.
Then α is extended from variables to formulas in the canonical way by defining
that α(¬F ) = 1 if α(F ) = 0, α(F ∧G) = 1 if α(F ) = α(G) = 1, α(F ∨G) = 1
unless α(F ) = α(G) = 0, α(F → G) = 1 unless α(F ) = 1 and α(G) = 0, and
α(F ↔ G) = 1 if α(F ) = α(G). We say that F is

• satisfiable if there is an assignment α with α(F ) = 1,

• valid or tautological if all assignments satisfy F ,
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• falsifiable if there is an assignment α with α(F ) = 0,

• unsatisfiable or contradictory if all assignments falsify F .

If an assignment α satisfies a formula F , α is called a model of F . If α falsifies F ,
α is called a counter-model. The set of all tautological propositional logic formulas
(or tautologies) F is denoted tautology. For more details, see [35] or any other
standard textbook on logic.

The definition below from [12] is an adaption of the original definition in [33].

Definition 4.1 (Proof system). A proof system for a language L (or set L,
depending on which terminology one prefers) is a polynomial-time algorithm P
such that

1. for all x ∈ L there is a string π (a proof ) such that P (x, π) = 1,

2. for all x 6∈ L and for all strings π it holds that P (x, π) = 0.

Note that P does not have to be polynomial-time in x only. If the proof π is
large, P can use time polynomial in the size of the proof while checking it.

Let us define the size S (x) of a string x to be the number of symbols in x. Then
the complexity of a proof system P for a language L, which we denote cplx (P ), is
the smallest bounding function g : N 7→ N such that every x ∈ L has a proof of size
at most g

(
S (x)

)
, or in more formal notation

x ∈ L ⇔ ∃π S (π) ≤ g
(
S (x)

)
∧ P

(
x, π

)
= 1 . (4.1)

If a proof system is of polynomial complexity, it is said to be polynomially bounded
or p-bounded. Thus, NP is exactly the set of languages with polynomially bounded
proof systems.

In this thesis, we are interested in proof systems for the set of all tautologies in
propositional logic.

Definition 4.2 (Propositional proof system). A propositional proof system P
is a proof system for tautology.

That is, a propositional proof system is a polynomial-time computable binary
predicate P satisfying the following property: for all propositional logic formulas F
it holds that F ∈ tautology if and only if there exists a proof π of F such that
P
(
F, π

)
is true.

A quite common variation of this theme, a variation that we will focus on in
the rest of this thesis, is to prove instead that formulas in conjunctive normal form
(CNF formulas) are unsatisfiable. The reason that this is essentially the same
problem is that it is possible to convert any propositional logic formula F to a CNF
formula in such a way that it has only linearly larger size and is unsatisfiable if and
only if the original formula is a tautology. One example of such a conversion is a
transformation first used by Tseitin [81]. The idea in Tseitin’s transformation is
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G
.= H1 ∧H2 : Tr

(
G
)

=
(
¬xG ∨ xH1

)
∧
(
¬xG ∨ xH2

)
∧
(
xG ∨ ¬xH1 ∨ ¬xH2

)
G

.= H1 ∨H2 : Tr
(
G
)

=
(
¬xG ∨ xH1 ∨ xH2

)
∧
(
xG ∨ ¬xH1

)
∧
(
xG ∨ ¬xH2

)
G

.= H1 → H2 : Tr
(
G
)

=
(
¬xG ∨ ¬xH1 ∨ xH2

)
∧
(
xG ∨ xH1

)
∧
(
xG ∨ ¬xH2

)
G

.= H1 ↔ H2 : Tr
(
G
)

=
(
¬xG ∨ ¬xH1 ∨ xH2

)
∧
(
¬xG ∨ xH1 ∨ ¬xH2

)
∧
(
xG ∨ ¬xH1 ∨ ¬xH2

)
∧
(
xG ∨ xH1 ∨ xH2

)
Figure 4.1: Tseitin’s transformation to CNF formulas.

to introduce a new variable xG for each subformula G
.= H1 ◦H2 in F , where we

let ◦ denote one of the connectives ∧, ∨, →, or ↔, and use .= to denote syntactic
equality. The formula F is then translated to conjunctive normal form by adding
a set of clauses Tr

(
G
)

for each subformula G which enforces that the the truth
value of xG is computed correctly given the truth values of xH1 and xH2 . These
clauses Tr

(
G
)

are presented in Figure 4.1. Finally, a unit clause ¬xF is added. It
is easy to verify that the resulting CNF formula is unsatisfiable if and only if F is a
tautology. In this way, any sound and complete system which produces refutations
of formulas in conjunctive normal form can be considered as a general propositional
proof system.

We have already argued that proving tautologies (or equivalently, as we have
just seen, refuting unsatisfiable CNF formulas) is an important applied problem,
but one other reason why proof complexity is interesting from a theoretical point
of view is the following theorem.

Theorem 4.3 ([33]). NP = co-NP if and only if there exists a polynomially
bounded propositional proof system.
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Proof. (⇒) Obviously, tautology ∈ co-NP since F is not a tautology if and only if
¬F ∈ satisfiability. If NP = co-NP, then tautology ∈ NP has a polynomially
bounded proof system by definition.

(⇐) Conversely, assume that there exists a p-bounded propositional proof sys-
tem. Then tautology ∈ NP, and since tautology is complete for co-NP it
follows that NP = co-NP.

Since P is closed under complement, we have the following immediate corollary.

Corollary 4.4. If all propositional proof systems have superpolynomial complexity,
then P 6= NP.

The conventional wisdom is that it should hold that NP 6= co-NP, but Corol-
lary 4.4 explains why a proof of this still appears to be light years away. One line
of research in proof complexity is to try to approach this distant goal by studying
successively stronger propositional proof systems and relating their strengths. In
this context, polynomial simulations, or p-simulations, play an important role.

Definition 4.5 (p-simulation). A propositional proof system P1 polynomially
simulates, or p-simulates, another propositional proof system P2 if there exists a
polynomial-time computable function f such that for all F ∈ tautology it holds
that P2

(
F, π

)
= 1 if and only if P1

(
F, f

(
π
))

= 1.

If the complexity of two proof systems are within polynomial factors, we consider
them to be “equally strong” for theoretical purposes.

Definition 4.6 (p-equivalence). Two propositional proof systems P1 and P2 are
polynomially equivalent, or p-equivalent, if each proof system p-simulates the other.

Polynomial simulations define a partial order relation on proof systems. A
natural question is whether there is a maximal element with respect to this ordering
or not. This is not known, and there is little circumstantial evidence either way.
Formally, let us say that a propositional proof system is p-optimal if it p-simulates
every other propositional proof system. Then we have the following result.

Theorem 4.7 ([52]). If EXP = NEXP, there is a p-optimal propositional proof
system.

This does not tell us too much, though, since this complexity class equality is
considered implausible.

The definitions so far say nothing about how hard it might be to actually find
proofs in the proof system P . Let us say that a proof search algorithm AP for P is a
deterministic algorithm AP that takes as input a formula F and generates a proof π
of F in the format specified by the proof system P (i.e., such that P

(
F, π

)
= 1) if

F is valid and reports that F is falsifiable otherwise. Then the following definition
from [12] captures a property that we would like our propositional proof system to
have.
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Definition 4.8 (Automatizability). Given a propositional proof system P and
a function f : N× N 7→ N, we say that P is f(n, S)-automatizable if there exists
a proof search algorithm AP such that if F ∈ tautology, then AP on input F
outputs a P -proof of F in time at most f(n, S), where n is the size of F and S is
the size of a smallest P-proof of F .

A proof system P is called automatizable if it is f(n, S)-automatizable for some
f(n, S) = poly(n) · poly(S). The proof system P is quasi-automatizable if it is
f(n, S)-automatizable for f(n, S) = nc1 · exp

(
logc2 S

)
for some constants c1, c2.

Note that automatizability seems to be the right definition because given a proof
system P , this is in a sense the best we can hope for. If there are no small proofs
of F in P to be found, then no proof search algorithm AP in P can be expected to
find proofs quickly. However, given a bound on the best any proof search algorithm
for P can do, we want an algorithm AP that performs well with respect to this
bound.

Let us conclude this very brief introduction to proof complexity by giving exam-
ples of concrete propositional proof systems. No introduction to proof complexity
can be complete without at least mentioning what a Frege system is. The next two
definitions are (slightly adapted) from [28].

Definition 4.9 (Frege system). Let F, F1, . . . , Fk be propositional logic formulas
over the variables x1, . . . , xn. A Frege rule is a pair({

F1(x1, . . . , xn), . . . , Fk(x1, . . . , xn)
}
, F (x1, . . . , xn)

)
such that the implication F1(x1, . . . , xn) ∧ . . . ∧ Fk(x1, . . . , xn) → F (x1, . . . , xn)
is a tautology. Usually the rule is written as F1,...,Fk

F . A Frege rule with zero
assumptions is called an axiom schema.

A Frege rule is applied by substituting arbitrary formulas for the variables
x1, . . . , xn. A Frege proof of a formula G is a sequence of formulas such that
each formula follows from previous ones by an application of a Frege rule from a
given set of rules and the last formula is G.

A Frege system F is determined by a finite complete set of connectives B and
a finite set of Frege rules such that F is implicationally complete for the set of
formulas over the basis B.

If Definition 4.9 seems very relaxed, it is because the details do not matter very
much.

Theorem 4.10 ([33]). Any two Frege systems p-simulate each other.

Sadly, there are currently no strong lower bounds known for Frege systems
(but see [27] for a survey of what is known). However, by restricting the model,
somewhat similarly to what is done in circuit complexity, we get subsystems for
which it is known how to prove superpolynomial lower bounds.
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Definition 4.11 (Bounded-depth Frege system). Consider formulas in basis{
∧,∨,¬

}
, The depth of a formula is the maximum number of alterations of connec-

tives in it. A depth-d Frege proof is a Frege proof where all formulas in the proof
sequence have depth at most d.

Theorem 4.12 ([51, 69]). The pigeonhole principle formulas (encoding the state-
ment that if n + 1 pigeons are placed in n pigeonholes, then at least one pigeonhole
must contain more than one pigeon) require bounded-depth Frege proofs of size grow-
ing exponentially in n.

Informally speaking, there seems to be an unfortunate trade-off for proof systems
in that if a proof system is sufficiently powerful, then it is not automatizable.
For instance, bounded-depth Frege systems are not automatizable under plausible
cryptographic assumptions. More formally, we call n ∈ N a Blum integer if n = pq
for primes p ≡ q ≡ 3 (mod 4). Then the following theorem is known.

Corollary 4.13 ([23]). If factoring Blum integers is hard, then any proof system
that can p-simulate bounded-depth Frege is not automatizable.

The resolution proof systems, that we define next, can be viewed as a very
limited form of a bounded-depth Frege system, namely depth-0 Frege. Even this
proof system is likely not to be automatizable [6], but as was mentioned in Chapter 2
there are proof search algorithms for resolution that seem to work very well in
practice.

4.2 Definition of the Resolution Proof System

A literal is either a propositional logic variable x or its negation, which we will from
now on denote x. Sometimes, though, it will be convenient to write x1 for x and
x0 for x. We define x = x. Two literals a and b are strictly distinct if a 6= b and
a 6= b, i.e., if they refer to distinct variables.

A clause C = a1 ∨ · · · ∨ak is a set of literals. Throughout this thesis, all clauses
C are assumed to be nontrivial in the sense that all literals in C are pairwise strictly
distinct (otherwise C is trivially true). We say that C is a subclause of D if C ⊆ D.
A clause containing at most k literals is called a k-clause.

A CNF formula F = C1 ∧ · · · ∧ Cm is a set of clauses. A k-CNF formula is a
CNF formula consisting of k-clauses. We define the size S (F ) of the formula F to
be the total number of literals in F counted with repetitions. More often, we will
be interested in the number of clauses |F | of F .

In this thesis, when nothing else is stated it is assumed that A,B,C, D denote
clauses, C, D sets of clauses, x, y propositional variables, a, b, c literals, α, β truth
value assignments and ν a truth value 0 or 1. We write

αx=ν(y) =

{
α(y) if y 6= x,
ν if y = x,

(4.2)
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F = (x ∨ z) ∧ (z ∨ y) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)
∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(a) CNF formula F .

1. x ∨ z Axiom 9. x ∨ y Res(1, 2)
2. z ∨ y Axiom 10. x ∨ y Res(3, 4)
3. x ∨ y ∨ u Axiom 11. x ∨ u Res(5, 6)
4. y ∨ u Axiom 12. x ∨ u Res(7, 8)
5. u ∨ v Axiom 13. x Res(9, 10)
6. x ∨ v Axiom 14. x Res(11, 12)
7. u ∨ w Axiom 15. 0 Res(13, 14)
8. x ∨ u ∨ w Axiom

(b) Resolution refutation of F .

Figure 4.2: Example resolution refutation.

to denote the truth value assignment that agrees with α everywhere except possibly
at x, to which it assigns the value ν. We let Vars(C) denote the set of variables and
Lit(C) the set of literals in a clause C.1 This notation is extended to sets of clauses
by taking unions. Also, we employ the standard notation [n] = {1, 2, . . . , n}.

A resolution derivation π : F `A of a clause A from a CNF formula F is a
sequence of clauses π = {D1, . . . , Dτ} such that Dτ = A and each line Di, i ∈ [τ ],
either is one of the clauses in F (axioms) or is derived from clauses Dj , Dk in π
with j, k < i by the resolution rule

B ∨ x C ∨ x

B ∨ C
. (4.3)

We refer to (4.3) as resolution on the variable x and to B ∨ C as the resolvent of
B ∨x and C ∨x on x. A resolution refutation π of a CNF formula F is a resolution
derivation of the empty clause 0, i.e., the clause with no literals, from F . See
Figure 4.2 for an example resolution refutation. Perhaps somewhat confusingly,
π is sometimes also referred to as a resolution proof of F in the literature, since
we can view F as being the encoding of the negation of a tautology as explained in
Section 4.1. In this thesis, we will try to stick to talking about “refutations of F ,”
but the terms “resolution refutation” and “resolution proof” in general will be used
interchangeably.

For a formula F and a set of formulas G = {G1, . . . , Gn}, we say that G im-
plies F , denoted G � F , if every truth value assignment satisfying all formulas

1Although the notation Lit(C) is slightly redundant given the definition of a clause as a set
of literals, we include it for clarity.
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x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1
x

y u

z u v w

(a) Decision tree for F with internal vertices labelled by variables queried.

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0

x x

x ∨ y x ∨ y x ∨ u x ∨ u

(b) Corresponding resolution refutation of F .

Figure 4.3: Proof by example of implicational completeness of resolution.

G ∈ G must satisfy F as well. It is well known that resolution is sound and implica-
tionally complete. That is, if there is a resolution derivation π : F `A, then F � A,
and if F � A, then there is a resolution derivation π : F `A′ for some A′ ⊆ A. In
particular, F is unsatisfiable if and only if there is a resolution refutation of F .

We note that the soundness is not hard to argue—it follows from the fact that
the resolution rule (4.3) is sound. Completeness is not immediately obvious, but
let us sketch a proof. Given any unsatisfiable CNF formula F , we can build a
decision tree for F , where we query some variable x in each vertex and branch
left or right depending on the value assigned to x. Then the paths from the root
downwards in the tree correspond to partial truth value assignments, and as soon
as an assignment falsifies a clause, we add a leaf labelled by that clause. It is
clear that we can build such a decision tree for any unsatisfiable formula F , and
if we then turn this decision tree upside down, we have (essentially) a resolution
refutation of F . Figure 4.3 gives a proof by example of this fact, and although we
omit the details it is not hard to make this into a formal proof.

With every resolution derivation π : F `A we can associate a DAG Gπ, with the
clauses in π labelling the vertices and with edges from the assumption clauses to the
resolvent for each application of the resolution rule (4.3). There might be several
different derivations of a clause C in π, but if so we can label each occurrence of C
with a time-stamp when it was derived and keep track of which copy of C is used
where. A resolution derivation π is tree-like if any clause in the derivation is used
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at most once as a premise in an application of the resolution rule, i.e., if Gπ is a
tree. (We may make different “time-stamped” vertex copies of the axiom clauses
in order to make Gπ into a tree). As we can see from Figure 4.3(b), our example
refutation in Figure 4.2 is tree-like.

Given this definition of the resolution proof system, we can define the length
L(π) of a resolution derivation π as the number of clauses in it, and the width W(π)
of a derivation is the size of a largest clause in it. For instance, the refutation in
Figure 4.2 has length 15 and width 3. However, in order to define space in a natural
way and to be able to reason about trade-offs between measures, it is convenient
to describe resolution is a slightly different way.

Following the exposition in [39], a resolution proof can be seen as a Turing
machine computation, with a special read-only input tape from which the axioms
can be downloaded and a working memory where all derivation steps are made.
Then the clause space of a resolution proof is the maximum number of clauses that
need to be kept in memory simultaneously during a verification of the proof. The
variable space is the maximum total space needed, where also the width of the
clauses is taken into account. The formal definitions follow.

Definition 4.14 (Resolution ([4])). A clause configuration C is a set of clauses.
A sequence of clause configurations {C0, . . . , Cτ} is a resolution derivation from a
CNF formula F if C0 = ∅ and for all t ∈ [τ ], Ct is obtained from Ct−1 by one2 of
the following rules:

Axiom Download Ct = Ct−1 ∪ {C} for some C ∈ F .

Erasure Ct = Ct−1 \ {C} for some C ∈ Ct−1.

Inference Ct = Ct−1∪{D} for some D inferred by resolution from C1, C2 ∈ Ct−1.

A resolution derivation π : F `A of a clause A from a formula F is a derivation
{C0, . . . , Cτ} such that Cτ = {A}. A resolution refutation of F is a derivation of
the empty clause 0 from F .

Definition 4.15 (Length, width, space). The width W(C) of a clause C is
|C|, i.e., the number of literals in it. The width of a clause configuration C is
W(C) = maxC∈C{W(C)}. The clause space of a configuration C is Sp(C) = |C|,
i.e., the number of clauses in C, and the variable space is VarSp(C) =

∑
C∈C W(C).

Let π be a resolution derivation. Then:

• The length L(π) of π is the number of axiom download and inference steps
in π.

• The width of π is W(π) = maxC∈π{W(C)}.

2In some previous papers, resolution is defined so as to allow every derivation step to combine
one or zero applications of each of the three derivation rules. Therefore, some of the bounds stated
in this thesis for space as defined next are off by a constant as compared to the cited sources.
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• The clause space of π is Sp(π) = maxC∈π{Sp(C)}.

• The variable space of π is VarSp(π) = maxC∈π{VarSp(C)}.

We define the length of deriving a clause A from F as L(F ` A) = minπ:F `A{L(π)},
where the minimum is taken over all resolution derivations of A. The width
W(F ` A), clause space Sp(F ` A), and variable space VarSp(F ` A) of deriving
A from F are defined completely analogously. The length, width, clause space and
variable space of refuting F is L(F ` 0), W(F ` 0), Sp(F ` 0), and VarSp(F ` 0),
respectively, where as before 0 denotes the contradictory empty clause.

In this thesis, we will be almost exclusively interested in the clause space of
general resolution refutations. When we write simply “space” for brevity, we mean
clause space.

As an aside, we note that if one wanted to be really precise, the size and space
measures should probably measure the number of bits needed rather than the num-
ber of literals. However, counting literals makes matters substantially cleaner, and
the difference is at most a logarithmic factor. Therefore, counting literals seems to
be the established way of measuring formula size and variable space.

Using the “configuration-style” description of resolution in Definition 4.14, a
tree-like resolution derivation can be defined as a derivation where a clause has to
be erased as soon as it has been used in an inference step. Restricting the resolution
derivations to tree-like resolution, we can define the minimum length LT(F ` 0),
clause space SpT(F ` 0), and variable space VarSpT(F ` 0) of refuting F in tree-like
resolution in analogy with the measures in Definition 4.15. Note that the minimum
width measures in general and tree-like resolution coincide, so it makes no sense to
make a separate definition for WT(F ` 0).

For technical reasons, it is sometimes convenient to add a rule for weakening in
resolution, saying that we can always derive a weaker clause C ′ ⊇ C from C. It is
easy to show that any weakening steps can always be eliminated from a resolution
refutation without increasing the length, width or space.

Restrictions are another technical tool that we will use to to simplify some of
the proofs.

Definition 4.16 (Restriction). A partial assignment or restriction ρ is a partial
function ρ : X 7→ {0, 1}, where X is a set of Boolean variables. We identify ρ with
the set of literals {a1, . . . , am} set to true by ρ. The ρ-restriction of a clause C is
defined to be

C�ρ =

{
1 (i.e., the trivially true clause) if Lit

(
C
)
∩ ρ 6= ∅,

C \ {a | a ∈ ρ} otherwise.

This definition is extended to set of clauses by taking unions.
We write ρ(¬C) to denote the minimal restriction fixing C to false, i.e., ρ(¬C) =

{a | a ∈ C}.
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π =
1. x ∨ z Axiom in F
2. z ∨ y Axiom in F
3. x ∨ y ∨ u Axiom in F
4. y ∨ u Axiom in F
5. u ∨ v Axiom in F
6. x ∨ v Axiom in F
7. u ∨ w Axiom in F
8. x ∨ u ∨ w Axiom in F
9. x ∨ y Res(1, 2)

10. x ∨ y Res(3, 4)
11. x ∨ u Res(5, 6)
12. x ∨ u Res(7, 8)
13. x Res(9, 10)
14. x Res(11, 12)
15. 0 Res(13, 14)

(a) Resolution refutation π.

π�x =
1. 1
2. z ∨ y Axiom in F�x
3. 1
4. y ∨ u Axiom in F�x
5. u ∨ v Axiom in F�x
6. v Axiom in F�x
7. u ∨ w Axiom in F�x
8. u ∨ w Axiom in F�x
9. 1

10. 1
11. u Res(5, 6)
12. u Res(7, 8)
13. 1
14. 0 Res(11, 12)
15. 0

(b) Restriction π�x setting x to true.

Figure 4.4: Proof by example that restrictions preserve resolution refutations.

Proposition 4.17. If π is a resolution refutation of F and ρ is a restriction on
Vars(F ), then π�ρ can be transformed into a resolution refutation of F�ρ in at most
the same length, width and space as π.

See Figure 4.4 for an illustration of this using our running example resolution
refutation. In this case, the restriction results in a legal resolution refutation, but
in general we might need the weakening rule to show that π�ρ is a refutation of F�ρ.
The formal proof is an easy induction over the derivations steps in π.

4.3 A Review of Some Results

It is not hard to show that any unsatisfiable CNF formula F over n variables
is refutable in length 2n+1 − 1, using the decision tree construction sketched in
Figure 4.3. Also, the maximal refutation width is clearly at most the number of
variables n + 1. Esteban and Torán [39] proved that the clause space of refuting F
is upper-bounded by the formula size. More precisely, the minimal clause space is
at most the number of clauses, or the number of variables, plus a small constant,
or in formal notation Sp(F ` 0) ≤ min

{
|F |, |Vars(F )|

}
+ O(1). Again, this follows

by studying resolution refutations constructed as in Figure 4.3. The height of the
decision tree is at most the number of variables, and it can be shown that any
resolution refutation described by a binary tree of height at most h can be carried
out in clause space h + O(1).
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We will need the fact that there are polynomial-size families of k-CNF formu-
las that are very hard with respect to length, width and clause space, essentially
meeting the upper bounds just stated.

Theorem 4.18 ([4, 13, 18, 21, 29, 79, 82]). There are arbitrarily large unsatisfi-
able 3-CNF formulas Fn of size Θ(n) with Θ(n) clauses and Θ(n) variables for which
it holds that L(Fn ` 0) = exp(Θ(n)), W(Fn ` 0) = Θ(n) and Sp(Fn ` 0) = Θ(n).

Clearly, for such formulas Fn it must also hold that Ω(n) = VarSp(Fn ` 0) =
O
(
n2
)
. We note in passing that determining the exact variable space complexity

of a formula family as in Theorem 4.18, or even proving a lower bound ω(n) on
the variable space, was mentioned as an open problem in [4]. To the best of our
knowledge, this problem is still unsolved.

If a resolution refutation has constant width, it is easy to see that it can be car-
ried out in length polynomial in the number of variables (just count the maximum
possible number of distinct clauses). Conversely, if all refutations of a formula are
very wide, it seems reasonable that any refutation of this formula must be very long
as well. This intuition was made precise by Ben-Sasson and Wigderson [21]. We
state their theorem in the more explicit form of Segerlind [76].

Theorem 4.19 ([21]). The width of refuting an unsatisfiable CNF formula F is
bounded from above by

W(F ` 0) ≤ W(F ) + 1 + 3
√

n lnL(F ` 0) ,

where n is the number of variables in F .

Bonet and Galesi [25] showed that this bound on width in terms of length is
essentially optimal. For the special case of tree-like resolution, however, it is possible
get rid of the dependence of the number of variables and obtain a tighter bound.

Theorem 4.20 ([21]). The width of refuting an unsatisfiable CNF formula F in
tree-like resolution is bounded from above by W(F ` 0) ≤ W(F ) + log LT(F ` 0).

For reference, we collect the result in [25] together with some other bounds
showing that there are formulas that are easy with respect to length but moderately
hard with respect to width and clause space, and state them as a theorem.3

Theorem 4.21 ([4, 25, 78]). There are arbitrarily large unsatisfiable 3-CNF
formulas Fn of size Θ

(
n3
)

with Θ
(
n3
)

clauses and Θ
(
n2
)

variables such that
W(Fn ` 0) = Θ(n) and Sp(Fn ` 0) = Θ(n), but for which there are resolution
refutations πn : Fn ` 0 in length L(πn) = O

(
n3
)
, width W(πn) = O(n) and clause

space Sp(πn) = O(n).

3Note that [25], where an explicit resolution refutation upper-bounding the proof complexity
measures is presented, does not talk about clause space, but it is straightforward to verify that
the refutation there can be carried out in length O

`
n3

´
and clause space O(n).
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As was mentioned in Chapter 2, the fact that all known lower bounds on refuta-
tion clause space coincided with lower bounds on width lead to the conjecture that
the width measure is a lower bound for the clause space measure. This conjecture
was proven true by Atserias and Dalmau [10].

Theorem 4.22 ([10]). For any unsatisfiable CNF formula F , Sp(F ` 0)− 3 ≥
W(F ` 0)−W(F ).

In other words, the extra clause space exceeding the minimum 3 needed for any
resolution refutation is bounded from below by the extra width exceeding the width
of the formula.

An immediate corollary of Theorem 4.22 is that for polynomial-size k-CNF for-
mulas, constant clause space implies polynomial proof length. We are interested in
finding out what holds in the other direction, i.e., if upper bounds on length imply
upper bounds on space. For the special case of tree-like resolution, it is known that
there is an upper bound on clause space in terms of length exactly analogous to the
one on width in terms of length in Theorem 4.20.

Theorem 4.23 ([39]). The clause space of refuting an unsatisfiable CNF formula
F in tree-like resolution is bounded from above by SpT(F ` 0) ≤ dlog LT(F ` 0)e+2.

For general resolution, since clause space is lower-bounded by width according
to Theorem 4.22, the separation of width and length of [25] in Theorem 4.21 tells
us that k-CNF formulas refutable in polynomial length can still have “somewhat
spacious” minimum-space refutations. But exactly how spacious can they be? Does
space behave as width with respect to length also in general resolution, or can one
get stronger lower bounds on space for formulas refutable in polynomial length?

All polynomial lower bounds on clause space known prior to this thesis can be
explained as immediate consequences of Theorem 4.22 applied on lower bounds
on width. Clearly, any space lower bounds derived in this way cannot get us
beyond the “Ben-Sasson–Wigderson barrier” implied by Theorem 4.19 saying that
if the width of refuting F is ω

(√
|F | log|F |

)
, then the length of refuting F must be

superpolynomial in |F |. Also, since matching upper bounds on clause space have
been known for all of these formula families, they have not been candidates for
showing stronger separations of space and length. Thus, the best known separation
of clause space and length prior to this thesis was provided by the formulas in
Theorem 4.21 refutable in linear length L(Fn ` 0) = O(|Fn|) but requiring space
Sp(Fn ` 0) = Θ

(
3
√
|Fn|

)
, as implied by the same bound on width.

Let us also discuss upper bounds on what kind of separations are a priori possi-
ble. Given any resolution refutation π : F ` 0, we can write down its DAG represen-
tation Gπ (described on page 42) with L(π) vertices corresponding to the clauses,
and with all non-source vertices having fan-in 2. We can then transform π into
as space-efficient a refutation as possible by considering an optimal black pebbling
of Gπ (soon to be formally defined in Definition 5.1) as follows: when a pebble is
placed on a vertex we derive the corresponding clause, and when the pebble is re-
moved again we erase the clause from memory. This yields a refutation π′ in clause
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space Peb(Gπ) (incidentally, this is the original definition in [39] of the clause space
of a resolution refution π). Since it is known that any constant indegree DAG on
n vertices can be black-pebbled in cost O(n/ log n) (see Theorem 5.4), this shows
that Sp(F ` 0) = O

(
L(F ` 0)/ log L(F ` 0)

)
is an upper bound on space in terms

of length.
Now we can rephrase the question above about space and length in the follow-

ing way: Is there a Ben-Sasson–Wigderson kind of lower bound, say L(F ` 0) =
exp
(
Ω
(
Sp(F ` 0)2/|F |

))
, on length in terms of space? Or do there exist k-CNF for-

mulas F with short refutations but maximum possible refutation space Sp(F ` 0) =
Ω
(
L(F ` 0)/ log L(F ` 0)

)
in terms of length? Note that the refutation length

L(F ` 0) must indeed be short in this case—essentially linear, since any formula F
can be refuted in space O(|F |) as was noted above. Or is the relation between
refutation space and refutation length somewhere in between these extremes?

This is the main question addressed in this thesis. We show that clause space
and length can be strongly separated in the sense that there are formula families
with maximum possible refutation clause space in terms of length. The same result
also yields an almost optimal separation of clause space and width.

Theorem 4.24 (Corollary 2.6 restated). For all k ≥ 6 there is a family
{Fn}∞n=1 of k-CNF formulas of size Θ(n) that can be refuted in resolution in
length L(Fn ` 0) = O(n) and width W(Fn ` 0) = O(1) but require clause space
Sp(Fn ` 0) = Ω(n/ log n).
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