
DD2242 Seminars on TCS: Proof Complexity Jan 1, 2016

Lecture 1
Lecturer: Jakob Nordström Scribe: Name of scribe here

PLEASE READ THE TEXT BELOW CAREFULLY EVEN IF YOU ARE A SUPER-EXPERIENCED
LATEX HACKER! There are some notes here about style and notational conventions which we want all notes
to follow. Once you have read the text below, please erase it in your own version of the lecture notes.
Reviewer’s comment 1: Reviewers can use the command \reviewercomment to add meta-comments/-questions, which can easily
be toggled off by defining \DONOTINSERTCOMMENTS at the top of the main LATEX file.

1 Briefly about Scribing Lectures

Our goal is to produce readable lecture notes in not too formal but still correct English. The handwritten
lecture notes posted on the webpage should hopefully serve as a good starting point, but we want complete
and correct sentences. Do not throw away information in the lecture notes, but rather elaborate on it.
Also, if you have any questions which are answered in class or at Piazza, make sure to include any helpful
explanations, or examples, or whatever, it the scribe notes so that other course participants can also get
access to this information.

Note that you should expect to put a significant amount of work into scribing the lecture notes—they
are supposed to be the equivalent of a problem set. See the scribe notes already posted on the course
webpage to get a sense of the (high) standard expected.

Write the notes in the present tense. “In today’s lecture, we will show that. . . ” “We next present the
lemma that will be the key to this argument.” Et cetera. There is no “I” (lecturer) in the notes, only a “we.”

Make your own mark on the lecture notes! Please fill in the details missing in the proofs. Do not
just state a dry, formal definition, but if possible try to elaborate on what the definition means and why it
looks the way it does. If you heard some nice explanation during the lecture, please add it to help others
understand as well. If you heard some bad explanation, then come up with a better one and add it to the
notes! Make sure that the proofs make sense. Remember that, as we learned in the first lecture, a proof is
something with the help of which one can efficiently verify a statement. . . ;-) Thus, the proofs you write
should not just state that things are true, but explain why they are true. Adding a dose of humour to the
notes never hurts.

A remark on style: While we do not want to get too formal, we prefer writing “it is” instead of
“it’s” and “do not” instead of “don’t” and such like. Also, we DO NOT want to use ALL CAPS FOR
HIGHLIGHTING and also NOT bold text. Instead, highlight important concepts by adding emphasis
(\emph{emphasis}) with the standard LATEX commands.

For consistent formatting, please use the macros presented in Section 2 below. Start editing the LATEX
file below the line

%%%% BODY OF LECTURE NOTES GOES HERE --- DO EDIT BELOW %%%%

but please do not touch anything above that line. Start the lecture notes by the command

\lecture{<no>}{<date>}{<lecturer’s name>}{<your name>}

where the date is given in the format “Sep 13, 2016”. In addition to the lecture number and the date,
add the name of the lecturer (typically Jakob Nordström or Ilario Bonacina) and your name as a scribe.
Also, please update the XX in the file name ScribeNotesLecXX.tex to the (two-digit) number of the
lecture (lectures 1–9 have a leading 0).

In Section 2, you find some hopefully useful information how to typeset the lecture notes. This info is
also meant to help us standardize notation in between lectures so please try to stick to this notation. In
Section 3, there might be some information specific for “your” lecture.
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2 Section with Useful Info

2.1 Subsection with General Text Editing Info

You can label sections by using \label{sec:info} and \label{sec:general} and then refer to
Section 2 and Section 2.1 by using commands \refsec{sec:info} and \refsec{sec:general}
(these and other \refXXX commands for references to structures of type XXX are specific to the macro
packages used for these notes).

Theorem 2.1 (Optional name of theorem and/or reference). This is a theorem.

When you cite a reference for a result (theorem, lemma, et cetera), you should do it in the following
way, with just the reference, unless there is a specific reason to do otherwise.

Lemma 2.2 ([Coo71]). This is a lemma with an added reference to the paper which supposedly established
the lemma in question (coded here as \cite{Cook71ComplexityTheoremProving}).

For a definition with both a name and a reference, format like this.

Definition 2.3 (Propositional proof system [CR79]). Use emphasis to highlight new concepts that are
being defined. For instance, a propositional proof system is something that we completely fail to define
here, even though the heading kind of suggests that this was what this definition was supposed to be doing.

Proposition 2.4. This is a template proposition. A “lemma” is (usually) a purely auxiliary result that is
used to establish some other, more important result. A “theorem” is usually a major result, and might be
the main focus of of a lecture or might be something we are citing from some research article. The way
we use the term, a “proposition” is, loosely speaking, something in between—more independent than a
lemma, but not as important as a theorem (but different people use these terms slightly differently).

Proof. We write \begin{proof} when we want to start a proof, in this case of Proposition 2.4 (where
this reference was coded as \refpr{pr:template-proposition}).

Note the box at the end of the proof. Do not leave blank space between the last line of a proof and the
following \end{proof} line, or you will get a bad line break.

Just a “proof” is assumed to prove the latest theorem-like statement. If you are proving some previous
statement, specify which in the following way.

Proof of Lemma 2.2. This is a proof of some previously stated result, here Lemma 2.2. We coded this as
\begin{proof}[Proof of \reflem{lem:template-lemma}].

As already noted, a QED box is added at the end of each proof. If you do not get it where you want,
e.g., if the proof ends with a list, you can force placement of the box by issuing the command \qedhere
(but this is not needed here).

Observation 2.5. This is an observation.

Proof sketch. This is not a full proof, but a proof sketch.
We coded this as \begin{proof}[Proof sketch]

Example 2.6. This is a dummy example.

Just to summarize, you can write:

• \refth{th:template-theorem} to refer to Theorem 2.1.

• \reflem{lem:template-lemma} to refer to Lemma 2.2.

• \refpr{pr:template-proposition} to refer to Proposition 2.4.
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• \refobs{obs:template-observation} to refer to Observation 2.5.

• \refdef{def:template-def} to refer to Definition 2.3.

• \refex{ex:dummy} to refer to Example 2.6.

The list above was coded by writing \begin{itemize} to start the list, then \item before each
new item, and finally \end{itemize}. You can get a numbered list by writing enumerate instead
of itemize.

2.2 Subsection with General Math Editing Info

Many typesetting commands with parantheses are available in three versions: \command with small
parantheses, \Command with somewhat larger ones, and \COMMAND with very large parantheses (use
only in displayed math).

For instance:

• $\bigoh{n}$ yields O(n) and $\Bigoh{nˆk}$ yields O
(
nk
)

with slightly larger parantheses.

• $\bigomega{\log n}$ yields Ω(log n) and $\Bigomega{\frac{1}{n}}$ yields Ω
(
1
n

)
.

• $\bigtheta{n}$ becomes Θ(n) and $\Bigtheta{\frac{n}{\log n}}$ becoms Θ
(

n
logn

)
.

• $\abs{x}$ becomes |x| and $\Abs{xˆy}$ becomes
∣∣xy∣∣.

Other commands that work the same way (i.e., have versions with parantheses of adaptable sizes) are:

1. \set denoting a set: {1, 2, 3, . . .}.

2. \setdescr denoting a set described by some parameter (use \Setdescr for this example to
get a nicer look):

{
2i
∣∣i ∈ N+

}
.

3. \setsize denoting the size of a set: |V (G)| = n.

4. \maxofset and \minofset taking the maximum and minimum over a set as in, for instance,
min{Sp(π) | π : F `⊥}.

5. \maxofexpr and \minofexpr taking the maximum/minimum over an “expression” as in, for
instance, maxD∈π{W(D)}.

You can use \begin{equation*} to display mathematics without a getting a numbered equation
(and not $$), like this:

x2 − x = 0 .

Since the spacing before periods and commas in displayed math is a science in its own right, we have
macros \eqperiod and \eqcomma to get the spacing we like.

By default, always display mathematics with a number, though—even if you do not need to refer to
the equation, someone else who is reading the notes might need to do so. To display mathematics with a
number, use \begin{equation}:

x+ x− 1 = 0 (2.1)

You can use \refeq{eq:example-equation} to refer to this equation, which will give a reference
that looks like (2.1).
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2.3 Subsection with Proof Complexity Notation

Sometimes we want to specify in a subscript the proof system in question when discussing, e.g., proof
complexity measures. In such a case we write \resnot to denote general resolution R, \treeresnot
to denote tree-like resolution T , \cpnot to denote cutting planes CP, \pcnot to denote polynomial
calculus PC, et cetera (where the suffix not is a mnemonic for “notation”).

For size of refutations we write

• S (π) (\sizeofarg{\pi}).

• SPC(F `⊥) (\sizeref[\pcnot]{F}).

• SCP

(
PHPm

n ` ⊥
)

(\Sizeref[\cpnot]{\phpnot{m}{n}}) (note that the initial capital
letter yields slightly larger parentheses).

To denote the length of refuting F in resolution we code $\lengthref[\resnot]{F}$ which
looks like LR(F ` ⊥). The length of refuting a CNF formula F in tree-like resolution is coded as
$\lengthref[\treeresnot]{F}$ which looks like LT (F `⊥).

The width of refuting F in resolution is written $\widthref[\resnot]{F}$ and looks like
WR(F `⊥), the clause space is written $\clspaceref[\resnot]{F}$ and looks like SpR(F `⊥),
and the total space $\totspaceref[\resnot]{F}$ looks like TotSpR(F `⊥).

When the proof system under discussion is perfectly clear from context, however, we might skip the
optional argument in brackets and just write $\lengththref{F}$ for L(F `⊥) instead, for instance.

When measuring a concrete proof π, we use the macros $\lengthofarg{\pi}$, i.e., L(π),
$\sizeofarg{\pi}$, i.e., S (π), and $\widthofarg{\pi}$, i.e.,W(π), with the extra suffix arg
appended because of unfortunate naming collisions with standard LATEX packages, and $\clspaceof{\pi}$,
i.e., Sp(π), and $\totspaceof{\pi}$, i.e., TotSp(π).

2.4 Some Symbols

Here is a list of some symbols (please tell me afterwards if there was something you really missed here
and I will add it):

•
∑n

i=1 an coded as $\sum_{i=1}ˆ{n} a_{n}$

•
∏n
i=1 pi coded as $\prod_{i=1}ˆ{n} p_{i}$

• → ∞ coded as $\to \infty$

• � coded as $\impl$ and 2 coded as $\nimpl$

• Implication arrow is \limpl (→).

• Fatter arrows, which can be used in proofs, for instance, are coded as $\Leftarrow$ (⇐) and
$\Rightarrow$ (⇒).

• Negation with a hook ¬x is coded $\lnot x$. Negation of literals with overline x is coded as
$\olnot{x}$.

2.5 Inference Rules and Derivations

Please typeset any inference rules and derivations as follows below, using the LATEX tools by Sam Buss.
Just one resolution inference can be done like this:

C1 C2

C3
(2.2)
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A couple of resolution inferences “in parallel” can be coded like this:

C1 C2

C3
(2.3)

D1 D2

D3
(2.4)

E1 E2

E3
(2.5)

And finally, to code a derivation with more structure, do like this:

C1 C2

C3 C4

C5 C6

C7

...
Cn−2 Cn−1

Cn

(2.6)

3 Section with Info for Your Lecture

3.1 Notation (Mainly for Lectures 7-12)

3.1.1 Generic

\formf F : CNF formula to be refuted
\proofstd π: notation for proofs/refutations.
\refof{\proofstd}{\formf} π : F `⊥: refutation (in proof system under consideration)
\formf \impl \clc F � C: formula F implies clause C
\R, \Z, \Nplus R,Z,N+: reals, integers, and positive integers
\F F: generic field
\F_2 = \set{0,1} F2 = {0, 1}: Galois field with two elements
\set{a,b,c} {a, b, c}: a set with elements a, b, c
\setdescr{m}{\exists n \in \Nplus\, m=2n} {m | ∃n ∈ N+m = 2n}: set of all even
positive numbers (just to demonstrate macro)
Use \veca, \vecb, \vecu, \vecv et cetera to denote vectors (or sets of variables) a, b, u, v, et cetera.

3.1.2 d-DNF Resolution

\resk d-DNF resolution or, for short, \reskshortR(d): the proof system performing resolution/cut
over d-DNF formulas
\termsize d: the “d” or “k” in d-DNF resolution and in d-DNF formulas.
Just do \renewcommand{\termsize}{k} to get a k if it makes it easier to scribe the notes.
\dnfstd or \dnfphi ϕ: generic DNF formula
\dnfalt or \dnfpsi ψ: second generic DNF formula
\termt t: generic term in a DNF formula
\clc C and \cld D: generic clauses
\lita a and \litb b: generic literals
Just do \renewcommand{\lita}{\ell} to get an ` for literals if it makes it easier to scribe the
notes.
\xorl L: XOR clause. Please use the macro \xorl as we will redefine this notation later to avoid
collisions.
\vars{\formf} Vars(F ): set for variables of a formula.
\tsupp{\termt} supp(t): Support of term in the sense of [Ale11].
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\tsuppstar{\termt} supp∗(t): “Extended support” of term in the sense of [Ale11].
\covnum{\dnfstd} cov(ϕ): covering number of a DNF formula
\treet T : binary tree
\dnfheight{\dnfstd} h(ϕ): min height of a tree strongly representing the DNF formula ϕ
\tbranch{\treet}{b} br b(T ): b-branches in representing tree
Let us also use the notation br (T ) = br0(T ) ∪ br1(T )
treeheight{\treet} d(T ): height of a binary tree T
\restr ρ: restriction, i.e., partial assignment
\restr = \set{x \mapsto 1, y \mapsto 0} ρ = {x 7→ 1, y 7→ 0}: explicit representation
of restriction
\restrict{\dnfstd}{\restr} ϕ�ρ: DNF formula restricted by a partial assignment
\domainof{\restr} dom(ρ): domain of a partial assignment
\negclause{\restr} C¬ρ: unique maximal clause falsified by restriction ρ

3.1.3 Probability Theory

\distrd D: probability distribution (in our d-DNF resolution lectures this distribution is on partial
assignments)
\prob{\eventa} Pr[A]: probability of the event A
\prob[\sample{\restr}{\distrd}]{\eventa} Prρ∼D[A]: probability of the event A over
restrictions ρ sampled from distribution D

3.1.4 Graphs and PHP Formulas

\graphg G: notation for generic graph
\gleft L: left bipartition in a bipartite graph G (“pigeons” in Lecture 9)
\gright R: right bipartition in a bipartite graph G (“holes”)
\edgese E: edge set of a graph
\varnumberofpigeons ∆n: the default number of pigeons in this lecture
\varratiopigeonholes ∆: ratio between the number of pigeons and holes
\nholes n: number of holes
\phpnot{\npigeons}{\nholes} PHPm

n : pigeonhole principle formula
\varphp{i}{j} xi,j : the Boolean variables used to express the pigeonhole principle
\pigeonclause{i} P i: clause in PHPm

n saying that pigeon i flies somewhere
\holeclause{i}{i’}{j} H i,i′

j : clause in PHPm
n saying that i, i′ do not both fly to hole j

\graphphpnot[\graphg] PHP(G): pigeonhole principle on a graph G (note the square brackets)
\gexpsize r: the size of the sets up to which we have expansion
\gexpfactor c: expansion factor for a bipartite boundary expander
\boundaryexpander{\gexpsize}{\gexpfactor} (r, c)-boundary expander: boundary expander
with default parameters
\Neighbours{\gleft’} N

(
L′
)
: neighbours on the right of left vertex xet L′ (note that writing

\Neighbours instead of \neighbours gives slightly larger parentheses, so that the content inside
fits nicely).
\Uniqueneighbours{\gleft’} ∂

(
L′
)
: unique neighbours on the right of left vertex xet L′ (again

capital “U” makes parentheses slightly larger)

3.2 References (Mainly for Lectures 7-12)

You should probably only need a subset of these.
Definition of d-DNF resolution [Kra01]
Segerlind-Buss-Impagliazzo paper on which Lectures 8-10 are mainly based: [SBI04]
Alekhnovich 3-CNF lower bound (Lectures 11-12) [Ale11]
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[BW01]: reference for Theorem 2 in the handwritten notes for Lecture 9.
[Raz15] Razborov’s improvement of the lower bound for the pigeonhole principle
Below follow some general references for results on PHP formulas and random k-CNF formulas that

were mentioned in Lecture 7 and sometimes also in later lectures.
Haken’s PHP paper [Hak85]
Random k-CNFs hard for resolution [CS88]
Maciel-Pitassi-Woods quasipolynomial size proofs [MPW02]
Ran Raz on WPHP [Raz04a]
Alexander Razborov follow-ups on WPHP [Raz03, Raz04b]
PHP upper bound for Frege [Bus87]
PHP lower bound for bounded-depth Frege [KPW95] and [PBI93] independently (but they had a joint

conference version [BIK+92]).
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