
DD2442 Proof Complexity: Problem Set 1

Due: Wednesday September 28, 2016, at 23:59 AoE. Submit your solutions as a PDF �le by
e-mail to jakobn at kth dot se with the subject line Problem set 1: 〈your full name〉.
Name the PDF �le PS1_〈YourFullName〉.pdf with your name written in CamelCase without
blanks and in ASCII without national characters. State your name and e-mail address at the
very top of the �rst page. Solutions should be written in LATEX or some other math-aware
typesetting system with reasonable margins on all sides (at least 2.5 cm). Please try to be
precise and to the point in your solutions and refrain from vague statements. Write so that a

fellow student of yours can read, understand, and verify your solutions. In addition to what
is stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solutions individually and understand all
aspects of them fully. You should also acknowledge any collaboration. State at the very top
of the �rst page of your problem set solutions if you have been collaborating with someone
and if so with whom. Note that collaboration is on a per problem set basis, so you should

not discuss di�erent problems on the same problem set with di�erent people.

Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes should be fair game, though, unless you are speci�cally asked to show
something that we claimed without proof in class. All de�nitions should be as given in class
and cannot be substituted by versions from other sources. It is hard to pin down 100%
watertight formal rules on what all of this means�when in doubt, ask the main instructor.
About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. On the contrary, you can chooose to solve
just a subset of the problems and still get a top grade. A total score of around 70 points
should be enough for grade E, 105 points for grade D, 140 points for grade C, 175 points for
grade B, and 210 points for grade A on this problem set. Any corrections or clari�cations
will be given at piazza.com/kth.se/fall2016/dd2442/ and any revised versions will be
posted on the course webpage www.csc.kth.se/DD2442/semteo16/.

1 (10 p) In the very �rst lecture, we decided to focus only on CNF formulas and said that this is
essentially without loss of generality since any propositional logic formula F can be transformed
to CNF formula F ′ such that F ′ only linearly larger than F and is unsatis�able i� F is a
tautology. We did do the full transformation, however, and your task now is to �ll in the missing
details regarding the connectives ∧ and ↔.

Given a formula F
.
= G∧H, show how to write CNF clauses that force xF to take the value

of G ∧ H assuming that xG and xH are correctly representing the truth values of G and H,
respectively. Then solve the same problem for the formula F

.
= G↔ H. Please do not forget to

argue why your encodings into CNF are correct.
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2 (20 p) The purpose of this problem is to clarify the relation between edge expanders and con-
nectivity expanders as de�ned in the third lecture. In what follows below, all graphs G = (V,E)
are assumed to be connected, and δ and c are constants independent of the size of the graph.

2a (10 p) Prove that if G = (V,E) is a (d, δ)-edge expander, then G is also a (d, c)-connectivity
expander for c ≥ δ/4.

Hint: Consider a minimal edge set E′ that disconnects G into components of size at
most |V |/2 and reason about the edge expansion of these components.

2b (10 p) Prove that there is some constant c > 0 such that for any δ > 0 it holds that for
all large enough n ∈ N+ there is an n-vertex (d, c)-connectivity expander that is not a
(d, δ)-edge expander.

3 (20 p) When proving theorems about the resolution proof system it is sometimes technically
convenient to also have a second inference rule, namely the weakening rule that allows to derive
C∨D from the clause C (where D can be any arbitrarily chosen clause). Since C∨D is a weaker
clause than C it seems intuitively clear that this should not be a very useful rule, and indeed it
is the case that any use of weakening in a resolution refutation can be eliminated without loss
of generality. Your task is to prove this formally.

That is, prove that if π : F `⊥ is a resolution refutation with weakening, then there is another
resolution refutation π′ : F `⊥ in at most the same length that does not use the weakening rule.

Hint: Do a proof by forward induction over the resolution refutation π = (C1, C2, . . . , CL)
containing weakening steps.

4 (30 p) In the Prosecutor-Defendant game for PHP formulas, say that Prosecutor has a size-L
strategy for winning against a class of Defendant strategies D if there is an instruction book with
at most L records such that Prosecutor can always win by using this instruction book when
Defendant uses any strategy D ∈ D. (Thus, a complete Prosecutor strategy is a strategy for
winning against the class Dall of all possible Defendant strategies, but here we are interested also
in incomplete Prosecutor strategies.)

4a (15 p) Let D be the set consisting of the single defendant strategy which always gives the
answer �no� to the question �Does pigeon i �y to hole j?� as long as there is some other
hole permitted for pigeon i according to Prosecutor's current record (and otherwise answers
�yes� if the forced choice for pigeon i is pigeonhole j). Show that Prosecutor has a strategy
in size O(n) for winning when Defendant plays according to this strategy.

4b (15 p) Let D be the set consisting of all the defendant strategies of picking uniformly at
random n out of the n+ 1 pigeons and matching them randomly to pigeonholes, and then
always answer consistently with this randomly chosen matching. Show that Prosecutor has
a strategy in size O

(
n2
)
for winning when Defendant plays according to this strategy.
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5 (40 p) Let F be an unsatis�able CNF formula and let α denote any truth value assignment to
the variables in F . The search problem for F given α is to �nd a clause C ∈ F falsi�ed by α.

A decision tree TF for F is a binary tree with leaves labelled by clauses in F , internal vertices
labelled by variables x, and two edges from each internal vertex labelled 0 and 1. Any α de�nes
a path through TF starting from the root, following from each internal vertex x the edge labelled
by the value α(x), and ending in some leaf C that is the answer of TF on α. The tree TF solves

the search problem for F if on any α the answer C is a clause falsi�ed by α.
Let us write SD(F ) to denote the minimal size (i.e., number of vertices) of any decision tree

solving the search problem for F , and write LT (F ` ⊥) to denote the minimal length of any
tree-like resolution refutation of F . A very convenient fact is that decision trees and tree-like
resolution refutations are essentially just two di�erent ways of looking at the same object. Your
task is to formalize this claim as described below.

Please note that Problems 5a, 5b, and 5c below can be solved independently of one another
and that results from preceding subproblems can be used in succeeding subproblems regardless
of which problems were actually solved.

5a (10 p) Prove that SD(F ) ≤ LT (F `⊥) by showing that any tree-like resolution refutation
of F can be made into a decision tree solving the search problem for F .

5b (20 p) Prove that LT (F ` ⊥) ≤ SD(F ) by showing that any decision tree solving the
search problem for F can be made into a tree-like resolution refutation of F . (For partial
credit, just prove LT (F `⊥) = O(SD(F )) using the weakening rule and the fact claimed
in Problem 3, which you can use regardless of whether you solved that problem or not.)

5c (10 p) Argue that this proves the implicational completeness of resolution, and, in particu-
lar, shows that any unsatis�able CNF formula over n variables has a resolution refutation π
in length L(π) = exp(O(n)). What is the best concrete bounds you can get, not using big-
oh notation but providing explicit constants instead?

6 (60 p) Using notation and terminology from the second lecture, let IR denote the set of thor-
oughly investigated pigeons in a Prosecutor record and assume that R is informative, i.e., that
|IR| ≥ n/4. We claimed that when Defendant randomly chooses a partial matching of n/4 pi-
geons, then the probability that the size of the intersection is less than n/32 is at most exponen-
tially small, i.e., at most 2−εn for some ε > 0 for n large enough. Your task is to perform the
calculations to prove this. In what follows we assume tacitly, but without loss of generality, that
n is large enough for our claims to hold and also for simplicity that 32 evenly divides n.

Please note that Problems 6a, 6b, and 6c below can be solved independently of one another
and that results from preceding subproblems can be used in succeeding subproblems regardless
of which problems were actually solved.

6a (10 p) Explain, brie�y but clearly and convincingly, why the probability that the size of
the intersection is less than n/32 is at most∑n/32−1

i=0

(
n/4
i

)(n+1−n/4
n/4−i

)(
n+1
n/4

) .
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6b (20 p) Show that

n/32−1∑
i=0

(
n/4

i

)(
n+ 1− n/4
n/4− i

)
≤ n

32

(
n/4

n/32

)(
3n/4 + 1

7n/32

)
.

6c (30 p) Using the inequalities in Problems 6a and 6b as well as Stirling's formula

√
2πm

(m
e

)m
e

1
12m+1 < m! <

√
2πm

(m
e

)m
e

1
12m ,

prove that the probability of a small intersection is at most 2−δn for some δ > 0. (You
should not have to be too careful with the calculations here�using Stirling to get the size
of the main protagonists mostly right should be enough.)

7 (70 p) The purpose of this problem is to establish Lemma 9 in the notes from Lecture 3, i.e.,
that if G = (V,E) is a connected graph with odd-charge function χ : V → {0, 1} for which
we randomly sample a charge-preserving assignment to a medium-large edge set E1 ⊆ E, then
for any subset E2 ⊆ E1 such that G2 = (V,E \ E2) is connected this random sampling yields
independent and uniformly random bits.

Please note that Problems 7a, 7b, and 7c below can be solved independently of one another
and that results from preceding subproblems can be used in succeeding subproblems regardless
of which problems were actually solved.

7a (20 p) Let A ⊆ {0, 1}m be an a�ne subspace and suppose for a subset of coordinates
S ⊆ [m] that all bit strings in {0, 1}S are supported by A (i.e., for any β ∈ {0, 1}S there
is a vector uβ ∈ A that agrees with β on the coordinates in S). Prove that a uniformly
random sample from A restricted to S yields independent and uniformly random bits.

Hint: There are a couple of suggested approaches for this problem in the lecture notes.

7b (20 p) Fix a connected graph G = (V,E) with an arbitrary charge function χ : V → {0, 1}.
Let E′ ⊆ E be any minimal set disconnecting G into exactly two connected graphs G1

and G2. Prove that for G and χ �xed as above, it holds for any assignment ρ of values
in {0, 1} to the edge variables in {xe | e ∈ E′} that whether G1 and G2 gets odd or even
total charges only depends on the parity of the sum

∑
e∈E′ ρ(xe).

Note that when we apply ρ to the edges in E′, then χ is updated to χ′ according to edge
values in ρ so that χ′(v) = χ(v) +

∑
e3v,e∈E′ ρ(xe) (mod 2). The total charge of Gi for

i ∈ {1, 2} is then de�ned as
∑

v∈V (Gi)
χ′(v).

7c (30 p) Suppose that G = (V,E) is a (d, δ)-edge expander for δ > 0, that E1 ⊆ E is a
moderate-size set such that G1 = (V,E \ E1) has a unique connected component of size
larger than |V |/2, and that E2 ⊆ E1 is such that G2 = (V,E \ E2) is connected. Use
the claims in Problems 7a and 7b together with the material in the �appendix notes� for
Lecture 3 (which does not have to be reproven, but state clearly what you use and how)
to prove that if we sample uniformly at random a charge-preserving assignment ρ to E1,
then the values assigned to the edges in E2 are independent and uniformly random bits.

Page 4 (of 7)

DD2442 Seminars on Theoretical Computer Science: Proof Complexity � Autumn 2016, period 1�2
Jakob Nordström





1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1


(a) Matrix encoding row and column constraints.

(x1,1 ∨ x1,2 ∨ x1,4)
∧ (x1,1 ∨ x1,2 ∨ x1,8)
∧ (x1,1 ∨ x1,4 ∨ x1,8)
∧ (x1,2 ∨ x1,4 ∨ x1,8)
...

∧ (x4,11 ∨ x8,11 ∨ x10,11)
∧ (x4,11 ∨ x8,11 ∨ x11,11)
∧ (x4,11 ∨ x10,11 ∨ x11,11)
∧ (x8,11 ∨ x10,11 ∨ x11,11)

(b) Example cardinality constraints in CNF.

Figure 1: Matrix and (fragment of) corresponding subset cardinality formula in Problem 9.

8 (90+ p) A slightly annoying aspect of the Tseitin formula lower bound we did in Lecture 3 was
that we only obtained lower bounds for (d, δ)-edge expanders with δ > 1. It is known that the
theorem is true for any δ > 0. In this problem, we want to take a closer look at how the result
proven in class can (or cannot) be improved if we assume that the graph is d-regular (i.e., that
every vertex has exactly d incident edges).

8a (40 p) For partial credit on this subproblem, prove that refuting Tseitin formulas over
random 4-regular graphs requires exponential length in resolution asymptotically almost
surely (a.a.s). You might want to use that a.a.s. such graphs have edge expansion at
least 0.4.

For full credit, prove an exponential lower bound (not almost surely, but unconditionally)
for any 4-regular graph that has arbitrarily small but positive (and �xed) edge expan-
sion δ > 0.

8b (50 p) Can the approach in Lecture 3 be implemented to yield strong lower bounds for edge
expanders with arbitrary expansion δ > 0 if we just work a bit harder on the analysis? Or
can you show that some fact/claim/proposition/lemma in the notes is provably false for
positive but su�ciently small δ, 0 < δ ≤ 1?

8c (100+ p) Open problem: Can you improve the Defendant lower bound strategy in Lec-
ture 3 to prove for 3-regular graphs with arbitrarily small but positive (and �xed) edge
expansion δ > 0 that Tseitin formulas over such graphs require exponential resolution refu-
tation length? This is known to be true, but the main instructor does not know of any way
of using Prosecutor-Defendant games to prove such a lower bound.
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9 This problem is about the subset cardinality formulas discussed in the �rst lecture. Please study
the example in Figure 1 to understand what these formulas are encoding�this might be helpful
when dealing with the more abstract, and perhaps harder to parse, description below.

Recall that we have an n× n 0/1-matrix M with exactly 4 ones per row and column, except
that we add an extra one somewhere so that one row and one column has 5 ones. The variables
of the formula are xi,j corresponding to positions in the matrix M = (mi,j) such that mi,j = 1.
Every row provides a constraint that a majority of the variables in that row should be true.
Every column requires that a majority of the variables in that column should be false.

In more formal notation, let Ri = {j | mi,j = 1} be the column indices for 1-entries in row i
and let Cj = {i | mi,j = 1} be the row indices for 1-entries in column j. (We note in passing
that specifying only the row sets Ri, i ∈ [n], or only the column sets Cj , j ∈ [n], is su�cient
to describe M completely.) Then the subset cardinality formula SC (M) corresponding to a
matrix M contains the following clauses:

� For every row i the set of clauses
{∨

j∈R∗ xi,j
∣∣R∗ ⊆ Ri, |R∗| = 3

}
.

� For every column j the set of clauses
{∨

i∈C∗ xi,j
∣∣C∗ ⊆ Cj , |C∗| = 3

}
.

It has been shown that the formula SC (M) is exponentially hard for resolution ifM is an expand-
ing matrix (meaning, roughly, that every small-to-medium-large set of rows contain 1-entries in
many di�erent columns), and, in particular, the exponential lower bound holds asymptotically
almost surely if M is a randomly sampled matrix subject to the constraints described above.

Please note that Problems 9a, 9b, and 9c below can be solved independently of one another.

9a (20 p) Prove that any subset cardinality formula SC (M), regardless of any expansion
properties of the matrix M , is always easy for cutting planes. Describe the structure of a
short CP refutation and analyze how short you can get it to be. You do not actually have
to write down every single low-level syntactic detail, but the description should be detailed
enough so that a fellow student could purely mechanically reproduce the cutting planes
refutation from your descripion without having to do any creative thinking.

9b (40 p) The example subset cardinality formula in Figure 1 has a very particular structure
in that the �rst row contains 1s in positions 2t for t = 0, 1, 2, 3 and that subsequent rows
just has this pattern shifted down the diagonal and wrapping around when reaching the
�nal column. In formal notation, we have Ri =

{
1 + (i + 2t − 2 mod n)

∣∣t = 0, 1, 2, 3
}

(except that this ignores where the extra 1-entry is added, but exactly where this is done
is not too important).

Prove that for such a regular matrix M which can be described by a pattern shifted
down the diagonal (except for the extra 1 that appears somewhere), i.e., where there are
ai, i ∈ [4], with 1 ≤ a1 < a2 < a3 < a4 ≤ K for some constant K independent of n, such
that Ri =

{
1 + (i+ at − 2 mod n)

∣∣t ∈ [4]
}
, the subset cardinality formulas SC (M) are in

fact easy also for resolution.

Hint: Notice that, as usual, the above is an asymptotic claim, so you might need to pick n
large enough for the upper bound to kick in (but not ridiculously large). There are actually
resolution refutations in length only linear in the size of the formula, but polynomial length
is su�cient to get a full score on this subproblem.
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9c (60 p) An intriguing fact is that even for regular matrices M as in Problem 9b, for which
subset cardinality formulas SC (M) are theoretically very easy for resolution, the formulas
can be really, really hard in practice for state-of-the-art so-called con�ict-driven clause

learning (CDCL) SAT solvers based on resolution. Moreover, the hardness seems to de-
pend in subtle ways on the concrete patterns used, and we do not really understand this
dependence. (This is a polite way of saying that there are some theoretical predictions
regarding which patterns should be easy or hard, but somewhat interestingly these predic-
tions sometimes seem to �atly contradict what can actually be observed in practice. . . )

The purpose of this �nal subproblem is to do some empirical research to come up with
the hardest pattern you can �nd for very regular subset cardinality formulas SC (M)
as described above. This involves picking four numbers a1, a2, a3, a4, where we require
1 ≤ a1 < a2 < a3 < a4 ≤ 9 to capture the hardness of small, compact patterns, adding
an extra 1 somewhere, generating the corresponding subset cardinality formulas SC (M),
and running the SAT solver MiniSat on them (available in the Ubuntu environment at
KTH CSC; see also the webpage minisat.se).

To solve this subproblem you will need to do the following:

1. Write code that given n and 1 ≤ a1 < a2 < a3 < a4 ≤ 9 generates a �le where the
�rst line contains the number n repeated twice, to give the dimensions of the matrix,
and all following lines are rows in the matrix, one row per line, where the speci�ed
pattern appears shifted along the diagonal (and with 0s and 1s separated by blanks).
Note that you also need to �ip a 0 to an extra 1 somewhere.

2. Write code for genering the subset cardinality formula SC (M) from any matrix M
given in the format described above. The formula should be in the standard DIMACS

format described, e.g., at www.csc.kth.se/DD2442/semteo16/useful-info, where
you can also �nd some information about MiniSat.

Alternatively, you can install and use the tool CNFgen (available at github.com/

MassimoLauria/cnfgen) to generate the formulas from matrices for which you coded
up in item 1. Assuming that you have stored your matrix in the �le matrix.txt,
you can call CNFgen to write the corresponding formula to the �le formula.cnf

by doing cnfgen subsetcard -gf matrix -i matrix.txt > formula.cnf (assum-
ing Unix-style �le redirections).

3. Report which is the hardest pattern 1 ≤ a1 < a2 < a3 < a4 ≤ 9 that you can
�nd. Evaluate the hardness of a pattern by �nding (and reporting) the smallest n
such that MiniSat does not solve the formula SC (M) for a matrix M of dimensions
n × n generated from this pattern within 10 minutes of CPU time when run on the
computer u-shell.csc.kth.se. Measure time as reported by the time command.
There will be an extra bonus to the student who �nds the very hardest pattern (with
reproducible results when we run the same experiments on u-shell).

Just to give a sense of the scale, you should expect these formulas to start getting
seriously di�cult for 25 × 25 matrices or so, i.e., for around 100 variables, or even
earlier depending on how devious patterns you can design.
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