
DD2442 Proof Complexity: Problem Set 3

Due: Monday January 23, 2017, at 23:59 AoE. Submit your solutions as a PDF �le by
e-mail to jakobn at kth dot se with the subject line Problem set 3: 〈your full name〉.
Name the PDF �le PS3_〈YourFullName〉.pdf with your name written in CamelCase without
blanks and in ASCII without national characters. State your name and e-mail address at the
very top of the �rst page. Solutions should be written in LATEX or some other math-aware
typesetting system with reasonable margins on all sides (at least 2.5 cm). Please try to be
precise and to the point in your solutions and refrain from vague statements. Write so that a

fellow student of yours can read, understand, and verify your solutions. In addition to what
is stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solutions individually and understand all
aspects of them fully. You should also acknowledge any collaboration. State at the very top
of the �rst page of your problem set solutions if you have been collaborating with someone
and if so with whom. Note that collaboration is on a per problem set basis, so you should

not discuss di�erent problems on the same problem set with di�erent people.

Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes should be fair game, though, unless you are speci�cally asked to show
something that we claimed without proof in class. All de�nitions should be as given in class
and cannot be substituted by versions from other sources. It is hard to pin down 100%
watertight formal rules on what all of this means�when in doubt, ask the main instructor.
About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. On the contrary, you can chooose to solve
just a subset of the problems and still get a top grade. A total score of around 80 points
should be enough for grade E, 110 points for grade D, 140 points for grade C, 170 points for
grade B, and 200 points for grade A on this problem set. Any corrections or clari�cations
will be given at piazza.com/kth.se/fall2016/dd2442/ and any revised versions will be
posted on the course webpage www.csc.kth.se/DD2442/semteo16/.

1 (10 p) Let k(C) denote the minimum Hamming weight of a satisfying assignment for a mono-

tone circuit C. Prove the following �self-improvement� property of monotone circuit that was

needed for the Alekhnovich-Razborov non-automatizability result we covered in class: For any

�xed d ∈ N+ there is a polynomial-time computable function fd that maps monotone circuits to

monotone circuits in such a way that k
(
fd(C)

)
= (k(C))d.

2 (20 p) Recall that a bridge in an undirected graph G = (V,E) is an edge e ∈ E such that the

number of (maximal) connected components in G\{e} = (V,E \{e}) is larger than that in G. In
the lower bounds we studied for Tseitin formulas we implicitly used that the set of bridges of a

graph G is independent of the order in which the bridges are identi�ed. Prove formally that this

is indeed so. That is, prove that assuming that e1 is a bridge in G = (V,E), then e2 ∈ E \ {e1}
is a bridge in G \ {e1} if and only if e2 is a bridge in G.
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3 (20 p) Let F denote a Frege proof system over {∨,¬} and let d be a positive integer. We proved

in class that for large enough n any depth-d refutation of PHPn+1
n in F requires size at least

exp
(
n6
−d)

. For weaker proof systems such as resolution and k-DNF resolution we have seen

earlier in the course that the lower bound proofs are quite robust in that they hold even for cn
pigeons being mapped into n holes for any constant c > 1. In contrast, even for just depth-2 Frege

it has been shown that PHP2n
n can be refuted in at most quasi-polynomial size exp

(
(log n)O(1)

)
.

Thus, there must be one place (or more) in the lower bound for bounded-depth Frege refu-

tations of formulas PHPn+1
n where the argument critically fails if we try to adapt it to PHP2n

n .

Your task is to point out clearly where and why.

4 (30 p) Suppose that G is an undirected, connected graph and that χ : V (G)→ {0, 1} is a charge
function. Recall that χ is said to have odd charge if

∑
v∈V (G) χ(v) is an odd number.

4a Prove that for any two odd-charge functions χ and χ′ the Tseitin formulas TsG,χ and

TsG,χ′ are equivalent in the formal sense that any resolution refutation π : TsG,χ `⊥ can

be transformed into a resolution refutation π′ : TsG,χ′ `⊥ of exactly the same length by

simple syntactic manipulations.

4b Prove that TsG,χ is unsatis�able if and only if χ has odd charge.

5 (40 p) As discussed in class, a projection ρ is a generalization of a restriction where each variable x
can be mapped by ρ to not only 0 or 1, but also y or y for some variable y. We made the

somewhat handwavy claim in class that projections work mostly like restrictions in that they

preserve refutations in well-behaved proof systems. The purpose of this problem is to make this

claim slightly more precise.

Recall that to any resolution refutation π : F `⊥ we can associate a DAG Gπ with vertices

labelled by the clauses in the refutation and with edges from resolved clauses to resolvents. We

say that π is tree-like if Gπ is a tree. The refutation π is said to be regular if along any path

in Gπ from a source (i.e., axiom clause) to the sink (i.e., the empty clause ⊥, which can be

assumed to be the only sink of Gπ without loss of generality) every variable is resolved over at

most once. Tree-like resolution and regular resolution are the two subsystems of resolution where

refutations are restricted to be tree-like or regular, respectively. In general resolution there are

no restrictions on Gπ. We want to understand how projections a�ect refutations in these three

�avours of resolution.

5a Is it true for any projection ρ and any tree-like resolution refutation π of a CNF formula F
that π�ρ is a tree-like resolution refutation of F�ρ?

5b Is it true for any projection ρ and any regular resolution refutation π of F that π�ρ is a

regular refutation of F�ρ?

5c Is it true for any projection ρ and any general resolution refutation π of F that π�ρ is a

resolution refutation of F�ρ?

Page 2 (of 5)

DD2442 Seminars on Theoretical Computer Science: Proof Complexity � Autumn 2016, period 1�2
Jakob Nordström



For each of the subproblems above, either give a formal proof that π�ρ is a refutation of F�ρ
of the required form (possibly using the weakening rule), or explain clearly why this is not

necessarily the case.

6 (40 p) Let p, q, and r, be disjoint set of variables and let F = A(p,q)∧B(p, r) be an unsatis�able
CNF formula such that the p-variables occur only positively in A. Consider the Karchmer-

Wigderson game where Alice is given an assignment α : p→ {0, 1} such thatA(α,q) is satis�able,
Bob is given an assignment α′ : p → {0, 1} such that B(α′, r) is satis�able, and their task is to

communicate to �nd an index i such that αi = 1 and α′i = 0.
Prove from �rst principles (i.e., without using any theorems stated on the board during

Pavel Pudlák's guest lecture) that if F has a resolution refutation in depth d (i.e., such that the

longest path in the refutation DAG Gπ has length d), then there is a deterministic two-party

protocol with communication O(d) that solves this Karchmer-Wigderson game. Recall that such

a protocol can be described as a binary tree where Alice and Bob start at the root node, where

every node is labelled by whose turn it is to send a bit b, where the bit b sent by Alice (or Bob)

is a function only of Alice's (Bob's) input and of the bits sent so far, where there are directed

edges labelled 0 and 1 such that Alice and Bob follow the branch labelled b, and where every

leaf is labelled by an answer that is correct for any pair of inputs to Alice and Bob that reach

that leaf in the protocol tree. Such a protocol achieves a communication upper bound c if the
longest path in the tree has length at most c.

Hint: Depending on how one thinks about this, the argument might become slightly more

straightforward if one instead considers the modi�ed formula F ′ = A(p,q)∧B(p′, r)∧
∧
i(pi∨p′i)

where every occurrence of pi in B(p′, r) is replaced by p′i in B(p′, r) and where Bob is given

an assignment α′ : p′ → {0, 1} such that B(α′, r) is satis�able, and then studies resolution

refutations of this formula. However, if this hint confuses you more than it helps you, then you

should feel perfectly free to ignore it.

7 (40 p) Returning to the bounded-depth Frege lower bound for PHP formulas over a set V = P
.
∪H

with |P | = n + 1 and |H| = n, let η denote a k-evaluation for a set of formulas Γ and let α be

a partial matching in V . Prove formally the claim that was hand-waved in class that η�α is a

k-evaluation for the set Γ�α. Recall that for a nontrivial restricted formula F�α∈ Γ�α we de�ne

η�α (F�α) as η(F )�α, where η(F )�α denotes the restriction over trees as de�ned in lectures 13�16.

In particular, this means that you have to prove the following properties of matching decision

trees T under restrictions (with notation as used in the relevant lectures).

7a If T is a complete tree for the set of vertices V , then T�α is complete for V �α. Recall that
V �α is the set of all vertices v ∈ V not matched by α.

7b Disj (T )�α= Disj (T�α).

7c T c�α= (T �α)c. Recall that T c denotes the operation over trees that consists of changing

the labels of the leaves of T from 0 to 1 and vice versa.

7d If T represents a matching disjunction G, then T�α represents G�α.
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8 (100 p) Recall the formula τ(C,A,F, f) in the Alekhnovich-Razborov non-automatizability result

as described in lectures 22�24, where C(p1, . . . , pn) is a monotone circuit, A ⊆ {0, 1}m is a set of

vectors, and Fj : {0, 1}s → A and fi : {0, 1}s → [r] are onto functions, where functions fi are pos-
sibly partial. Recall also the notational shorthands [colj = a] denoting �Fj

(
x1j , . . . , x

s
j

)
= a� and

[ctrli = c] denoting �fi
(
y1i , . . . , y

s
i

)
is de�ned and equals c�, using which the formula τ(C,A,F, f)

could be described as consisting of encodings into CNF of the following conditions:(
y1i , . . . , y

s
i

)
∈ Dom(fi) [i ∈ [m]] (1a)(

[colj = a] ∧ [ctrli = c]
)
→ zci,pj [c ∈ [r], j ∈ [n], a ∈ A and i ∈ [m] s.t. ai = 1] (1b)(

[ctrli = c] ∧ (zci,u ◦ zci,v)
)
→ zci,w [c ∈ [r], i ∈ [m], gate w = u ◦ v for ◦ ∈ {∧,∨}] (1c)

[ctrli = c]→ zci,vout [c ∈ [r], i ∈ [m], vout output gate of C] (1d)

We refer to the lecture notes for a more detailed discussion of exactly what the notation above

means and of the combinatorial principle encoded.

The purpose of this problem is to consider other possible encodings of the same combinatorial

principle, and what would happen to the upper and lower bounds we proved in class if these

other encodings are used instead. For all of the subproblems below, your task is to answer the

follow questions for both the upper and the lower bound shown in class:

1. Does the bound still hold for the new suggested encoding with essentially the same proof

as we did in class (except possibly for minor, obvious �xes)?

2. If your answer to question 1 is yes, explain brie�y what small �xes are needed, if any, and

why the proof goes through.

3. If your answer to question 1 is no, then point out where the proof breaks.

4. In case of an answer no, is it possible to give a di�erent argument that can recover all of,

or parts of, the bound, or do there seem to be more fundamental problems making it hard

to see how such a result could be obtained?

8a Consider an encoding where for conditions (1b)�(1d) we insist on equivalence↔ instead of

implication → (so that the circuit evaluation is forced to be correct and cannot as before

introduce spurious 1s along the way).

8b Consider an encoding where we eliminate the double indexing over rows i and circuit

copies c, and instead just specify that every row i gets evaluated in its own circuit copy c
as indicated by the y-variables. That is, we add conditions that every row i gets its unique,
own circuit copy c not used by any other row, and then remove indices i from variables zci,v
in conditions (1b)�(1d).
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8c Consider an encoding where there are no circuit copies, and hence no clauses (1a). Instead,

the value zi,v of a circuit gate v when evaluated on row i is encoded redundantly by a

function gi,v : {0, 1}s → {0, 1} (for instance, one concrete encoding could be to to set

gi,v(σ) =
⊕

i σi, so that zi,v is the exclusive or of the bits in the input to gi,v).

We then introduce the shorthands

[zi,v] =
∧

σ∈g−1
i,v (0)

((
z1i,v
)1−σ1 ∨ (z2i,v)1−σ2 ∨ · · · ∨ (zsi,v)1−σs)

and

[zi,v] =
∧

σ∈g−1
i,v (1)

((
z1i,v
)1−σ1 ∨ (z2i,v)1−σ2 ∨ · · · ∨ (zsi,v)1−σs)

to denote the possible values of gate v when evaluated on row i, and, for instance, the

encoding of (1c) would become simply
(
[zi,u] ◦ [zi,v]

)
→ [zi,v] expanded out in CNF.

Remark: It goes without saying that there is some �exibility as to exactly how the questions above

can be interpreted, and thus the emphasis in the grading will be on assessing how convincingly,

and in how appropriate a level of detail, you present your arguments for the di�erent encodings,

rather than on your exact wording of the �nal answers to the questions.

As a general rule, you should not expect to have to write pages and pages of detailed argu-

ments to answer to the questions above in the cases where you believe the proofs still work or can

be adapted to work. Also, when it seems that a proof does not work, and perhaps cannot even be

�xed, you do not have to prove beyond all doubt that no way of formalizing an argument along

similar lines can possibly work in any universe. It is enough to point out, brie�y but concretely,

what technical di�culties arise, and, when applicable, why they seem hard to circumvent.

Hint: You should expect to have to study the handwritten notes for lectures 22�24 in detail in

order to be able to solve this problem, including (and especially) the part of the notes that we

did not have time to cover in detail in class.

9 (150 p) Prove that Tseitin formulas over n × n rectangular grids require resolution refutations

of length exp(Ω(n)). For partial credit, you can instead explain what the problem is if one tries

a straightforward adaptation of the the approach in Lecture 3 to yield lower bounds for grid

graphs.

Hint: Use projections.

More hints: For this problem, an additional hint in the form of an outline for how to prove the

lower bound can be purchased at a cost of 30 points. In this way, you can con�gure yourself

whether you want this problems to be more creative and open-ended, where a lot might depend

on �nding the right idea, or whether you want it to be more of a guided exercise providing a

useful work-out. If you do not solve this problem, there is no charge for the hint (i.e., it is not

deducted from the score on other problems). Contact the main instructor via Piazza if you want

to buy a hint.
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