
DD2242 Seminars on TCS: Proof Complexity Sep 14, 2016

Lecture 4
Lecturer: Jakob Nordström Scribe: Joseph Swernofsky, Jakob Nordström

1 Introduction

So far in the course we have investigated the resolution proof system. We have obtained lower bounds for
pigeonhole principle formulas and Tseitin formulas. Resolution is a very well-studied proof system, and
there are several techniques for proving lower bounds, such as:

Prosecutor-Defendant games This is what we have seen already.

Random restrictions This method will feature prominently later in the course for other proof systems.

Width lower bounds For resolution, it turns out that strong enough lower bounds on the width of clauses
in a refutation yield length lower bounds. (This was shown in a celebrated paper [BW01], which we
will probably only touch on very briefly, if at all, in this course, however.)

In some sense, these approaches are all variations on the same theme, but we do not want to spend time
now on elaborating on this and making the connections formal.

Today we will instead start to investigate the cutting planes proof system, which is much less well
understood. As a case in point, there is essentially only one technique for proving size lower bounds,
namely interpolation, which works by establishing a connection to circuit complexity. In this lecture we
will:

• Refresh our memory what circuits are.

• Define and discuss cutting planes.

• Illustrate the interpolation proof technique.

Regarding the final bullet, for starters we will focus on doing interpolation for the resolution proof system
(where this technique also works and yields a fundamentally different approach from the ones discussed
above). The next two lectures will then extend this to cutting planes.

2 Circuits

Let us start by giving a formal definition of what we mean by a circuit.

Definition 2.1 (Circuit). A circuit is a directed acyclic graph (DAG). It has n sources, which are nodes
labelled by variable inputs, and a unique sink without outgoing edges. All non-source vertices are labelled
by one of a fixed set of Boolean functions, and are often referred to as gates. Typically we require the
fan-in, which is just another name for the in-degree of a vertex, to be at most 2. The standard gates are
∧ (AND) with fan-in 2, ∨ (OR) with fan-in 2, and ¬ (NOT) with fan-in 1. A circuitC can be thought of as
a Boolean function fC : {0, 1}n → {0, 1}, where the source vertices are the input values, every non-source
vertex computes the function it is labelled with on the values provided by its immediate predecessors, and
the output of the function is the value computed at the sink. The size of a circuit is the total number of
vertices in the DAG.

. . . Potentially insert examples from handwritten lecture notes here at some later stage . . .
For x, y ∈ {0, 1}n we write x ≤ y if for all i ∈ [n] it holds that xi ≤ yi. A Boolean function

f : {0, 1}n → {0, 1} is monotone if x ≤ y implies that f(x) ≤ f(y). Remember this key phrase to define

4-1

monotone: “Flipping an input bit from 0 to 1 can never flip f from 1 to 0”. The example functions xor
and sel that we saw on the board in class are not monotone, but the majority function maj is monotone. A
monotone circuit is one using AND and OR gates but no NOT gates.

Fact 2.2. A Boolean function f : {0, 1}n → {0, 1}n can be computed by a monotone circuit if and only if
it is monotone.

For a family of functions {fn : {0, 1}n → {0, 1}}∞n=1 we can study the sizes of the smallest circuits
computing these functions. This field of research is known as circuit complexity and is another line of
attack for proving P 6= NP (by trying to show something stronger, namely that NP cannot be decided
by polynomial-size circuits, or in computational complexity notation that NP (P/poly). Just as proof
complexity, this approach has not been terribly successful at reaching its ultimate goal, but there have
been many results for restricted subclasses of circuits such as monotone circuits.

3 Cutting Planes

The cutting planes proof system, introduced in [CCT87] to formalize the integer linear programming
algorithm in [Gom63, Chv73], allows geometric reasoning with linear inequalities with coefficients in Z.
As before, we think of “true” as 1 and “false” as 0, and translate a clause

C =
∨
x∈P

x ∨
∨
y∈N

y (3.1)

to the linear inequality ∑
x∈P

x+
∑
y∈N

(1− y) ≥ 1 (3.2)

which we standardize as ∑
x∈P

x−
∑
y∈N

y ≥ 1− |N | (3.3)

by bringing all constant terms to the right of the inequality sign. For example, the clause x∨y∨z becomes
x+ y + (1− z) ≥ 1 or x+ y − z ≥ 0. Note that falsehood (the empty clause) simply translates to 0 ≥ 1,
and deriving this inequality will be how we prove the falsity of a CNF formula.

As a side note, it makes perfect sense to consider cutting planes applied to general systems of linear
inequalities with integer coefficients, but in this course we will focus on applying cutting planes to CNF
formulas translated into inequalities as explained above.

The derivation rules in cutting planes are:

Variable axioms
xi ≥ 0

and −xi ≥ −1
(3.4a)

Addition
∑

i aixi ≥ A
∑

i bixi ≥ B∑
i (ai + bi)xi ≥ A+B

(3.4b)

Multiplication
∑

i aixi ≥ A∑
i caixi ≥ cA

(c ∈ N+) (3.4c)

Division
∑

i caixi ≥ A∑
i aixi ≥ dA/ce

(c ∈ N+) (3.4d)

where ai, bi, c,A, andB are all integers and in addition c is positive (as noted above). We want to highlight
that in the division rule (3.4d) we can divide with the common factor c on the left and then divide and
round up the constant term on the right to the closest integer, since we know that we are only interested in
0/1 solutions. This division rule is where the power of cutting planes lies.

The length of a cutting planes refutation is the total number of lines/inequalities in it, and the size
also sums the sizes of all coefficients (i.e., the bit size of representing them). The natural generalization

4-2

of clause space in resolution is to define cutting planes (line) space as the maximal number of linear
inequalities needed in memory during a refutation, since every clause is translated into a linear inequality,
but we will not study space complexity for cutting planes in this course. There is no useful analogue of the
width measure for clauses known for cutting planes.

Clearly, cutting planes is sound. It is also implicationally complete, though we will not prove this now.
For CNF formulas, which is the case we are interested in, completeness follows from the next lemma.

Lemma 3.1 (Cutting planes efficiently simulates resolution). If a CNF formula F can be refuted in
resolution in length L, then there is a cutting planes refutation in length O

(
L2
)
.

Proof sketch. Cutting planes can simulate resolution efficiently by mimicking the resolution steps one by
one. We leave the details as an exercise.

This means that cutting planes has the same exponential worst-case upper bound on size as resolution.
Recall that a proof system P is said to be exponentially stronger than another proof system Q if P

performs at most polynomially worse on every input than Q but on some family of inputs Q requires
exponentially larger proofs than P .

Theorem 3.2 ([CCT87]). Cutting planes is exponentially stronger than resolution.

Proof sketch. By the observation above, cutting planes is never more than polynomially worse than
resolution on any input. To see that it is sometimes exponentially better, it suffices to show that the
pigeonhole principle formulas have polynomial-size refutations in cutting planes. In cutting planes we
can simply count and see that the number of pigeons exceeds the number of holes and from this obtain an
immediate contradiction. It is a good exercise to work out the details here to better understand cutting
planes.

To widen our horizons a bit, let us look at another example of formulas exponentially separating
resolution and cutting planes (or at least, so it seems), namely the even colouring (EC) formulas constructed
by Markström [Mar06] and shown in Figure 1. Here one starts with a connected graphG = (V,E) having
an Eulerian cycle, i.e., with all vertex degrees even. We identify the edges E with variables {xe | e ∈ E}
and write down constraints that edges should be labelled 0/1 in such a way that for every vertex v ∈ V the
number of 0-edges and 1-edges incident to v is equal. If the total number of edges in the graph is even (as
in Figure 1a), then this formula is satisfiable—just fix any Eulerian cycle and label every second edge 0
and 1, respectively. If the number of edges is odd, however, then cutting planes can derive and then sum
up the at-least-2 constraints in Figure 1c (the ones with positive coefficients) over all vertices to derive
2 ·
∑

e∈E(G) xe ≥ |E(G)| and then divide by 2 and round up to obtain
∑

e∈E(G) xe ≥ (|E(G)|+ 1)/2.
By instead summing up all at-most-2 constraints (the ones with negative coefficients) and dividing by 2
one obtains

∑
e∈E(G) xe ≤ (|E(G)| − 1)/2, and subtracting these two inequalities yields 0 ≥ 1.

Formalizing the reasoning in the above paragraph yields the following lemma, where the necessary
and sufficient condition for unsatisfiability is from [Mar06].

Lemma 3.3. Let G = (V,E) be an undirected graph with all vertex degrees even. Then the formula
EC (G) is unsatisfiable if and only if the number of edges |E| is odd, and cutting planes can refute any
unsatisfiable formula EC (G) efficiently.

For resolution, however, the following seems quite likely to be true.

Claim/Conjecture 3.4. If G = (V,E) is a “well-connected enough” graph of even degree with |E| odd,
then EC (G) is exponentially hard to refute in resolution. (For instance, take G to be a random 6-regular
graph on n = 2m+ 1 vertices, so that the number of edges is odd.)

This claim-cum-conjecture should be taken with a little grain of salt—it is not formally written down
anywhere as far as the lecturer is aware, but should be possible to prove using standard proof complexity
machinery as in [BW01] (or at least so the lecturer believes). This provides another example, besides the
pigeonhole principles, showing that cutting planes is exponentially stronger than resolution.

4-3

vu

w x

yz

(a) Eulerian graph.

(u ∨ w) ∧ (w ∨ x ∨ y)

∧ (u ∨ w) ∧ (w ∨ x ∨ z)
∧ (u ∨ z) ∧ (w ∨ y ∨ z)
∧ (u ∨ z) ∧ (x ∨ y ∨ z)
∧ (v ∨ x) ∧ (w ∨ x ∨ y)

∧ (v ∨ x) ∧ (w ∨ x ∨ z)
∧ (v ∨ y) ∧ (w ∨ y ∨ z)
∧ (v ∨ y) ∧ (x ∨ y ∨ z)

(b) Corresponding CNF formula.

u+ w ≥ 1

−u− w ≥ −1

u+ z ≥ 1

−u− z ≥ −1

v + x ≥ 1

−v − x ≥ −1

v + y ≥ 1

−v − y ≥ −1

x+ y + z + w ≥ 2

−x− y − z − w ≥ −2

(c) Pseudo-Boolean encoding.

Figure 1: Example of Markström’s even colouring (EC) formula (satisfiable instance).

An intriguing fact is that there are SAT solver that use cutting planes reasoning, so-called pseudo-
Boolean solvers, and instances like pigeonhole principle formulas and even colouring formulas are where
these solvers should shine in comparison to CDCL solvers based on resolution.1 For pigeonhole principle
formulas, pseudo-Boolean solvers do indeed perform very well, but although EC (G) is easy for cutting
planes, the solvers taking part in the pseudo-Boolean competitions still seem to take exponential time on
such formulas. It would be great to understand better why this is the case. . .

4 Clique-Coclique Formulas and Interpolation

As already mentioned, cutting planes is a poorly understood proof system. We essentially only know one
way of proving superpolynomial lower bounds on length for cutting planes, and this is the interpolation
method introduced by Krajı́ček [Kra94] and used by Pudlák [Pud97] to establish lower bounds for formulas
talking about cliques in and colouring of graphs. We now proceed to give a formal description of these
formulas.

The clique-coclique formulas are unsatisfiable CNF formulas encoding the contradictory claim that
there exist undirected graphs G = (V,E) on n = |V | vertices which have an m-clique but are also
(m− 1)-colourable. The encoding uses the following Boolean variables:

pi,j indicates whether the edge (i, j) is present in G or not (where we enforce i < j since the graph is
undirected);

qk,i indicates whether the vertex i in G is the kth member of the m-clique;

ri,` indicates whether the vertex i in G has colour `.

The clique-coclique formula consists of the following clauses.

• for each k ∈ [m], some vertex in G is the kth member of the clique:∨
i∈[n]

qk,i , (4.1a)

1For this to be possible, though, it is important to make full use of the expressivity of linear inequalities and encode, for
instance, the even colouring formulas in so-called pseudo-Boolean form as in Figure 1c rather than as the CNF formula in
Figure 1b. Pseudo-Boolean solvers tend not to perform better than CDCL solvers when given CNF input, but explaining why is
outside the scope of these notes.

4-4

• for all k, k′ ∈ [m], k 6= k′, i ∈ [n], clique vertices have unique member numbers:

qk,i ∨ qk′,i , (4.1b)

• for all k, k′ ∈ [m], k 6= k′, i, j ∈ [n], i < j, the clique members are connected by edges:

pi,j ∨ qk,i ∨ qk′,j , (4.1c)

• for each i ∈ [n], vertex i gets assigned a colour:∨
`∈[m]

ri,` , (4.1d)

• for all ` ∈ [m− 1], i, j ∈ [n], i < j, neighbouring vertices have distinct colours:

pi,j ∨ ri,` ∨ rj,` . (4.1e)

We observe for later use that the clauses in the clique-coclique formula can be split into two parts
sharing only the variables p encoding the edges of the graph. That is, it can be written asA(p,q)∧B(p, r)
for A(p,q) being the conjunction of the clauses (4.1a)–(4.1c) and B(p, r) being the conjunction of the
clauses (4.1d)–(4.1e), where the sets of variables p,q, r are disjoint.

Given a partial truth value assignment, or restriction, ρ to the variables Vars(F) of a CNF formula
F , we write F�ρ for the new formula obtained by assigning variable values according to ρ and then
simplifying F . To simplify, we remove satisfied clauses and falsified literals. For example, for the formula
F = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) and restriction ρ = {z 7→ 0} = {z} we obtain F�ρ = (x ∨ y) ∧ x.

Suppose we have a an unsatisfiable CNF formula in the form A(p,q) ∧ B(p, r) as above (but not
necessarily the clique-coclique formula). Notice that when we plug in a particular assignment ρ to p
we get the conjunction of two formulas A(p,q)�ρ = A′(q) and B(p, r)�ρ = B′(r) on disjoint sets of
variables q and r. Since the original formula was unsatisfiable, at least one of these restricted subformulas
must be unsatisfiable.

We say that a Boolean circuit I(p) is an interpolant for CNF formula A(p,q) ∧B(p, r) with disjoint
sets of variables p,q, r if for every assignment ρ to the variables p it holds that I(ρ) = 0 implies that A�ρ
is unsatisfiable and I(ρ) = 1 implies that B�ρ is unsatisfiable. In case both subformulas are unsatisfiable
the interpolant is free to choose whichever subformula it likes best (but the function has to be well-defined,
so it has to make a choice). Note that such an interpolant always exists by definition—we can define a
function I(p) that evaluates to 0 whenever A�ρ is unsatisfiable and takes the value 1 otherwise, and this is
a well-defined mathematical function that can be computed by some circuit—but the interpolating circuit
might be quite large. We are interested in when the interpolant can be written as a small (polynomial-size)
Boolean circuit. It turns out this is possible ifA(p,q)∧B(p, r) has a short resolution refutation! Flipping
this implication around, in the other direction this means that interpolants can be used to obtain proof
complexity lower bounds from circuit complexity lower bounds.

This suggests the following strategy for proving lower bounds on refutation length:
• Start with a formula A(p,q) ∧B(p, r).

• Assume, towards contradiction, that the formula has a short resolution refutation.

• Deduce then that there exist a small interpolating circuit.

• Appeal to a(n already known) circuit complexity lower bound saying no such circuit can exist.

• Contradiction! Hence there cannot be a short resolution refutation.
Proof systems for which this strategy works are said to have feasible interpolation. Resolution and

cutting planes both have feasible interpolation. For resolution this is yet another way to prove lower bounds,
but for cutting planes this is the only lower bound technique known at the moment. The technique can be
used to show that the clique-coclique formulas are hard for cutting planes. Today we will illustrate the
proof of the interpolation theorem for resolution and in the next two lectures we will do the lower bound
for cutting planes.

4-5

5 Statement of Clique-Coclique Formula Lower Bound

In order to establish lower bounds on the refutation length of clique-coclique formulas, we will need the
following circuit complexity lower bound.

Theorem 5.1 ([Raz85, AB87]). Let an undirected graph G be represented by
(
n
2

)
bits encoding its edges

and non-edges. Then for m = Θ
(

4
√
n
)

there is no monotone circuit of size 2o(
√
m) that can distinguish

the following two cases:

• G has an m-clique.

• G is (m− 1)-colourable.

But what an interpolant I(p) for the clique-coclique formula does is exactly to distinguish the two
cases in Theorem 5.1. Since an interpolant determines which part of the formula is unsatisfiable for a
given assignment to the variables p encoding the graph, it can separate the cases when G has an m-clique
and when it is (m− 1)-colourable. What Theorem 5.1 says is that every monotone circuit computing such
an interpolant must have size exp

(
Ω
(

8
√
n
))

.

Remark 5.2. The monotonicity assumption in Theorem 5.1 is very important. We do not have such strong
lower bounds for explicit functions for non-monotone circuits.

In what follows, we will focusing on constructing an interpolant I(p) without caring too much about
the (crucial) fact that we want it to be a monotone circuit. Let us define the ternary selector function sel by

sel(x, y, z) =

{
y if x = 0,

z if x = 1.
(5.1)

We will build circuits with gates {∧,∨, sel}. It is not hard to see that sel can be implemented by a subcircuit
over {∧,∨,¬} of constant size, so using sel is just a convenient shorthand. A more serious concern is that
sel is not a monotone function, but let us decide not to worry about this for now and take care of it at the
end of the lecture.

We can now state the theorem that is the main goal of this lecture.

Theorem 5.3 ([Pud97]). Suppose that A(p,q) ∧B(p, r) is an unsatisfiable CNF formula over disjoint
sets of variables p,q, r, and that there is a resolution refutation π : A ∧ B ` ⊥ in length L. Then the
following holds:

1. There is an interpolating circuit I(p) over gates {∧,∨, sel} of size O(L);

2. From π we can construct a resolution refutation

(a) πA : A(ρ,q) ` ⊥ if I(ρ) = 0, or
(b) πB : B(ρ, r) ` ⊥ if I(ρ) = 1,

in both cases of length at most L;

3. If the p-variables occur only positively in A(p,q) or only negatively in B(p, r), then sel-gates can
be replaced by ∧- and ∨-gates, yielding a monotone circuit of size O(L).

Here is the plan for the proof:

• Fixing p to ρ, we will split the (restricted) clauses of π into two derivations πA from A(ρ,q) and
πB from B(ρ, r).

• At least one of πA and πB will be assigned the final empty clause and will thus be a resolution
refutation of A(ρ,q) or B(ρ, r), respectively.

• We can build a circuit representing our choice of how to split the clauses in π that figures out whether
πA or πB gets assigned the final clause, and hence which of the formulas A(ρ,q) and B(ρ, r) is
unsatisfiable.

4-6

6 Proof of Clique-Coclique Formula Lower Bound

Let π = (C1, . . . , CL) be any resolution refutation of A(p,q) ∧B(p, r) and let ρ be any assignment of
the p variables. Let us first prove part 2 of Theorem 5.3.

6.1 Extracting a Resolution Refutation of One of the Subformulas

We start by making a pair of key definitions. For a fixed restriction ρ to p, we define a q-clause to be
a clause C over variables q that is in A(ρ,q) or is derivable from A(ρ,q). Similarly, an r-clause is a
clause C over variables r which is a member of or derivable from B(ρ, r). As usual, we will let 1 denote
the trivial clause that is always satisfied, and we will consider 1 to be derivable from anything so that it
qualifies both as a q-clause and as an r-clause.

We will go trough the clauses in π = (C1, . . . , CL) in order and construct a sequence of clauses
π̃ =

(
C̃1, . . . , C̃L

)
which will contain the two derivationsπA fromA(ρ,q) andπB fromB(ρ, r) mentioned

above in our proof plan for Theorem 5.3. More precisely, from each Ci in π we will obtain a clause C̃i
satisfying the following properties:

1. C̃i is designated to be either a q-clause or r-clause as defined above, where we write type
(
C̃i
)

= q

or type
(
C̃i
)

= r to denote the label chosen for C̃i.

2. C̃i = 1 only if Ci�ρ = 1, and if C̃i 6= 1 it holds that C̃i ⊆ Ci \ {a, a | a ∈ ρ}.

3. With any C̃i = 1 we associate an axiom clause Ei that is satisfied by an assignment ρ(a) = 1 for
some literal a ∈ Ci ∩ Ei, where we have Ei ∈ A(p,q) if type

(
C̃i
)

= q and Ei ∈ B(p, r) if
type

(
C̃i
)

= r.

The clauses C̃i that are mainly of interest to us are nontrivial clauses, but in general we can expect to
have a number of trivial clauses since the restriction ρ might satisfy a large portion of the clauses in the
formula. For such trivial clauses we can think of the clause Ei in Property 3 as a justification axiom with
justification literal a ∈ Ci ∩ Ei such that ρ(a) = 1 explaining why we chose the trivial clause 1 for C̃i.
These justification axioms and literals will not be needed in our construction of the resolution refutation in
part 2 of Theorem 5.3, but will play an important role later when we prove part 3 about monotone circuits
in Section 6.3.

We construct C̃i for eachCi ∈ π by forward induction over π. Observe that this is sufficient to establish
part 2 of Theorem 5.3. To see this, note that when we reach the final clause CL = ⊥ ∈ π, by Property 2
we will have that C̃L ⊆ CL�ρ = ⊥, i.e., C̃L = ⊥. Furthermore, C̃L will be labelled as either a q-clause
or an r-clause by Property 1, meaning that it is derived from A(ρ,q) only or B(ρ, r) only, respectively. It
will be clear from the construction that follows below that the length of this derivation is at most L.

In the base case Ci is an axiom. In this case simply let C̃i = Ci�ρ. If Ci is part ofA(p,q), we label C̃i
as a q-clause, and if Ci is from B(p, r), then C̃i is an r-clause. Properties 1 and 2 are clearly satisfied by
definition. It is important to note that for many axiom clauses Ci we might have C̃i = 1, but that does not
violate Property 2. If C̃i = Ci�ρ = 1, then we let Ei = Ci be the justification axiom, which obviously
fulfils the conditions in Property 3.

For the inductive step, suppose Ci = C ∨D was derived by applying the resolution rule

C ∨ x D ∨ x
C ∨D (6.1)

to two previous clauses Cj = C ∨ x and Ck = D ∨ x for j, k < i. By induction, we have already
constructed C̃j and C̃k and we know their types as q- or r-clauses. Also, if C̃j = 1 and/or C̃k = 1,
then we have justification axioms Ej and/or Ek that are satisfied by ρ. We make a case analysis over the
variable x resolved over depending on whether x ∈ p, x ∈ q, or x ∈ r.

4-7

Case 1 (x ∈ p): If ρ(x) = 0, then we set C̃i = C̃j and let type
(
C̃i
)

= type
(
C̃j
)
. Observe that if

Ci�ρ 6= 1, then we have C̃i ⊆ Cj�ρ ⊆ Ci�ρ. If C̃i = C̃j = 1, we copy the justification axiom also
and let Ei = Ej . Note that any justification literal a ∈ Cj ∩Ej (which cannot be x since ρ(x) = 0)
is present in Ci as well. If instead ρ(x) = 1, then if Ci�ρ 6= 1 we have C̃k ⊆ Ck�ρ ⊆ Ci�ρ, so we set
C̃i = C̃k and let C̃i inherit its type, and possibly its justification axiom Ei, from C̃k. This ensures
that we maintain Properties 2 and 3. Property 1 holds since if ρ(x) = 0, then by the inductive
hypothesis we have that C̃i = C̃j is derivable from only A(ρ,q) or only B(ρ, r) depending on its
type, and if ρ(x) = 1 then the same holds for C̃i = C̃k.
As noted above, it might well be that C̃j = 1 or C̃k = 1 (or both), but we do not care about this.
The case analysis based on the value of ρ(x) remains valid, and Properties 1 and 2 are preserved.

Case 2 (x ∈ q): Here we divide the analysis into subcases depending on the types of C̃j and C̃k.

• If exactly one of C̃j or C̃k is an r-clause, set C̃i to that r-clause. If both C̃j or C̃k are r-clauses,
arbitrarily pick one of them (say, the one with smallest index). Label C̃i as an r-clause, and
if C̃i = 1 let it inherit the justification clause from its chosen parent clause. Note that by
our inductive hypothesis C̃i constructed in this way will not contain any variable in q. Since
x ∈ q is the only variable that disappears in the resolution step, this means that we preserve
Properties 2 and 3.
• Otherwise, if either C̃j or C̃k is a q-clause not containing x (which is true, for instance, if one

if them is a trivial clause 1 labelled by type q), let C̃i equal that q-clause and set type
(
C̃i
)

= q.
(Again, if both C̃j or C̃k qualify, just arbitrarily pick one of them.) Also, let C̃i inherit the
justification clause from its chosen parent if it is trivial.
• Otherwise, if either C̃j or C̃k is a q-clause not containing x, then let C̃i equal that q-clause (or

choose a clause arbitrarily if both qualify), label C̃i a q-clause, and let it inherit the justification
clause from its parent if needed.
• If none of the above cases apply, then we have two q-clauses C̃j = C̃ ′

j ∨ x and C̃k = C̃ ′
k ∨ x

which are both nontrivial (i.e., distinct from 1). Set C̃i to be the resolvent C̃ ′
j ∨ C̃ ′

k of these two
clauses and let type

(
C̃i
)

= q. (Note that this is the first time we actually used the resolution
rule to construct C̃i.)

By construction, C̃i will not contain x and it can be verified that we will only have C̃i = 1 if
Ci�ρ = 1 (using again that x ∈ q is the only variable that disappears in the resolution step, and
recalling that ρ does not assign values to any variables in q). Hence, Property 2 holds. Property 3
holds since no variables in p disappear in the resolution step. For Property 1, just observe that if C̃i
gets classified as an r-clause then no resolution step is involved, and if the end result is a q-clause
obtained by resolution, then both premises are q-clauses derivable from A(ρ,q) and so this holds
also for their resolvent.

Case 3 (x ∈ r): this case is analogous to the case x ∈ q but exchanging the roles of r- and q-variables.
We leave the details to the reader.

As explained above, part 2 of Theorem 5.3 now follows by the induction principle.

6.2 Writing down the Interpolating Circuit

We proceed to prove part 1 of Theorem 5.3. We will use the construction in Section 6.1 with the labelling
of the clauses C̃i as q- or r-clauses to build the desired interpolant I(p). Note that at the very end of the
process we label the final clause C̃L as either a q-clause or an r-clause, and this tells us whether A(ρ,q)
or B(ρ, r) is unsatisfiable. All that we need to do is to build a circuit that performs the same kind of
classification of the clauses in the refutation until we know what type is assigned to C̃L.

4-8

We will build this circuit I(p) using gates {∨,∧, sel} and constants {0, 1}.2 As we construct the
circuit we will associate the vertices vi in it with the clauses Ci ∈ π. We will maintain the invariant that if
C̃i is labelled as a q-clause under some assignment ρ of p, then the value computed at vi in the circuit
on input ρ is 0, and if C̃i is labelled as an r-clause, then vi computes value 1. The output of the circuit,
which is the type of C̃L = ⊥, will then tell us that A(ρ,q) is unsatisfiable if I(ρ) = 0 and that B(ρ, r) is
unsatisfiable if I(ρ) = 1. This is all that we need to show part 1 of the theorem.

More formally, as the blueprint for our circuit I(p) we will take the DAG representation Gπ of the
resolution refutation π. For every clause Ci ∈ π we will label the vertex vi in I(p) with a suitable gate
taking suitable inputs. As in Section 6.1, we argue by forward induction over π = (C1, . . . , CL).

If Ci is an axiom inA(p,q) we fix vi to the constant 0, otherwise if it belongs toB(p, r) we fix vi to 1.
Remember that we want to maintain the invariant that q-clauses correspond to vertices vi computing 0
and r-clauses correspond to vertices vi computing 1. So far, so good.

If Ci was derived by resolution from Cj = C ∨ x and Ck = D ∨ x for j, k < i, we have the same
kind of case analysis as in Section 6.1. Let us overload type

(
C̃i
)

to denote the binary value of the type of
the clause as defined above, so that

type
(
C̃i
)

=

{
0 if C̃i is a q-clause,
1 if C̃i is a r-clause.

(6.2)

We now choose the gate for vi as follows.

Case 1 (x ∈ p): Mark vertex vi with the selector function sel taking as inputs x and the outputs of vj
and vk (which by our inductive hypothesis compute type

(
C̃j
)

and type
(
C̃k
)
, respectively). It is

straightforward to verify that the way the type of C̃i is determined in Section 6.1 is by computing

type
(
C̃i
)

= sel
(
x, type

(
C̃j
)
, type

(
C̃k
))

= sel(x, vj , vk) . (6.3)

Case 2 (x ∈ q): Mark vertex vi with an OR-gate ∨ taking vj and vk as inputs. If at least one of C̃j or C̃k
has been classified as an r-clause, which by our inductive hypothesis means that either vj or vk
computes the value 1, then C̃i gets classified as an r-clause, and otherwise it becomes a q-clause.
This is just another way of saying that type

(
C̃i
)

= type
(
C̃j
)
∨ type

(
C̃k
)
, which is exactly the

values that vi now computes.

Case 3 (x ∈ r): Mark vertex vi with an AND-gate ∧ taking inputs vj and vk. This is (anti-)symmetric to
the case when x ∈ q, and as in Section 6.1 we leave the details of this case to the reader.

6.3 Removing Selector Gates

We have constructed an interpolating circuit and have proven parts 1 and 2 of our main theorem for
today. To establish part 3 we need to prove that if the p-variables occur only positively in A(p,q) or only
negatively in B(p, r), then we can change the circuit above slightly by replacing the sel-gates with small
monotone subcircuits. This will give us a monotone interpolating circuit.

. . . Potentially insert a picture with the sel function here at some later stage . . .
Let as assume that the p-variables appear only positively in A(p,q). In this case we choose to replace

all occurrences of
sel(x, a, b) = (x ∨ a) ∧ (x ∨ b) (6.4)

by the function
(x ∨ a) ∧ b . (6.5)

2We did not have constants in Definition 2.1, but if this troubles us we can get rid of them in a postprocessing step by
propagating simplifications 0 ∧ x = 0, 1 ∧ x = x, 0 ∨ x = x, and 1 ∨ x = 1 through the circuit until all constants have been
removed.

4-9

What this means is that we replace sel-gates in (6.3), the only case where a non-monotone gate could be
introduced in I(p), with the computation

type
(
C̃i
)

=
(
x ∨ type

(
C̃j
))
∧ type

(
C̃k
)
. (6.6)

A closer study of the functions in (6.4) and (6.5) reveals that the only differ in that the monotone function
in (6.5) returns 0 instead of 1 on input (x, a, b) = (0, 1, 0).

When does this happen in our proof? This is when we are in the first case in our case analysis, i.e., when
we have Ci = C ∨D derived from Cj = C ∨x and Ck = D∨x for x ∈ p such that ρ(x) = 0. Moreover,
C̃j has been classified as an r-clause and C̃k as a q-clause under the current restriction ρ. According to
our original case analysis we should have set C̃i = C̃j and classified C̃i as an r-clause. Instead, according
to (6.5) we set C̃i = C̃k, which is a q-clause.

Why is this a problem? The clause C̃k does not contain x ∈ p by construction, and so if C̃k is
nontrivial Property 2 holds since x ∈ p is the only variable that disappears in the resolution step. It is also
easy to see that Property 1 always holds by the inductive hypothesis when we copy a clause. What is more
problematic, though, is if we have a resolvent Ci such that

Ci�ρ = (C ∨D)�ρ 6= 1 (6.7)

but have chosen C̃k = 1 since
Ck�ρ = (D ∨ x)�ρ = 1 . (6.8)

If this is the case, then setting C̃i = C̃k violates Property 2 in the definition of q- and r-clauses, since now
C̃i = 1 but Ci�ρ 6= 1. Should this happen, the whole proof crashes and burns. Not good.

Let us analyse this worrying scenario more closely. If C̃k = 1, then by Property 3 in our construction
there is also a justification axiom clauseEk satisfied by an assignment ρ(a) = 1 for some literal a ∈ Ck∩Ek,
where in additionEk ∈ A(p,q) since C̃k is a q-clause. In view of (6.7) and (6.8), the justification literal a
must satisfy a ∈ (D ∨ x) \ (C ∨D), i.e., we must have a = x satisfied by the assignment ρ(x) = 0. But
this means that the axiom clause Ek ∈ A(p,q) would need to contain the literal x, and by assumption
variables x ∈ p appear only positively in A(p,q). So we do not need to worry—this problematic scenario
never arises. Although the computation for vi in the monotone version of the circuit seems to make a
mistake for the input (x, a, b) = (0, 1, 0), the previously constructed clause C̃k is guaranteed to be nice
enough for the invariants to be preserved when we set C̃i = C̃k and type

(
C̃i
)

= type
(
C̃k
)
.

An analogous hack works if p-variables instead appear only negatively inB(p, r). We leave the details
to the reader. This concludes our proof of part 3 of Theorem 5.3.

7 Summing Up and Looking Forward

We have now established Theorem 5.3. If we apply this theorem to the formulas in (4.1a)–(4.1e) and
combine it with Theorem 5.1, then we can deduce that for the clique-coclique formulas for graphs over
n vertices with m = Θ

(
4
√
n
)

it holds that resolution needs refutations of length exp
(
Ω
(
nδ
))

for δ = 1/8.
In the next two lectures we will prove the same lower bound for cutting planes. To do so will require

us to lift the interpolation technique from Boolean circuits to real circuits, which are circuits computing
with arbitrary real numbers instead of just Boolean values {0, 1}. But enough for today!

References

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions.
Combinatorica, 7(1):1–22, March 1987.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. Journal
of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.

4-10

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[Chv73] Vašek Chvátal. Edmond polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 4(1):305–337, 1973.

[Gom63] Ralph E. Gomory. An algorithm for integer solutions of linear programs. In R.L. Graves and
P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269–302. McGraw-
Hill, New York, 1963.

[Kra94] Jan Krajı́ček. Lower bounds to the size of constant-depth propositional proofs. Journal of
Symbolic Logic, 59(1):73–86, 1994.

[Mar06] Klas Markström. Locality and hard SAT-instances. Journal on Satisfiability, Boolean Modeling
and Computation, 2(1-4):221–227, 2006.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
Journal of Symbolic Logic, 62(3):981–998, September 1997.

[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean functions.
Soviet Mathematics Doklady, 31(2):354–357, 1985. English translation of a paper in Doklady
Akademii Nauk SSSR.

4-11

	Introduction
	Circuits
	Cutting Planes
	Clique-Coclique Formulas and Interpolation
	Statement of Clique-Coclique Formula Lower Bound
	Proof of Clique-Coclique Formula Lower Bound
	Extracting a Resolution Refutation of One of the Subformulas
	Writing down the Interpolating Circuit
	Removing Selector Gates

	Summing Up and Looking Forward

