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Theorem: Above problems require Q(n/2+D)
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Distributed network:
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We are given a graph G of n nodes, diameter

n=4, D=2



Each node knows only their neighbors



Time complexity

“number of days”



Days: Exchange one bit
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Nights: Perform local computation

Night

~
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Assume: Any calculation finished in one night




Days: Exchange one bit
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Nights: Perform local computation

Night
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Finish on Day t =2 Time complexity =t

Day

t

2 |




Quick Example
Finding a spanning tree



Start at an arbitrary node
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New red nodes invite all neighbors

1 ae?’ ‘
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Blue nodes accept invitation of one neighbor
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Blue nodes accept invitation of one neighbor
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New red nodes invite all neighbors

A
@%@j
O/}?
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Blue nodes accept invitation of one neighbor
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Blue nodes accept invitation of one neighbor

Day

A
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Day

In general, a spanning tree
can be found in O(D) time
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State of the art (forgetting log)

Spanning tree O(D)
(ST)
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State of the art (forgetting log)

Spanning tree O(D) (D)
(ST)
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Quick remarks

This is called the CONGEST model
Nodes usually exchange O(log n) or B bits a day

— But we will ignore log n terms here anyway

“Days” is actually called “rounds”

Many assumptions: Global clock, no failures, no
delays, unique ID, free internal computation, etc.

— It helps us in focusing on the “locality” issue

— And we are showing that lower bounds are true even
with these assumptions




Part 2

MST and
ST verification




We have seen that ...

A spanning tree (ST) can be found
IN time



How about verifying that
a subgraph is a spanning tree?



Question 1: Given a subgraph H, can we verify that H
iS a spanning tree in O(D) time?
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How about finding a
minimum spanning tree (MST)?



Question 2: Given edge weight w, can we find a
minimum spanning tree in O(D) time?
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Results on Minimum
Spanning Tree (MST)
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State of the art (forgetting log)

Spanning tree O(D) (D)
(ST)
MST O(D +n'?) Q(D + n/2)

o-approx. MST Q(D + (n /a)1/?)
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State of the art (forgetting log)

Spanning tree O(D) Q(D)

(ST)

MST O(D + n'72) Q(D + nl/2)
o-approx. MST Q(D + (n /a)1/?)

ST verification
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State of the art (forgetting log)

Spanning tree O(D) Q(D)

(ST)

MST O(D + n'72) Q(D + nl/2)
o-approx. MST Q(D + (n /a)1/?)
ST verification O(D + n'?)

N

Parameters
of G, not H
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Our results




State of the art (forgetting log)

Spanning tree O(D) Q(D)

(ST)

MST O(D + n'72) Q(D + nl/2)
o-approx. MST B —— . Q(D + (FD‘QQ”Z)

ST verification O(D + nl?2) Q(D +n 1/2;>
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Hamiltonian CycIe r-round Pointer Chasing

—

Spanning Tree s-t connectivity ’chg‘ ’:Cycle bipartiteness

|\ least-element | |edge on all

Vi k-c -t
connectivity omponents| [ cut ||s-tcut list paths
- T
MST s-source shorte;t path mincut| | T 2 ¢ shortest s-t path max-cut
distance | [spanning tree cut
shallow-light min routing cost generalized Steiner Random
tree spanning tree forest Wa I k

Theorem: Above problems require Q(n'/2) time
to verify/approximate




Part 3

Proofs




Direct equality verification Distributed equality verification
—
lower bound Q(b) Part 3.3 lower bound|Q(n?/2)

Well-known result in ‘

communication complexity Simulation Part 3.2 Q(b)
Theorem l,

ST verification lower
bound Q(n?/2)

Notes I
-The lower bounds hold on a Part 3.1
graph of diameter D=0O(log n) l

- For simplicity, we will
. 1/4 Approx MST lower
consider only D=0(n*/*) bound Q(n/2)



Part 3.1

ST verification lower
bound Q(n1/2)

v

Approx MST lower
bound Q(n/2)
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a-approximating MST In
O(n%4°+D) time

4

Spanning tree verification in
O(n%%°+D) time



Assume that algorithm A
- is 10-approximation
- runs in O(n°4°+D)-time
Put weight 1 to edges in H, and e to others
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Observe: H is a spanning tree if and only if
1) it has n-1 edges

2) MST has weight n-1 4msp A returnsvalue
< 10(n-1)<10n
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Observe: H is a spanning tree if and only if

1) it has n-1 edges - O(D)
2) algo A returns value <10n< O(n®*>+D)
, O(n%49+D)
/ \
1
H (o o/
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Direct Equality Verification i Distributed Equality Verification
lower bound Q(b) Part 3.3 lower bound|Q(n?/2)

Well-known result in ‘
communication complexity Part 3.2 Q2(b)

|

ST verification lower
bound Q(n?/2)

Notes I
-The lower bounds hold on a Part 3.1
graph of diameter D=0O(log n) l

- For simplicity, we will
. 1/4 Approx MST lower
consider only D=0(n*/*) bound Q(n/2)



Distributed Equality Verification
lower bound Q(n?/2)

Part 3.2

|

ST verification lower
bound Q(n?/2)
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Direct Equality Verification Distributed Equality Verification



Direct Equality Verification

Distributed Equality Verification
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Direct Equality Verification Distributed Equality Verification

Yes, x=y

Yes, x=y

Alice
x € {0, 1}°
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Direct Equality Verification Distributed Equality Verification

One solution: Alice sends everything ... time=b

X=y?

X
(b days for b bits)

Alice
x € {0, 1}°
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Direct Equality Verification Distributed Equality Verification

One solution: Alice sends everything ... time=b
Theorem: Any algorithm needs €2(b) time

X=y?

X
(b days for b bits)
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Direct Equality Verification Distributed Equality Verification

Graph G(b)

x € {0,1}°




b paths

Direct Equality Verification Distributed Equality Verification

b green nodes
\

r \

959,00 00,0000 00,0200 O

9595020005020 0200,020,020 QL7
[ ]

—

[ "

-

J

b1/2 ngeen nodes B
Y yE {0, 1P

bl/2 orange nodes

Alice \
x € {0, 1}°



Notice:
n=0(b?)
D=0(b¥/2)=0(n1/4)




b paths

Direct Equality Verification Distributed Equality Verification

b green nodes

J

bl/2green nodes

f

bl/2 orange nodes




Notice:
n=0(b?)
D=0(b¥/2)=0(n1/4)







Distributed Equality Verification
lower bound Q(n?/2)

Part 3.2

|

ST verification lower
bound Q(n?/2)
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ST verification
on G(b) in O(n%*°) time

$

Distributed equality verification
on G(b) in O( n°43) time



Let A be an algorithm for ST verification
that runs in O(n%%%) time

\\\\\\\\\\

Alice

x=01...1 )(=y?




We will define subgraph H based on x and y

\\\\\\\\\\

Alice

x=01...1 Xzy?




1. All edges in all paths are in H




G:

1. All edges in all paths arein H
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2. Alice: all “0” edges are in H
Bob :all “1” edges are in H




2. Alice: all “0” edges are in H
Bob :all “1” edges are in H




Observation 1:
If x=y then H is a spanning tree




Observation 2:
If x2y then H is NOT a spanning tree




So, run A to verify whether H is a spanning tree
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Direct Equality Verification Distributed Equality Verification

—_—

lower bound Q(b) Part 3.3 lower bound Q(n1/2)
Well-known result in ‘
communication complexity Part 3.2

|

ST verification lower
bound Q(n?/2)

Part 3.1

!

Approx MST lower
bound Q(n'/2)



Direct Equality Verification Distributed Equality Verification

——
lower bound Q(b) Part 3.3 lower bound|Q(n1/2)
Well-known result in ‘ '\
communication complexity Part 3.2 Q(b)

|

ST verification lower
bound Q(n?/2)

Part 3.1

!

Approx MST lower
bound Q(n'/2)



Direct Equality Verification Distributed Equality Verification

 ———

lower bound Q(b) Part 3.3 lower bound|Q(n/2)
Well-known result in \
communication complexity Q(b)

The Simulation
Theorem

75



Simulation Theorem

If the distributed equality verification can

be solved in T days, forany T < b/2,
then the direct version can be solved in <T days

G ) L
time = T<b/2
time: T<b/2 known: need =b

Contradiction!



Proof Idea: Assume there is a
distributed algorithm A that
uses < b/2 steps




A

< b/2 bits

X %h{cci 1}100 Contradiction
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Proof: Assume there is a
distributed algorithm A that
uses <b/2 steps
Goal: Show that Alice & Bob

can use A to compute
UALITY using b/2 bits
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Proof of
the Simulation theorem

- Let A be a distributed algorithm which runs in T<b/2 time
- Alice and Bob will simulate A on their OWN networks

- They try to exchange minimum messages to keep their
machines running as long as possible



Bob’s network

2 o E
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-/ | () [ ‘
/X\ Alice’s network H Bob’s network
f RunA |, f Run A E\
—— E 0

Alice Bob
1 x€{0,1) yeE{0, 1> [
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In step 0, Alice can run A on
all machines except Bob’s



The following is an intuition.
It is NOT the real proof.



(intuition)
Observe: Alice and Bob can
simulate A for b*/“ steps
without exchanging messages
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Alice Bob
x € {0, 1}° y € {0, 1}°
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—

| |
b2 nodes b2 nodes

b1/2

Alice
x € {0, 1}°
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(intuition)
Observe: Alice and Bob can
simulate A for b*/“ steps
without exchanging messages




Theorem: Alice and Bob can
simulate A for b/2 steps
by exchanging 1 bit per step




e —_—
=

———
Sy e m— e
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9. = bit sent by A run on Bob’s machine
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9. = bit sent by A from Bob’s machine
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Bob
y € {0, 1}°

1,= bit sent by A from Bob’s machine .



bit sent by A from Bob’s machine
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101
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Alice Bob
x € {0, 1}° y € {0, 1}°
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Alice Bob
x € {0, 1}° y € {0, 1}°
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Alice Bob
x € {0, 1}° y € {0, 1}°
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Alice Bob
x € {0, 1}° y € {0, 1}°
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Alice Bob
x € {0, 1}° y € {0, 1}°
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Alice and Bob can simulate the
algorithm for
at least b/2 days



Alice Bob
x € {0, 1}° y € {0, 1}°
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Simulation Theorem

If the distributed equality verification can

be solved in T days, forany T < b/2,
then the direct version can be solved in <T days

Proof Alice and Bob can simulate any
distributed algorithm for b/2 days with one
bit exchanged per day.




Direct Equality Verification | Distributed Equality Verification
lower bound Q(b) Part 3.3 lower bound|Q(n?/2)

Well-known result in ‘
communication complexity = By the Simulation Part 3.2 Q2(b)
theorem ‘l'

ST verification lower
bound Q(n?/2)

Notes Part 3.1
-The lower bounds hold on l
graphs of diameter D=0O(log n)

. . . . Approx MST lower
- For simplicity, we will bound Q(n¥/2)

consider only D=0(n?/4)



Graph G(b) has diameter n/4

We can use a similar analysis on
some graphs of diameter

O(log n)
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b paths

b green nodes
\

\

O ' o o o Q o o o o. P,
. -
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We are done



with deterministic algorithms



How about randomized
algorithms?

... to be continued




