Distributed Verification and Hardness of Distributed Approximation

Danupon Nanongkai KTH

Based on

Distributed Verification and Hardness of Distributed Approximation, STOC 2011 & SICOMP 2012,

with Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Gopal Pandurangan, David Peleg, Roger Wattenhofer

A distributed network

Theorem: Above problems require $\Omega(n^{1/2}+D)$ time to verify/approximate

Roadmap

- Part 1: The model of distributed computing
- Part 2: Introduction to MST and ST verification
- Part 3: Proof of the hardness of approx. MST

• Part 4: After 2011

<u> Part 1</u>

Theory of Distributed Computing 101

Г

Distributed Computing

Communication Network

Multicore Processors

Ant Contact Networks

Chemical Reaction Networks

Distributed network:

We are given a graph G of n nodes, diameter D

Each node knows only their neighbors

Time complexity

"number of days"

Days: Exchange one bit

Nights: Perform local computation

Assume: Any calculation finished in one night

Days: Exchange one bit

Nights: Perform local computation

Finish on Day $t \rightarrow$ Time complexity = t

Quick Example Finding a spanning tree

Start at an arbitrary node

New red nodes invite all neighbors

Blue nodes accept invitation of one neighbor

Blue nodes accept invitation of one neighbor

New red nodes invite all neighbors

Blue nodes accept invitation of one neighbor

Blue nodes accept invitation of one neighbor

In general, a spanning tree can be found in O(D) time

State of the art (forgetting log)

Problems	Upper	Lower
Spanning tree (ST)	O(D)	

State of the art (forgetting log)

Problems	Upper	Lower
Spanning tree (ST)	O(D)	$\Omega(D)$

Quick remarks

- This is called the CONGEST model
- Nodes usually exchange O(log n) or B bits a day
 - But we will ignore log n terms here anyway
- "Days" is actually called "rounds"
- Many assumptions: Global clock, no failures, no delays, unique ID, free internal computation, etc.
 - It helps us in focusing on the "locality" issue
 - And we are showing that <u>lower bounds</u> are true even with these assumptions

Part 2 MST and ST verification

We have seen that ...

A spanning tree (ST) can be found in O(D) time

How about **verifying** that a **subgraph** is a spanning tree?

Question 1: Given a subgraph H, can we verify that H is a spanning tree in O(D) time?

How about finding a minimum spanning tree (MST)?

Question 2: Given edge weight w, can we find a minimum spanning tree in O(D) time?

Results on Minimum Spanning Tree (MST)

 α -approximation algorithms require $\Omega((n/\alpha)^{1/2})$ –time, even on $O(\log n)$ -diameter graphs

Approximation algorithms?

State of the art (forgetting log)

Problems	Upper	Lower
Spanning tree (ST)	O(D)	$\Omega(D)$
MST	$O(D + n^{1/2})$	$\Omega(D + n^{1/2})$
α -approx. MST		$\Omega(D + (n/\alpha)^{1/2})$

State of the art (forgetting log)

Problems	Upper	Lower
Spanning tree (ST)	O(D)	$\Omega(D)$
MST	$O(D + n^{1/2})$	$\Omega(D + n^{1/2})$
α -approx. MST		$\Omega(D + (n/\alpha)^{1/2})$
ST verification		

State of the art (forgetting log)

Problems	Upper	Lower
Spanning tree (ST)	O(D)	$\Omega(D)$
MST	$O(D + n^{1/2})$	$\Omega(D + n^{1/2})$
α -approx. MST		$\Omega(D + (n/\alpha)^{1/2})$
ST verification	$O(D + n^{1/2})$	

Parameters of G, not H

Our results

State of the art (forgetting log)

Problems	Upper	Lower
Spanning tree (ST)	O(D)	$\Omega(D)$
MST	$O(D + n^{1/2})$	$\Omega(D + n^{1/2})$
α -approx. MST		$\Omega(D + (n/\alpha)^{1/2})$
ST verification	$O(D + n^{1/2})$	$\Omega(D + n^{1/2})$

Randomized

Theorem: Above problems require $\Omega(n^{1/2})$ time to verify/approximate

<u>Part 3</u>

Proofs

Part 3.1

α -approximating MST in $O(n^{0.49}+D)$ time

Spanning tree verification in O(n^{0.49}+D) time

Assume that algorithm A

- is 10-approximation
- runs in $O(n^{0.49}+D)$ -time

Put weight 1 to edges in H, and ∞ to others

Observe: H is a spanning tree if and only if

- 1) it has n-1 edges
- 2) MST has weight n-1

A returns value ≤ 10(n-1)<10n

Observe: H is a spanning tree if and only if

- 2) algo A returns value <10n ← O(n^{0.49}+D)

Direct Equality Verification lower bound $\Omega(b)$

Part 3.3

Distributed Equality Verification lower bound $\Omega(n^{1/2})$

Part 3.2

Well-known result in communication complexity

ST verification lower bound $\Omega(n^{1/2})$

Notes

- -The lower bounds hold on a graph of diameter **D=O(log n)**
- For simplicity, we will consider only **D=O(n**^{1/4})

Approx MST lower bound $\Omega(n^{1/2})$

Part 3.1

 $\Omega(\mathsf{b})$

Part 3.2

$$x=y$$
?

Alice $x \in \{0, 1\}^b$

One solution: Alice sends everything ... time=b

x=y?

x (b days for b bits)

Alice $x \in \{0, 1\}^b$

Bob y ∈ {0, 1}^b

One solution: Alice sends everything ... time=b Theorem: Any algorithm needs $\Omega(b)$ time

x=y?

x (b days for b bits)

Alice $x \in \{0, 1\}^b$

Bob y ∈ {0, 1}^b

Notice:

$$n=O(b^2)$$

 $D=O(b^{1/2})=O(n^{1/4})$

Notice:

$$n=O(b^2)$$

 $D=O(b^{1/2})=O(n^{1/4})$

Notice: $D=O(n^{1/4})$

Part 3.2

ST verification on G(b) in O(n^{0.49}) time

Distributed equality verification on G(b) in O(n^{0.49}) time

Let A be an algorithm for ST verification that runs in $O(n^{0.49})$ time

We will define subgraph H based on x and y

1. All edges in all paths are in H

1. All edges in all paths are in H

2. Alice: all "0" edges are in H Bob: all "1" edges are in H

2. Alice: all "0" edges are in H Bob: all "1" edges are in H

Observation 1:

If x=y then H is a spanning tree

Observation 2: If x≠y then H is NOT a spanning tree

So, run A to verify whether H is a spanning tree

Direct Equality Verification lower bound $\Omega(b)$

Part 3.3

Distributed Equality Verification lower bound $\Omega(n^{1/2})$

Well-known result in communication complexity

Direct Equality Verification lower bound $\Omega(b)$

Part 3.3

Distributed Equality Verification lower bound $\Omega(n^{1/2})$

Well-known result in communication complexity

Part 3.3

Simulation Theorem

If the distributed equality verification can be solved in T days, for any T ≤ b/2, then the direct version can be solved in ≤T days

Proof Idea: Assume there is a distributed algorithm A that uses < b/2 steps

< b/2 bits

Alice $x \in \{0, 1\}^{100}$

Contradiction

Bob $y \in \{0, 1\}^{100}$

Proof: Assume there is a distributed algorithm A that uses
b/2 steps

Goal: Show that Alice & Bob can use A to compute GUALITY using b/2 bits

Proof of the Simulation theorem

- Let *A* be a distributed algorithm which runs in T≤b/2 time
- Alice and Bob will simulate A on their OWN networks
- They try to exchange minimum messages to keep their machines running as long as possible

Alice's network

1

Run A

Bob's network

Run A

FORMA

Alice $x \in \{0, 1\}^b$

Bob $y \in \{0, 1\}^b$

In step 0, Alice can run A on all machines except Bob's

The following is an **intuition**. It is NOT the real proof.

(intuition)
Observe: Alice and Bob can
simulate A for b^{1/2} steps
without exchanging messages

(intuition)
Observe: Alice and Bob can
simulate A for b^{1/2} steps
without exchanging messages

Theorem: Alice and Bob can simulate A for b/2 steps by exchanging 1 bit per step

 b_1 = bit sent by A run on Bob's machine

b₁ = bit sent by A from Bob's machine

b₂= bit sent by A from Bob's machine

 b_3 = bit sent by A from Bob's machine

Alice and Bob can simulate the algorithm for at least b/2 days

Simulation Theorem

If the distributed equality verification can be solved in T days, for any T ≤ b/2, then the direct version can be solved in ≤T days

<u>Proof</u> Alice and Bob can simulate any distributed algorithm for **b/2** days with one bit exchanged per day.

Graph G(b) has diameter n^{1/4}

We can use a similar analysis on some graphs of diameter O(log n)

We are done

with deterministic algorithms

How about randomized algorithms?

... to be continued