Distributed Verification and Hardness of Distributed Approximation 2

Danupon Nanongkai KTH

Based on

Distributed Verification and Hardness of Distributed Approximation, STOC 2011 & SICOMP 2012,

with Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Gopal Pandurangan, David Peleg, Roger Wattenhofer

Recap from last time

Simulation Theorem

If the distributed equality verification can be solved in T days, for any T ≤ b/2, then the direct version can be solved in ≤T days

Graph G(b) has diameter n^{1/4}

We can use a similar analysis on some graphs of diameter O(log n)

We are done

with deterministic algorithms

How about randomized algorithms?

Today: Extensions

- Extension to lower bounds for randomized algorithms
- Follow-up works since 2011 + open research questions
- Extension to round-efficient Simulation
 Theorem
- Extension to lower bounds for quantum algorithms

<u> Part 1</u>

Extension to lower bounds for randomized algorithms

Bad news Direct and distributed equality can be verified in O(log b) time by a randomized algorithm

Good news

The simulation theorem is true for *any* function *f*

(and for randomized algorithms)

Simulation Theorem

If f can be computed distributively in T days, for any T ≤ (path length)/2, then the communication complexity of f is ≤T

<u>Proof</u> Alice and Bob can simulate any distributed algorithm for **b/2** days with one bit exchanged per day.

We will use

 f_1 = "disjointness" function f_2 = "Hamiltonian cycle" function

(Randomized lower bound = $\Omega(b)$) (f₂ gives slightly better results)

20

Part 1.1

Disjointness

Two parties are sharing a stadium

A(rgentina)

They want to have a disjoint schedule

June <u>2014</u>									
Wk	Мо	Tu	We	Th	Fr	Sa	Su		
22							1		
23	2	3	4	5	6	7	8		
24	9	10	11	12	13	14	15		
25	16	17	18	19	20	21	22		
26	23	24	25	26	27	28	29		
27	30								

June <u>2014</u>									
Wk	Мо	Tu	We	Th	Fr	Sa	Su		
22							1		
23	2	3	4	5	6	7	8		
24	9	10	11	12	13	14	15		
25	16	17	18	19	20	21	22		
26	23	24	25	26	27	28	29		
27	30								

There are two players, Alice and Bob

Alice

Each player received some numbers (e.g. dates of their matches)

Alice

[1][4][7] ...

Bob

[2][6][7] **...**

Did they receive the same number?

Alice 7

267...

Bob

Did they receive the same number?

Disjointness (more formally)

- Alice gets x={0, 1}^b, Bob gets y={0, 1}^b
- Wants to know <x, y> = 0 or not, where <x, y> is the inner product
- Lower bound: $\Omega(b)$

Connectivity verification problem

 Verify if the subgraph H is a connected graph that spans all nodes in the network

(We actually call this "spanning connected subgraph problem")

Part 1.2

Hamiltonian Cycle

Hamiltonian cycle problem

- Alice gets (V, E₁), Bob gets (V, E₂).
- Wants to know G=(V, E₂ U E₁) is a Hamiltonian cycle or not, i.e. whether it is a cycle that includes all nodes
- Lower bound: $\Omega(|V|)$

Direct Hamiltonian Cycle lower bound via **Direct** IPmod3 lower bound

Definition: IPmod3

- Alice gets x={0, 1}^b, Bob gets y={0, 1}^b
- Wants to know <x, y> mod 3 = 0 or not, where
 <x, y> is the inner product
- Observe: disjointness = IPmod(n+1)
- Lower bound: $\Omega(b)$
 - Holds even in the quantum setting

Reduction (sketched)

Gadget G_i for each bit i

Red: Alice's edges, Blue: Bob's edges

If $(x_i, y_i) = (0, 0)$

If $(x_i, y_i) = (0, 1)$

If $(x_i, y_i) = (1, 0)$

If $(x_i, y_i) = (1, 1)$

When connect everything together

Three possible end results

$$\sum_{i} x_i \cdot y_i \mod 3 = 0$$

$$\sum_{i} x_i \cdot y_i \mod 3 = 1$$

$$\sum_{i} x_i \cdot y_i \mod 3 = 2$$

Exercise

- Reduce from direct Hamiltonian cycle to distributed spanning tree verification
- (Harder) Reduce from direct Hamiltonian cycle to distributed Hamiltonian cycle verification

<u>Part 2</u>

Some follow-up works

Part 2.1

Minimum Spanning Tree

Gallager, Humblet, Spira, TOPLAS'83

Chin, Teng, FOCS'85

Gafni, PODC'85

Awerbuch, STOC'87

Garay, Kutten, Peleg, FOCS'93

Kutten, Peleg, **PODC'95** $O(D + n^{1/2} \log^* n) - time$

Lotker, Patt-Shamir, Peleg PODC'01

Lotker, Patt-Shamir, Peleg

Elkin SODA'04

Khan, Pandurangan **DISC'06**

Elkin + N + others PODC'14

Ookawa, Izumi **SOFSEM'15** $\Omega(D+n^{1/2})$ –time lower bound

Peleg, Rubinovich FOCS'99

Elkin STOC'04

Das Sarma + N + 6 others **STOC'11** "Any" approximation algorithm requires $\Omega(D+(n/\log n)^{1/2})$ —time when D=O(log n)

Approximation algorithm?

47

Distributed MST is essentially resolved

Still open: O(log* n) gap between upper and lower bounds

Part 2.2

s-t distance, single-source distances

<u>Definition</u>: unweighted s-t distance

Goal: t knows distance from s

Goal: t knows distance from s

<u>Claim</u>

Computing s-t distance can be done in **O(D)** time by using the **Breadth-First Search (BFS)** algorithm.

Source node sends its distance to neighbors

Each node updates its distance

Nodes tell new knowledge to neighbors

Each node updates its distance

<u>Claim</u>

s-t distance can be computed in **O(D)** time.

There is an $\Omega(D)$ lower bound. So, the algorithm is tight.

How about weighted graphs?

s-t distance

	Reference	Time	Approximation
>	Folklore	$\Omega(D)$	any

⁻ Polylog n factors are hidden

Reference	Time	Approximation
Folklore	$\Omega(D)$	any
> Bellman&Ford [1950s]	O(n)	exact

⁻ Polylog n factors are hidden

Reference	Time	Approximation
Folklore	$\Omega(D)$	any
Bellman&Ford [1950s]	O(n)	exact
Elkin [STOC 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any $lpha$

⁻ Polylog n factors are hidden

Reference	Time	Approximation
Folklore	$\Omega(D)$	any
Bellman&Ford [1950s]	O(n)	exact
Elkin [STOC 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any $lpha$
Das Sarma et al [STOC 2011] Elkin et al. [PODC 2014]	$\Omega(n^{1/2} + D)$	any α also quantum

⁻ Polylog n factors are hidden

Reference	Time	Approximation
Folklore	$\Omega(D)$	any
Bellman&Ford [1950s]	O(n)	exact
Elkin [STOC 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any $lpha$
Das Sarma et al [STOC 2011] Elkin et al. [PODC 2014]	$\Omega(n^{1/2} + D)$	any α also quantum
Lenzen, Patt-Shamir	$O(n^{1/2+\epsilon} + D)$	Ο(1/ε)

⁻ Polylog n factors are hidden

⁻ Lenzen&Patt-Shamir actually achieve more than computing distances

Reference	Time	Approximation
Folklore	$\Omega(D)$	any
Bellman&Ford [1950s]	O(n)	exact
Elkin [STOC 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any α
Das Sarma et al [STOC 2011] Elkin et al. [PODC 2014]	$\Omega(n^{1/2} + D)$	any α also quantum
Lenzen, Patt-Shamir [STOC 2013]	$O(n^{1/2+\epsilon} + D)$	Ο(1/ε)
N [STOC 2014]	$O(n^{1/2}D^{1/4}+D)$	1+ε

⁻ Polylog n factors are hidden

⁻ Lenzen&Patt-Shamir actually achieve more than computing distances

Reference	Time	Approximation
Folklore	$\Omega(D)$	any
Bellman&Ford [1950s]	O(n)	exact
Elkin [STOC 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any α
Das Sarma et al [STOC 2011] Elkin et al. [PODC 2014]	$\Omega(n^{1/2} + D)$	any α also quantum
Lenzen, Patt-Shamir [STOC 2013]	$O(n^{1/2+\epsilon} + D)$	Ο(1/ε)
N [STOC 2014]	$O(n^{1/2}D^{1/4}+D)$	1+ε
Henzinger,Krinninger,N [2015]	$O(n^{1/2+o(1)} + D^{1+o(1)})$	1+ε

⁻ Polylog n factors are hidden

⁻ Lenzen&Patt-Shamir actually achieve more than computing distances

Distributed s-t distance **approximation** is essentially resolved

Exercise (easy)

• Argue that approximating st-distance require $\Omega(n^{1/2})$ time on some network of diameter $n^{1/4}$

Open Problem Computing s-t distance exactly in sublinear-time

i.e. in $O(n^{1-\epsilon}+D)$ time

Part 2.3

Some other distributed approximation algorithms

Minimum cut (weight = 4)

Global min cut (a.k.a. edge-connectivity)

 λ = optimal solution

Reference	Time	Approximation
Pritchard, Thurimella [TALG'11]	O(D) for $\lambda \leq 2$	exact
	$O(n^{1/2} + D)$ for $\lambda \le 3$	exact
NSu [DISC'14]	$O((n^{1/2} + D) \lambda^4)$ thus $O((n^{1/2} + D))$ for constant λ	exact

Das Sarma et al [sτοc'11] Elkin et al. [PODC 2014]	$\Omega(n^{1/2} + D)$ for large enough λ	any also quantum
Ghaffari, Kuhn [DISC'13]	$O(n^{1/2} + D)$	2
N + Su [DISC'14]	$O(n^{1/2} + D)$	1+ε

Global min cut (a.k.a. edge-connectivity)

 λ = optimal solution

Distributively **approximating** mincut is essentially resolved

Open:

- Sublinear-time exact algorithm.
- Lower bound when λ is small.

Probabilistic Tree Embedding (in particular, FRT embedding)

Reference	Time	Approximation
Das Sarma et al. [sтос'11]	$\Omega(n^{1/2} + D)$	any also quantum
Ghaffari, Lenzen [DISC'14]	$O(n^{1/2+\epsilon} + D)$	$O(\log n/\epsilon)$

Minimum-Weight Connected Dominating Set

Das Sarma et al. [sтос'11]	$\Omega(n^{1/2} + D)$	any also quantum
Ghaffari [ICALP'14]	$O(n^{1/2} + D)$	O(log n)

Steiner Forest

Lenzen, Patt-Shamir [PODC'14]	$\Omega(n^{1/2} + D + k)$	any
Lenzen, Patt-Shamir [PODC'14]	$O(n^{1/2} + D + k)$	O(log n)

Open problems

- Exact algorithms
 - st-distance O(n) vs. $\Omega(n^{1/2}+D)$
 - mincut O(m) vs. $\Omega(n^{1/2}+D)$
- k-edge connectivity when k is constant $O(n^{1/2}+D)$ vs. nothing

<u> Part 3</u>

Extension to round-efficient Simulation Theorem

Motivation Distributed Random Walks

Want a random walk of length ℓ from s

Trivial algorithm: Forward a token randomly for ℓ rounds

The token ends somewhere

If we repeat, the token might end in a different node

This process takes & rounds to send a token in a random walk manner.

Distributed random walk problem

Can we forward the token in a random walk manner faster than \(\ell\) rounds?

(Formally, we want to sample a destination node according to the distribution induced by the leader random walk.)

Random walks

[Das Sarma, N., Pandurangan, Tetali, PODC'09+10]:

- A random walk of length ℓ can be found in O((ℓD)^{1/2})
 time
- Conditional lower bound of $\Omega(\ell^{1/2})$ time for small D on multigraphs

[N. Das Sarma, Pandurangan]:

- Lower bound of $\Omega((\ell D)^{1/2})$ -time for any n, D, and $D \le \ell \le (n/D^3 \log n)^{1/4}$ on multigraphs
- First lower bound that D plays a role of multiplicative factor

The Simulation Theorem is not Enough

Impossible to get D in the lower bound since D is not part of the Simulation

Theorem

Previous Reductions

New Reductions

Previous Simulation Theorem

If f can be computed distributively in T days, for any $T \le (path length)/2$, then the communication complexity of f is $\le T$

<u>Proof</u> Alice and Bob can simulate any distributed algorithm for **b/2** days with one bit exchanged per day.

NEW Simulation Theorem

If f can be computed distributively in T days, for any $T \le (path length)/2$, then the communication complexity of f is to the fine the communication complexity of <math>to the fine the fine the communication complexity of <math>to the fine the fine the communication complexity of <math>to the fine the fine the communication complexity of <math>to the fine the fine the fine the communication complexity of <math>to the fine the fine the fine the fine the communication complexity of <math>to the fine the fin

<u>Proof</u> Alice and Bob can simulate any distributed algorithm for **b/2** days with one bit exchanged per day.

NEW Simulation Theorem

If f can be computed distributively in T days, for any $T \le (path length)/2$, then the communication complexity of f is to the fine the fine the communication complexity of <math>to the fine the fin

Proof Alice and Bob can simulate any distributed algorithm for b/2 days with one bit exchanged per day. They wait for D rounds before sending messages

Exercise

 Fill in the details for the proof of the New Simulation Theorem

Some changes are needed

Bad news

With quantum communication, disjointness is too easy

Good news

Many other problems are still hard

e.g. IPmod2, IPmod3, ...

So, you can prove lower bounds for quantum algorithms using, e.g., IPmod3.

Part 4.1

Warning: You can't use arbitrary problem in the quantum communication complexity model

Bad news

We can't make the simulation theorem work for the quantum setting

Bad news

We can't make the simulation theorem work for the quantum setting

Reason

No-Cloning Theorem (We can't make a copy of qubit)

Main problem: Alice and Bob simulates the same machines

Good news The simulation theorem works for a new model called Server model

Server Model

Server Model

Good news

We show that problems such as IPmod2, IPmod3, ... are still hard in the Server model.

Exercise

Prove a new version of the Simulation
 Theorem where you start from the server model instead. Make sure that every machine in the network is simulated by exactly one party (among 3).