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Recap from last time




Direct Equality Verification | Distributed Equality Verification
lower bound Q(b) Part 3.3 lower bound|Q(n?/2)

Well-known result in ‘
communication complexity = By the Simulation Part 3.2 Q2(b)
theorem ‘l'

ST verification lower
bound Q(n?/2)

Notes Part 3.1
-The lower bounds hold on l
graphs of diameter D=0O(log n)

. . . . Approx MST lower
- For simplicity, we will bound Q(n¥/2)

consider only D=0(n?/4)



Simulation Theorem

If the distributed equality verification can

be solved in T days, forany T < b/2,
then the direct version can be solved in <T days

G ) L
time = T<b/2
time: T<b/2 known: need =b

Contradiction!



Graph G(b) has diameter n/4

We can use a similar analysis on
some graphs of diameter

O(log n)
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We are done



with deterministic algorithms



How about randomized
algorithms?



Today: Extensions

Extension to lower bounds for randomized
algorithms

Follow-up works since 2011 + open research
guestions

Extension to round-efficient Simulation
Theorem

Extension to lower bounds for quantum
algorithms




Part 1

Extension to lower bounds for
randomized algorithms




Bad news
Direct and distributed equality
can be verified in O(log b) time
by a randomized algorithm




Part 3.3

Well-known result in T

communication complexity = By the Simulation Part 3.2 Q2(b)
theorem ‘L

ST verification lower
bound Q(n1/2)

Part 3.1

!

Approx MST lower
bound Q(n/2)
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Good news

The simulation theorem is
true for any function f

(and for randomized algorithms)



Simulation Theorem

If f can be computed distributively in T
days, for any T < (path length)/2,

then the communication complexity of f is
<T

Proof Alice and Bob can simulate any
distributed algorithm for b/2 days with one
bit exchanged per day.




Direct f Verification s Distributed f Verification

lower bound Q(b) Part 3.3 lower bound Q(n/2)
_— i -_— [ i
Well-known result in |
communication complexity = By the Simulation Part 3.2 Q2(b)
theorem ‘l’

ST verification lower
bound Q(n?/2)

Part 3.1

!

Approx MST lower
bound Q(n'/2)



We will use
f, = “disjointness” function
f, = “Hamiltonian cycle”

function

(Randomized lower bound = Q2(b))
(f, gives slightly better results)




disjointness equality

Spannin e

Connectivity

‘1’: !

MST



Hamiltonian Cycle

— .

Spanning Tree

b/

s-t connectivity ’Zyg‘ ’:cycle

bipartiteness

. . k-components| | cut | ls-t cut |\least-element | [edge on all
Connectivity P list paths
——
MST s-source shorte;t path mincut| | T 2 ¢ shortest s-t path max-cut
distance | [spanning tree cut
shallow-light min routing cost generalized Steiner
tree spanning tree forest

To prove lower bound of Hamiltonian Cycle, we need the IPmod3 problem

equality

20



Part 1.1

Disjointness



Two parties are sharing a stadium

A(rgentina)



They want to have a disjoint schedule

June 2014 June 2014
WKk Mo Tu We Th Fr Sa Su Wk Mo Tu We Th Fr Sa Su
22 1 22 1
23 2 3 4 5 6 7T 8 23 2 3 4 5 6 171
24 9 10 11 12 13 14 15 24 9 10 11 12 13 14 15
25 16 17 18 19 20 21 22 25 16 17 18 19 20 21 22
26 23 24 25 26 27 28 29 26 23 24 25 26 27 28 29

27 30 27 30



There are two players, Alice and Bob

Alice

24



Each player received some numbers
(e.g. dates of their matches)




Did they receive the same number?




Did they receive the same number?

Yes Yes




Disjointness (more formally)

 Alice gets x={0, 1}°, Bob gets y={0, 1}°

* Wants to know <x, y> =0 or not, where <x, y>
is the inner product

* Lower bound: Q2(b)



Direct disjointness Distributed disjointness lower

lower bound €2(b) bound
(randomized) Q(b) =Q(n?/2)
|
By the Simulation Exercise
theorem

v

Connectivity verification
lower bound Q(n?/2)

v

Approx MST lower
bound Q(n'/2)



Connectivity verification problem

e Verify if the subgraph H is a connected graph
that spans all nodes in the network

(We actually call this “spanning connected subgraph
problem”)



Part 1.2

Hamiltonian Cycle



Hamiltonian cycle problem

* Alice gets (V, E,), Bob gets (V, E,).

* Wants to know G=(V, E, U E,) is a Hamiltonian

cycle or not, i.e. whether it is a cycle that
includes all nodes

* Lower bound: Q(|V|)



Direct Hamiltonian Cycle Distributed Hamiltonian Lower

lower bound €2(n) bound
(randomized) Q(b) =Q(n?/2)
Sketched next l
I ST verification lower

] bound Q(n?/2)
Direct IPmod3

lower bound €2(b)
(randomized)

v

IPmod3 = Inner Project mod 3 Approx MST lower
bound Q(n/2)



Direct Hamiltonian Cycle lower bound
via Direct IPmod3 lower bound



Definition: IPmod3

Alice gets x={0, 1}°, Bob gets y={0, 1}°

Wants to know <x, y> mod 3 = 0 or not, where
<X, y>is the inner product

Observe: disjointness = IPmod(n+1)

Lower bound: Q(b)

— Holds even in the gquantum setting



Reduction (sketched)



Gadget G, for each bit i

Red: Alice’s edges, Blue: Bob’s edges

O v

O vi
O vf
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If (x,y:)= (0, O)



If (x,y:)= (0, 1)



If (x.,y:)= (1, O)




If (x,y:)= (1, 1)




When connect everything together




Three possible end results

0

vy Un

vy v
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in-yi mod 3 =0
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0
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\“\\ 2
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Exercise

* Reduce from direct Hamiltonian cycle to
distributed spanning tree verification

e (Harder) Reduce from direct Hamiltonian cycle
to distributed Hamiltonian cycle verification



Part 2

Some follow-up works




Part 2.1

Minimum Spanning
Tree



Gallager, Humblet, Spira, TOPLAS’83 Lotker, Patt-Shamir, Peleg PODC’01

Chin, Teng, FOCS’85 Lotker, Patt-Shamir, Peleg

Khan Pandurangan DISC’OG
Awerbuch, STOC'87

- Elkm + N + others PODC’14

Garay, Kutten, Peleg, FOCS’93

Ookawa, lzumi SOFSEM’15

Kutten, Peleg, PODC’95 Q(D+n'/2) ~time lower bound
O(D + n'? log* n)-time

Peleg, Rubinovich FOCS’99 Approximation
Elkin STOC’04 algorithm?

Das Sarma + N + 6 others STOC’11

“Any” approximation algorithm requires
Q(D+(n/log n)/2) —time when D=0(log n)

47
any = any poly(n)-approximation algorithm




Distributed MST is essentially resolved

Still open: O(log™ n) gap between upper and lower bounds




Part 2.2

s-t distance,
single-source distances



Definition: unweighted
s-t distance



Distance from s}

Goal: t knows distance from s _




Distance from 59

Goal: t knows distance froms




Claim

Computing s-t distance can be done
in O(D) time by using the
Breadth-First Search (BFS) algorithm.

Reminder: D = diameter



BELY,

Source node sends its distance to neighbors



Each node updates its distance



Nodes tell new knowledge to neighbors



Each node updates its distance



Claim

s-t distance can be computed
in O(D) time.

There is an (D) lower bound.
So, the algorithm is tight.



How about
weighted graphs?



s-t distance



Reference Time Approximation

> Folklore (D) any

- Polylog n factors are hidden
61



Reference Time Approximation

Folklore (D) any

> Bellman&Ford [1950s] O(n) exact

- Polylog n factors are hidden
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Reference Time Approximation
Folklore (D) any
Bellman&Ford [1950s] O(n) exact

> Elkin [sToc 2006] Q((n/a)2+ D) any o

- Polylog n factors are hidden
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Reference Time

Approximation

Folklore (D)
Bellman&Ford [1950s] O(n)
Elkin [sTOC 2006] Q((n/a)2+ D)

Das Sarma et al [sToc 2011] Q(n1/2+ D)
Elkin et al. [PODC 2014]

any
exact
any o

any a
also quantum

- Polylog n factors are hidden
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Reference Time Approximation
Folklore (D) any
Bellman&Ford [1950s] O(n) exact

Elkin [sTOC 2006] Q((n/a)2+ D) any o

Das Sarma et al [sToc 2011] Q(n/2 + D) any o

Elkin et al. [PODC 2014] also quantum
Lenzen,Patt-Shamir O(n/2* + D) O(1/¢)

[STOC 2013]

- Polylog n factors are hidden

- Lenzen&Patt-Shamir actually achieve more than computing distances

65



Reference Time Approximation
Folklore (D) any
Bellman&Ford [1950s] O(n) exact
Elkin [sTOC 2006] Q((n/a)2+ D) any o
Das Sarma et al [sToc 2011] Q(n/2 + D) any o
Elkin et al. [PODC 2014] also quantum
Lenzen,Patt-Shamir O(n/2* + D) O(1/¢)
[STOC 2013]

> N [sToc 2014] O(nY/2DV4+ D) 1+¢

- Polylog n factors are hidden
- Lenzen&Patt-Shamir actually achieve more than computing distances

66



Reference Time Approximation

Folklore (D) any
Bellman&Ford [1950s] O(n) exact
Elkin [sTOC 2006] Q((n/a)2+ D) any o

Das Sarma et al [sToc 2011] Q(n/2 + D) any o

Elkin et al. [PODC 2014] also quantum
Lenzen,Patt-Shamir O(n/2* + D) O(1/¢)
[STOC 2013]

N [sToc 2014] O(nY/2DV4+ D) 1+¢

Henzinger,Krinninger,N ()(nl/2+0(1)+ D1+0(1)) 1+¢
[2015]

- Polylog n factors are hidden
- Lenzen&Patt-Shamir actually achieve more than computing distances



Distributed s-t distance approximation
Is essentially resolved



Exercise (easy)

* Argue that approximating st-distance require
Q(nY2) time on some network of diameter n1/4



Open Problem
Computing s-t distance

exactly in sublinear-time
i.e.in O(n't+D) time




Part 2.3

Some other distributed
approximation algorithms



Minimum cut
(weight = 4)



Global min cut (a.k.a. edge-connectivity)
A = optimal solution

Reference Time Approximation
Pritchard, Thurimella Q(D) for A<2 exact

TALG'11

| | O(nY/2+ D) for A<3 exact

N.-Su [DISC'14] O((n'/2+ D) A%) exact

thus O((nY/2+ D)) for constant A

Das Sarma et al stoc11 Q(n1/2 + D) any

Elkin et al. [PODC 2014] for large enough A

Ghaffari, Kuhn O(nY2+ D) 2
[DISC’13]
N + Su [Disc'14] O(nl/Z + D) 1+¢

73
*polylog n terms are omitted



Global min cut (a.k.a. edge-connectivity)
A = optimal solution

Distributively approximating mincut is
essentially resolved

Open:
* Sublinear-time exact algorithm.

e Lower bound when A is small.




Probabilistic Tree Embedding (in particular, FRT embedding)

Reference Time Approximation
Das Sarma et al. [stoc'11] Q(nl/2 + D) any
Ghaffari, Lenzen [pisc'14] O(nY/2*¢ + D) O(log n/e)

Minimum-Weight Connected Dominating Set
Das Sarma et al. [stoc'11] Q(nl/2 + D)

any

Ghaffari [IcaLP'14] O(nY2+ D) O(log n)

Steiner Forest

Lenzen, Patt-Shamir [pobc14] Q(nY2+ D +k) any

Lenzen, Patt-Shamir popc'1a]  Q(n¥2+ D +k) O(log n)
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Open problems

* Exact algorithms
— st-distance O(n) vs. Q(n¥/2+D)
— mincut O(m) vs. Q(n1/2+D)

* k-edge connectivity when k is constant O(n/2+D) vs.
nothing



Part 3

Extension to round-efficient
Simulation Theorem




Motivation
Distributed Random Walks




Want a random walk of length ¢ from s




Trivial algorithm: Forward a token
randomly for ¢ rounds




The token ends somewhere




If we repeat, the token might end in a
different node




This process takes ¢rounds to send a
token in a random walk manner.



Distributed random walk problem

Can we forward the token in a random
walk manner faster than ¢rounds?

(Formally, we want to sample a destination node
according to the distribution induced by the | —step
random walk.)



Random walks
[Das Sarma, N., Pandurangan, Tetali, PODC’09+10]:

* A random walk of length ¢ can be found in O((¢D)/?)
time

* Conditional lower bound of Q(¢'/2) time for small D
on multigraphs

[N. Das Sarma, Pandurangan]:

* Lower bound of Q((/D)*/2)-time for any n, D, and D <
¢ < (n/D3log n)** on multigraphs

* First lower bound that D plays a role of
multiplicative factor
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The Simulation Theorem is not Enough

Impossible to get D in the lower bound
since D is not part of the Simulation
Theorem



Previous Reductions

Communication Complexity Distributed Algorithms

EQALITY/DISJ/etc | EQALITY/DISJ/etc
verification Verification

Simulation l

Spanning Tree
verification

l

MST
Approximation

theorem
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New Reductions

Bounded-round
Communication complexity  Distributed Algorithms

Pointer Chasing Pointer Chasing

, >
(Search problem) I

NEW

Simulation

Distributed random walk

theorem

88



Previous Simulation Theorem

If f can be computed distributively in T
days, for any T < (path length)/2,

then the communication complexity of f is
<T

Proof Alice and Bob can simulate any
distributed algorithm for b/2 days with one
bit exchanged per day.




NEW Simulation Theorem

If f can be computed distributively in T
days, for any T < (path length)/2,

then the communication complexity of f is
<T in <T/D rounds

Proof Alice and Bob can simulate any
distributed algorithm for b/2 days with one
bit exchanged per day.




NEW Simulation Theorem

If f can be computed distributively in T
days, for any T < (path length)/2,

then the communication complexity of f is
<T in <T/D rounds

Proof Alice and Bob can simulate any
distributed algorithm for b/2 days with one
bit exchanged per day. They wait for D
rounds before sending messages




Exercise

* Fill in the details for the proof of the New
Simulation Theorem



Some changes are needed



Bad news
With quantum communication,
disjointness is too easy




Good news
Many other problems are still hard

e.g. IPmod2, IPmod3, ...



So, you can prove lower bounds for
guantum algorithms using, e.g., IPmod3.



Part 4.1
Warning: You can’t use arbitrary
problem in the quantum
communication complexity
model




Bad news
We can’t make the simulation
theorem work for the quantum setting




Bad news
We can’t make the simulation
theorem work for the quantum setting

Reason
No-Cloning Theorem
(We can’t make a copy of qubit)




Main problem:
Alice and Bob simulates
the same machines




Alice
x € {0, 1}°

Main problem:Alice and Bob simulates the same machines 01




Good news
The simulation theorem works for
a new model called
Server model




Server Model




Server Model

Gets no input.
P as Speaks for free.
&




Good news
We show that problems such as
IPmod?2, IPmod3, ... are still hard in the
Server model.




Exercise

* Prove a new version of the Simulation
Theorem where you start from the server
model instead. Make sure that every machine

in the network is simulated by exactly one
party (among 3).



