1

e

S,
ZKTHS

% VETENSKAP %
3% OCH KONST o

s

KTH Computer Science
and Communication

Computational Complexity: Problem Set 1

Due: Tuesday October 6, 2015. Submit your solutions as a PDF file by e-mail to jakobn
at kth dot se with the subject line Problem set 1: (your full name). Name the PDF
file PS1_(YourFullName).pdf (with your name coded in ASCII without national characters),
and also state your name and e-mail address at the top of the first page. Solutions should
be written in IXTEX or some other math-aware typesetting system. Please try to be precise
and to the point in your solutions and refrain from vague statements. Write so that a fellow
student of yours can read, understand, and verify your solutions. In addition to what is
stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed—and indeed,
encouraged—but you should write down your own solution individually and understand all
aspects of it fully. You should also acknowledge any collaboration. State at the beginning
of the problem set if you have been collaborating with someone and if so with whom. (Note
that collaboration is on a per problem set basis, so you should not discuss different problems
on the same problem set with different people.)

Reference material: Some of the problems are “classic” and hence it might be easy to find
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes, or which can be found in chapters of Arora-Barak covered in the course,
should be fair game, though, unless you are specifically asked to show something that we
claimed without proof in class. It is hard to pin down 100% formal rules on what all this
means—when in doubt, ask the lecturer.

About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. A total score of around 50 points should
be enough for grade E, 75 points for grade D, 100 points for grade C, 125 points for grade B,
and 150 points for grade A on this problem set. Any corrections or clarifications will be
given at piazza.com/kth.se/fal12015/dd2445/ and any revised versions will be posted on
the course webpage www.csc.kth.se/DD2445/kplx15/.

(10 p) In class, we defined NP to be the set of languages L with the following property: There is
a polynomial-time (deterministic) Turing machine M and a polynomial p such that € L holds
if and only if there is a witness y of length ezactly p(|z|) for which M (z,y) = 1.

Show that we can relax this so that the witness y is of length at most p(|z|), but might be
shorter for some x. That is, prove formally that with this new definition we get exactly the
same set of languages in NP. (This is not hard, but please be careful so that you do not run into
problems with any annoying details.)

(10 p) Consider the reduction from 3-SAT to INDEPENDENTSET in the proof of Theorem 2.15
in Arora-Barak establishing that the latter problem is NP-hard. Suppose that we modify the
reduction in the obvious way to be from general CNFSAT instead of 3-SAT. Would this work just
as fine to establish NP-hardness, or would there be problems? For full credit, give a complete
proof of the correctness of this new reduction or point out where it fails.

Page 1 (of 3)

DD2445 Computational Complexity e Autumn 2015, period 1-2
Jakob Nordstrém

https://piazza.com/kth.se/fall2015/dd2445/
http://www.csc.kth.se/DD2445/kplx15/

3

(10 p) When we reduced CIRCUITSAT to 3-SAT, for every gate v; in the circuit we introduced
a Boolean variable z; encoding the value computed at that gate. Assuming that v; was an
AND-gate with incoming wires from v; and v, we then demonstrated how to write down a
3-CNF formula which was satisfied if and only if z; = z; A 2 holds.

Show how to write analogous 3-CNF formulas if v; is an OR-gate with inputs from v; and vy,
or a NOT-gate with input from v;.

(20 p) A legal k-colouring of a graph G = (V, E) is an assignment of colours {1,2,...,k} to the
vertices in V' such that if (u,v) € E is an edge, then the colours of w and v are distinct. Let
k-COLOURING be the language consisting of graphs that have a legal k-colouring. Recall that
we proved in class that 3-COLOURING is NP-complete.

4a What is the complexity of 2-COLOURING?

4b What is the complexity of 4-COLOURING?

For full credit on each of these subproblems, provide either an explicit algorithm (for an upper
bound) or a reduction from some problem proven NP-complete in chapter 2 in Arora-Barak or
during the lectures.

(40 p) In our first lecture on Boolean circuits, we defined DTIME(T(n))/a(n) as the class of
languages decided by Turing machines M running in time O(T(n)) that also get a specific
advice string o, € {0,1}%™ for inputs of size n. We then proved (or at least outlined a proof)
that P/poly = U, ger+ DTIME(n€) /n?.

Is it possible to change the definition so that not only the advice string «,, depends on the size
of the input, but so that we can also pick different Turing machines M,, for different input sizes
(while still maintaining that all running times be bounded by a common polynomial p(n)), and
prove that P/poly is equal to the set of languages decided by such sequences of Turing machines
{M,}en+ with advice strings {oy }pen+? Work out the details to show that this alternative
definition is just as fine, or give a clear mathematical argument why it seems problematic.

(30 p) We say that a language L is in the complexity class X¥ if there exists a polynomial-time
Turing machine M and a polynomial g(n) such that x € L if and only if

Fuy € {0, 139 Vug € {0, 119 Jug € {0, 139 .. Quu; € {0, 139 M (2, ur, ug, us, . . ., u;) = 1

(in words, there is a “witness” u; such that for all “challenges” ug there is a “witness” wus such
that ... the Turing machine M accepts x given this extra information if and only if x is in the
language).

Let 3;SAT be the set of true formulas ¢ on the form

W = Juy € {0,137Vuy € {0,119 Tug € {0,139 - Qiu; € {0,119 p(uy, up, us, .. ;)

where all u;:s denote sets of variables and ¢ is a formula in propositional logicf_-] Show that >;SAT
is a complete problem for the class 7.

!Note that since all variables in ¢ are bound by quantifiers the formula ¢ has a fixed truth value which is true
or false. Hence, the “SAT” in 3;SAT might seem like a bit of a misnomer. But on the other hand the standard
CNFSAT problem of deciding whether ¢(u) is satisfiable is the same problem as whether the formula Jug(u) is
true, and from this point of view is is natural to talk about X;SAT problems higher up in the polynomial hierarchy.

Page 2 (of 3)

DD2445 Computational Complexity e Autumn 2015, period 1-2
Jakob Nordstrém

7 (40 p) Recall that we write II? = coX¥ to denote the complement of the complexity class ¥ and
that the union of all such classes form the polynomial hierarchy PH = | J; .+ 27 = U,;ens 1. If
it would hold that PH = X¥ one says that “the polynomial hierarchy collapses to the ith level”
(which, as we said in class, is generally not believed to be the case).

Prove that if X = IT?, then the polynomial hierarchy collapses to the ith level.

8 (60 p) For this problem, and this problem only, please look at any textbooks, search
in the research literature, or roam the internet to find helpful information.

The CNFSAT problem is NP-complete, and so conventional wisdom is that it should require

exponential time to solve in the worst case. However, as discussed in class there are so-called
SAT solvers that successfully solve real-world instances of CNFSAT with millions of variables,
and even do so in linear time. The purpose of this problem is to investigate this seeming paradox.

8a

8b

Can current state-of-the-art SAT solvers decide any CNF formulas thrown at them, or
is it the case that there are formulas, perhaps even not too large ones, that are infeasi-
ble in practice? Can you find any examples of constructions of such formulas together
with empirical data showing that these formulas are indeed impossibly hard to solve, say,
with hardness scaling exponentially? Are there any theoretical results explaining hardness
results observed in practice?

As your solution to this subproblem, provide a brief but detailed discussion of your findings
together with solid references where one can look up any definitions and/or proofs (i.e.,
not just a webpage but rather a research paper or possibly a book). Note that you should
still follow the problem set rules in that you are not allowed to collaborate or interact with
anyone other than your partner on this problem set.

One SAT solver that has been, and still is, hugely influential is MiniSat (www.minisat.se),
and it is still quite good although it is no longer the best solver available (and so, in par-
ticular, hardness for MiniSat alone is not a sufficient indicator of hardness in problem .
This solver is available in the CSC Ubuntu environment by running the command minisat
in a terminal window, and in this subproblem we want to play around with it a bit to get
a sense of what SAT solvers can do.

Your task is to find a concrete, small CNFSAT instance that is hard for MiniSat (possibly
using insights from problem [8a). What is the smallest size of a CNF formula you can
construct, measured as the total number of literals in the formula, that requires more than
10 minutes to be solved by MiniSat? (To make this question more precise, let us agree to
run on u-shell.csc.kth.se, measuring user time as reported by time.) In your problem
set solutions, provide a description of how your formula is constructed and exactly what
size it has, and provide the address to an AFS directory where it can be accessed in the
standard DIMACS format used by SAT solvers (and where the size is stated on a comment
line). Make the directory readable by issuing the command fs sa . system:anyuser rl
in the directory and fs sa . system:anyuser 1 in the directories in the path leading
there, so that your formula can be checked during peer evaluation.

It should be possible to find a formula with 500-600 literals or less. The number of credits
earned on this subproblem will increase as the formula size decreases. In addition, the
smallest formula submitted by any student that requires more than 10 mainutes of CPU user
time on u-shell.csc.kth.se will be awarded a 30-point bonus.

Some information about how to use MiniSat and the standardized DIMACS format for
CNF formulas can be found at www.csc.kth.se/DD2445/kplx15/minisat.php.

Page 3 (of 3)

DD2445 Computational Complexity e Autumn 2015, period 1-2
Jakob Nordstrém

http://www.minisat.se
http://www.csc.kth.se/DD2445/kplx15/minisat.php

