
DD2445 Complexity Theory 31 Oct, 2017 (@ KTH)

12. Introduction to communication complexity

Lecturer: Sagnik Mukhopadhyay Scribe: Sagnik Mukhopadhyay

12.1 Yao’s two-party communication model

The model [Yao79] consists of two parties, Alice and Bob, each holding inputs x ∈ X and
y ∈ Y respectively. They wish to compute a function f : X × Y → Z. Each of them
have unbounded computational power, unlike as in other models of computation. However
their goal is to compute the value of f(x, y) with the least amount of interaction with
each other. The measure of communication between the parties will usually be the number
of bits exchanged between them. Typically the inputs are boolean, namely X = {0, 1}n
and Y = {0, 1}m, and the output is generally 1 bit, namely Z = {0, 1}. We assume the
communication will be carried out according to some fixed protocol π, which Alice and Bob
have mutually decided beforehand. At each stage, the protocol must decide whether the
run terminates. If it does, then it must specify the answer f(x, y), else it must specify which
player communicates next. Moreover, this information must be decided by only the bits
communicated between them so far in this run of the protocol. Additionally, if it is Alice’s
(Bob’s) turn, the protocol must decide what they send depending on the communication so
far and Alice’s (Bob’s) input. The following figure describes a protocol.

a1(x)

b2(y)

a3(x)

bk(y)

Alice Bob
x y

Figure 1: Communication protocol

Here, bi(y) is a message which depends on Bob’s input y and the communication so far.
Similarly, aj(x) is a message which depends on Alice’s input x and the communication so
far. At each round, the protocol determines whether the run terminates. If at the k-th
round the protocol terminates, then bk(y) is the output of the protocol, whose value is
f(x, y). The cost of the protocol π on input (x, y) is the number of bits communicated by
π over the input (x, y). The cost of a protocol is the worst case cost of π over all inputs
(x, y). Finally, the deterministic communication complexity of a function f is the minimum
cost of a protocol computing f . It will be denoted by Dcc(f).

Dcc(f) = min
π

max
(x,y)
|π(x, y)|,

12-1

where π ranges over all protocols computing f , and (x, y) over X × Y.

12.1.1 Some examples

- The parity function PARn : {0, 1}n × {0, 1}n → {0, 1} function over n variables are
defined as follows:

PARn(x, y) =

{
1 if

∑n
i=1 xi + yi is odd,

0 otherwise.

where the summation is on F2. We can show that Dcc(PARn) ≤ 2.

- The majority function MAJn : {0, 1}n×{0, 1}n → {0, 1} function over n variables are
defined as follows:

MAJn(x, y) =

{
1 if

∑n
i=1 xi + yi ≥ n+ 1,

0 otherwise.

where the summation is over natural numbers. We can show that Dcc(MAJn) ≤
log n+ 1.

- The EQn : {0, 1}n × {0, 1}n → {0, 1} function over n variables are defined as follows:

EQn(x, y) =

{
1 if x = y,

0 otherwise.

We can show that Dcc(EQn) ≤ n+ 1.

- The DISJn : {0, 1}n×{0, 1}n → {0, 1} function over n variables are defined as follows:

DISJn(x, y) =

{
1 if x ∩ y = ∅,
0 otherwise.

Think of x, y ∈ {0, 1}n to be characteristic vectors of sets x, y ⊆ [n]. We can show
that Dcc(DISJn) ≤ n+ 1.

12.2 Protocol tree

To give protocols a more combinatorial structure, consider the following canonicalization of
a protocol:

Alice and Bob communicate only through messages of length one bit.

Remark 12.1. Canonicalization does not increase the communication complexity by much.

Canonicalization gives rise to a representation of a protocol known as the protocol tree: A
protocol tree is a rooted binary tree which specifies at any point during the execution of
the protocol which party should communicate and what bit they should send as a function
of their input.

12-2

- The nodes of the tree correspond to states of the protocol execution. (One to one
correspondence with the partial transcripts.)

- Each node (apart from the leaves) is labeled with either Alice or Bob, denoting that
it is their turn to communicate.

- Each node (apart from the leaves) has a function associated with it (either Av : X →
{0, 1} or Bv : Y → {0, 1}) that maps the communicating party’s input to the bit that
the party should send.

- The root node corresponds to the beginning of the protocol execution.

- On communicating a bit, the state of the protocol execution changes to the left or
right child of the current state, depending on whether the bit sent was 0 or 1.

- The leaves of the protocol tree are labeled with a 0 or a 1, denoting the output of the
execution.

av0

bv1 av2

bv3 av4

1 0 1 1 0 0 1

0 1

0 1

Figure 2: Protocol tree

Given input (x, y), the output of every function Av and Bv is fixed. This fixes a path
from the root to a leaf, the label of the leaf being the output of the protocol tree. A protocol
tree is correct for a function f : X × Y → Z iff for every input (x, y), the label of the leaf
node reached is f(x, y). The cost of a protocol is the length of the longest path in the
protocol tree.

12.2.1 Combinatorial rectangles

Definition 12.2 (Combinatorial rectangles). R ⊆ X × Y is a combinatorial rectangle (or,
simply, rectangle) if R ≡ A×B for some A ⊆ X and B ⊆ Y.

12-3

Claim 12.3. R is a rectangle iff ∀x, x′, y, y′; (x, y), (x′, y′) ∈ R⇒ (x′, y), (x, y′) ∈ R.

Proof. It is easy to see that every rectangle satisfies the given condition.
Now consider any set S satisfying the condition. Let A be the set of all the first members

of elements of S and B be the set of all the second members of element of S. Now for any
elements x ∈ A, y ∈ B there must be some element of S having first member x and some
element of S having second member y. Therefore, by the condition, (x, y) ∈ S. Furthermore
if some (x, y) /∈ A×B, then it is clearly not in S. Therefore S ≡ A×B is a rectangle.

Lemma 12.4. A protocol of cost c partitions X × Y into atmost 2c rectangles.

Monochromatic rectangle. Consider a rectangle R is the input space of a function f .
R is said to be c-monochromatic if for every (x, y) ∈ R, f(x, y) = c.

Lemma 12.5. A protocol of cost c partitions X ×Y into atmost 2c monochromatic rectan-
gles.

12.3 Composed functions & decision trees

Definition 12.6. A decision tree is a binary tree which computes a function f : {0, 1}n →
{0, 1} in the following way.

- Leaves are labeled by 0 or 1.

- Non leaf nodes are labeled by variables.

- Each node has a ‘0-child’ and a ‘1-child’.

It is said to compute a function f if for all inputs z ∈ {0, 1}n, the value of f on z is the
label of the leaf on the path induced by z as follows: Suppose we are currently at an internal
node with label zi . If zi = 0, we go to the 0-child and continue, else to the 1-child.

The query complexity or decision tree complexity of f , denoted as Dq(f), is the depth
of the best protocol computing f .

12.3.1 One example

Consider the fork relation FORK which takes input any string z that starts with 0 and ends
with 1, and outputs a position i of the string z such that zi = 0, zi+1 = 1. We can show
Dq(FORK) ≤ log n.

12.3.2 Function composition

Let f : {0, 1}n → {0, 1} and g : {0, 1}m×{0, 1}m → {0, 1}. Define the composition F ≡ f ◦g
as follows: There are n blocks, each with m inputs to Alice and m inputs to Bob. Apply g
on each of the blocks, and apply f on the resulting n bit string. Thus, F is a function from
{0, 1}nm × {0, 1}nm → {0, 1}, where N = nm.

F
(
〈x1, · · · , xn〉, 〈y1, · · · , yn〉

)
= f

(
g(x1, y1), · · · , g(xn, yn)

)
.

For a composed function, g is sometimes referred to as a gadget.

12-4

Examples. Two functions we have seen before can be expressed as composed functions:
EQn and DISJn.

EQn(x, y) =
∧
i∈[n]

(xi ⊕ yi); DISJn(x, y) =
∨
i∈[n]

(xi ∧ yi).

12.3.3 Gadgets of interest

- The inner-product function on m-bits, denoted IPm in defined on {0, 1}m×{0, 1}m to
be:

IPm(x, y) =
∑
i∈[m]

xi · yi mod 2.

We can show that Dcc(IPm) = Θ(m).

- The indexing function on m-bits, denoted INDm in defined on {0, 1}m × [m] to be:

INDm(x, y) = xy.

We can show that Dcc(INDm) = Θ(logm).

12.3.4 Complexity for composed functions

Lemma 12.7 (Näıve upper bound). For any composed function F ≡ f ◦ g, Dcc(F) ≤
Dq(f)× Dcc(g).

Proof sketch. Alice and Bob try to solve f using a decision tree algorithm. Such an algo-
rithm queries the input bits of f frugally. Whenever there is a query, Alice and Bob solve
the relevant instance of g by using the best communication protocol for g.

Theorem 12.8 (Simulation theorem [RM99, GPW15, dRNV16, CKLM17]). For any func-
tion f , Dcc(f ◦ INDm) ≥ Dq(f)× logm for n = mΩ(1).

Theorem 12.9 (Simulation theorem [CKLM17]). For any function f , Dcc(f ◦ IPm) ≥
Dq(f)×m for n = Ω(logm).

We show a generalized version of these simulation theorems.

Definition 12.10 (Hitting rectangle-distributions). Let 0 ≤ δ < 1 be a real, h ≥ 1 be an
integer, and X ,Y be some sets. A distribution σ over rectangles within X × Y is called a
(δ, h)-hitting rectangle-distribution if, for any rectangle A×B with |A|/|X |, |B|/|Y| ≥ 2−h,

Pr
R∼σ

[R ∩ (A×B) 6= ∅] ≥ 1− δ.

Let g : X × Y → {0, 1} be a function. A rectangle A×B is c-monochromatic with respect
to g if g(x, y) = c for every (x, y) ∈ A×B.

12-5

Definition 12.11. For a real δ ≥ 0 and an integer h ≥ 1, we say that a (possibly partial)
function g : X × Y → {0, 1} has (δ, h)-hitting monochromatic rectangle-distributions if
there are two (δ, h)-hitting rectangle-distributions σ0 and σ1, where each σc is a distribution
over rectangles within X × Y that are c-monochromatic with respect to g.

Now we show the following:

Theorem 12.12 (Generalized simulation [CKLM17]). Let ε ∈ (0, 1) and δ ∈ (0, 1
100) be

real numbers, and let h ≥ 6/ε and 1 ≤ n ≤ 2h(1−ε) be integers. Let f : {0, 1}n → Z be
a function and g : X × Y → {0, 1} be a function. If g has (δ, h)-hitting monochromatic
rectangle-distributions then

Dq(f) ≤ 4

ε · h
· Dcc(f ◦ g n).

Now Theorem 12.8 and 12.9 follows from Theorem 12.12 by showing the following:

Theorem 12.13. IPm has (o(1),m(1
2 − ε))-hitting monochromatic rectangle-distributions;

and INDm has (1
150 ,

3
20 logm)-hitting rectangle-distribution.

12.4 Hitting rectangle distribution for IPm

We use the following two linear-algebra results which we state without proof. They can be
proved by using second-moment method. For detailed proof, see [CKLM17].

Lemma 12.14. Let ε < 1
2 be a positive real number, and consider a set B ⊆ {0, 1}m of

density β = |B|
2m ≥ 2−(1

2
−ε)m. Pick V to be a random linear subspace of {0, 1}m of dimension

d, where d ≥ (1
2 −

ε
4)m+ 6. Then

Pr
V

[
|B ∩ V |
|V |

∈ (1± 2−
ε
4
m) · β

]
≥ 1− 1

4
· 2−

ε
4
m.

We will show a similar result when we pick the set V in the following manner: First we pick
a uniformly random odd-Hamming weight vector a ∈ {0, 1}m, and then we pick W to be a
random subspace of dimension d within a⊥, where d ≥ (1

2 −
ε
4)m+ 6; then V = a+W .

Lemma 12.15. Consider a set B ⊆ {0, 1}m of density β = |B|
2m ≥ 2−(1

2
−ε)m. Pick V as

described above. Then

Pr
V

[
|B ∩ V |
|V |

∈ β(1± 2−
ε
4
m)

]
≥ 1− 2−

ε
4
m.

We define the distributions σ0 and σ1 by the following sampling methods:

Sampling from σ0: We choose a uniformly-random n
2 -dimensional subspaces V of Fm2 ,

and let V ⊥ be its orthogonal complement; output V × V ⊥.

12-6

Sampling from σ1: First we pick a ∈ {0, 1}m uniformly at random conditioned on the
fact that a has odd Hamming weight; then we pick random subspace W of dimension
(m − 1)/2 from a⊥, and let W⊥ be the orthogonal complement of W inside a⊥. We
output V × V ‖, where V = a+W and V ‖ = a+W⊥.

The rectangles produced above are monochromatic as required. Also, V and V ⊥ of σ0 are
both random subspaces of dimension ≥ (1

2 −
ε
4)m + 6 — as required by Lemma 12.14 —

and V and V ‖ of σ1 are both obtained by the the kind of procedure required in Lemma
12.15. It then follows by a union bound that if R is chosen by either σ0 or σ1 that, if A,B
are subsets of {0, 1}m of densities α, β ≥ 2−(1

2
−ε)m, then

Pr
R

[
|A×B ∩R|
|R|

= (1± 9 · 2−
ε
4
m) · αβ

]
≥ 1− 2 · 2−

ε
4
m.

Hence the same probability lower-bounds the event that A×B ∩R 6= ∅.

References

[CKLM17] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Sim-
ulation theorems via pseudorandom properties. CoRR, abs/1704.06807, 2017.

[dRNV16] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction
hinders real communication. In Proceedings of the 56th FOCS, 2016.

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. par-
tition number. In Proceedings of the 56th FOCS, 2015.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinator-
ica, 19(3):403–435, 1999.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing
(preliminary report). In Proceedings of the 11h STOC, pages 209–213, 1979.

12-7

	Yao's two-party communication model
	Some examples

	Protocol tree
	Combinatorial rectangles

	Composed functions & decision trees
	One example
	Function composition
	Gadgets of interest
	Complexity for composed functions

	Hitting rectangle distribution for IPm

