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1 Brief Introduction and Outline of Today’s Lecture

For the purposes of this lecture we can define propositional proof complexity as the study of how to
certify unsatisfiability of formulas in conjunctive normal form (CNF). In what follows, let us write Unsat
to denote the set/language of (syntactically well-formed) CNF formulas that do not have any satisfying
assignments. Unless otherwise specified, F will denote a CNF formula, which is usually assumed to be
unsatisfiable.

Definition 1.1. A proof system for Unsat is a deterministic algorithmP(F, π) that runs in time polynomial
in the size |F |+ |π| of the input and is such that:

• if F ∈ Unsat, then there exists a proof, or refutation, π such that P(F, π) = 1;

• if F 6∈ Unsat, then for any purported proof π it holds that P(F, π) = 0.

Definition 1.2. A proof system P is polynomially bounded if there exists a polynomial p such that for all
F ∈ Unsat there is a proof π such that |π| ≤ p(|F |) and P(F, π) = 1.

It is widely believed that no polynomially bounded proof systems for Unsat exist, because this would
imply NP = coNP. The converse is also true in that if NP = coNP, then there exists a polynomially
bounded proof system for Unsat (with a standard NP verifier acting as the proof checker P). Since
P = NP implies NP = coNP, we can conclude the following theorem.

Theorem 1.3 ([CR79]). If there are no polynomially bounded proof systems for Unsat, then P 6= NP.

One conceivable approach to prove P 6= NP is to prove superpolynomial lower bounds for Unsat for
stronger and stronger proof systems until we reach a deep enough understanding that makes it possible to
prove lower bounds for completely general proof systems for Unsat. This is known in the proof complexity
community as Cook’s program.1

Cook’s program has not been very successful if measured in terms of progress towards its (very
ambitious) final goal, but it has generated a lot of beautiful (and sometimes mysterious) mathematics.
Today we will see an example of this in the form of an exponential lower bound on proof length for the
resolution proof system. Resolution was introduced in [Bla37] and started being studied more in earnest
in the context of satisfiablity algorithms in [DP60, DLL62, Rob65]. This proof system is arguably the
most well-studied proof system in proof complexity and is (still) the basis of state-of-the-art satisfiability
algorithm using a paradigm known as conflict-driven clause learning (CDCL) [BS97, MS99, MMZ+01].

Our plan for today is as follows:

• Define the resolution proof system.

• Show how short resolution proofs can be turned into small circuits via the interpolation technique.

• Use the lower bound for monotone circuits computing clique that we showed in the last couple of
lectures to obtain a lower bound on resolution proof size for a related family of CNF formulas.

1Actually, Cook’s program was not proposed by Steve Cook, at least not according to Steve Cook, but this name is well
established. Probably the first to refer to this approach towards proving P 6= NP was Peter Clote in his PhD thesis.
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2 Resolution

The resolution proof system starts with the clauses of an unsatisfiable CNF formula F and iteratively
derives new clauses until an explicit contradiction is reached. Here is the formal definition of this proof
system.

Definition 2.1 (Resolution proof system). A resolution refutation π of an unsatisfiable CNF formula F ,
which we will often denote π : F `⊥, is a sequence of clauses π = (D1, D2, . . . , DL−1, DL) such that
DL is the empty clause containing no literals, denoted ⊥, and each clause Di is either

(a) an axiom clause Di ∈ F , or

(b) a clause on the form Di = B ∨ C derived from clauses Dj = B ∨ x and Dk = C ∨ x for j, k < i by
the resolution rule

B ∨ x C ∨ x
B ∨ C , (2.1)

where we say that B ∨ C is the resolvent over x of B ∨ x and C ∨ x.

Without loss of generality we will assume that all clauses we encounter in resolution derivations are
nontrivial in that they do not contain both x and x for any variable x. It is not hard to show that any trivial
clauses can always just be removed from a resolution derivation.

An important property for any proof system for Unsat is that it should be sound (i.e., should never
be able to refute a formula that in fact is satisfiable) and (refutationally) complete (i.e., should be able to
refute any unsatisfiable formula). Resolution is sound and refutationally complete.

Lemma 2.2. A CNF formula F is unsatisfiable if and only if there exists a resolution refutation of F .

Proof sketch. (⇐) Suppose there exists a satisfying assignment α to F , i.e., such that for every axiom
clause in F the assignment α satisfies some literal in it. By induction over π = (D1, D2, . . . , DL−1, DL)
we conclude that α must satisfy some literal in every resolvent (this follows by a simple case analysis for
the resolution rule (2.1)). But this is a contradiction since there is no literal to be satisfied in the empty
clause ⊥ (this is why the empty clause is just another way of denoting contradiction).

(⇒) This direction is not hard, but requires an argument. It is left as an exercise.

We can think of a resolution refutation as a list of clauses annotated with explanations for each clause
how it was obtained. This is illustrated in Figure 1a for the example CNF formula

F = (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (z ∨ w) ∧ (z ∨ w) . (2.2)

To every such refutation π we can also associate a DAG Gπ in the following way. Sources of the DAG are
axioms, and the unique sink is the empty clause ⊥. Every node that is not a source has indegree two, and
is the resolvent of its two predecessors. See Figure 1b for the proof DAG corresponding to the refutation
in Figure 1a.

Given an unsatisfiable formula, the complexity measure we care most about is the length of refuting it
in resolution. The length of a refutation π is the number of clauses in the refutation (so the length of the
refutation in Figure 1a is 10), and is denoted L(π). The length of refuting F is the length of a shortest
refutation of F , and is denoted LR(F `⊥). We will sometimes drop the subscript and write just L(F `⊥)
if it is clear from context that we are looking at resolution refutations.

A more general measure that can be defined in any proof system is the size of a refutation, measured
as the total number of symbols in it. When defining size in proof complexity we tend to be somewhat
relaxed, however, in that we do not care too much about a linear factor more or less—what we are really
interested in is whether the size is polynomial or superpolynomial. Since every clause can have at most
linear size, the length and size measures for resolution differ by at most a linear factor, and in fact in the
literature the size of a resolution refutation is usually defined to simply be the length. There are other
proof systems where the distinction between length and size is more important, however. In addition to
length/size, other complexity measures of interest for resolution are, for instance, clause space, which is
the number of clauses needed in memory while carrying out a refutation, and width, which is the size of
the largest clause in the refutation, but in this lecture we will only care about length.
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

y ∨ z

z

x

x ∨ y

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(4, 5)

Res(3, 6)

Res(2, 6)

Res(1, 8)

Res(7, 9)

(b) Resolution refutation as a DAG.

Figure 1: Resolution refutation for the CNF formula in (2.2).

3 Circuits

Just to make sure we are on the same page, let us recall what we mean by a circuit.

Definition 3.1 (Circuit). A circuit is a directed acyclic graph (DAG). It has n sources, which are nodes
labelled by variable inputs, and a unique sink without outgoing edges. All non-source vertices are labelled
by one of a fixed set of Boolean functions, and are often referred to as gates. Typically we require the
fan-in, which is just another name for the in-degree of a vertex, to be at most 2. The standard gates are
∧ (AND) with fan-in 2, ∨ (OR) with fan-in 2, and ¬ (NOT) with fan-in 1. A circuitC can be thought of as
a Boolean function fC : {0, 1}n → {0, 1}, where the source vertices are the input values, every non-source
vertex computes the function it is labelled with on the values provided by its immediate predecessors, and
the output of the function is the value computed at the sink. The size of a circuit is the total number of
vertices in the DAG.

For x, y ∈ {0, 1}n we write x ≤ y if for all i ∈ [n] it holds that xi ≤ yi. A Boolean function
f : {0, 1}n → {0, 1} is monotone if x ≤ y implies that f(x) ≤ f(y). Remember this key phrase to define
monotone: “Flipping an input bit from 0 to 1 can never flip f from 1 to 0”.

Fact 3.2. A Boolean function f : {0, 1}n → {0, 1}n can be computed by a monotone circuit if and only if
it is monotone.

For a family of functions {fn : {0, 1}n → {0, 1}}∞n=1 we can study the sizes of the smallest circuits
computing these functions. This field of research is known as circuit complexity and is another line of
attack for proving P 6= NP (by trying to show something stronger, namely that NP cannot be decided
by polynomial-size circuits, or in computational complexity notation that NP ( P/poly). Just as proof
complexity, this approach has not been terribly successful at reaching its ultimate goal, but there have
been many results for restricted subclasses of circuits such as monotone circuits.

4 Interpolation and Clique-Colouring Formulas

There are several different techniques for proving lower bounds in proof complexity. Today we want to talk
about one of the most powerful ones, namely the interpolation method introduced by Krajı́ček [Kra94]
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and used by Pudlák [Pud97] to establish his celebrated lower bound for formulas talking about cliques in
and colouring of graphs.

Pudlák focused on cutting planes, a proof system that is exponentially stronger than resolution and
much less well understood. In order to illustrate the interpolation method we will do a simpler version of
his proof that applies to the resolution proof system. This will makes our lives a little bit easier, but will still
illustrate the key ideas in this method. We now proceed to give a formal description of the clique-colouring
formulas for which we want to prove lower bounds.

The clique-colouring formulas are unsatisfiable CNF formulas encoding the contradictory claim that
there exist undirected graphs G = (V,E) on n = |V | vertices which have an m-clique but are also
(m− 1)-colourable. The encoding uses the following Boolean variables:

pi,j indicates whether the edge (i, j) is present in G or not (where we enforce i < j since the graph is
undirected);

qk,i indicates whether the vertex i in G is the kth member of the m-clique;

ri,` indicates whether the vertex i in G has colour `.

The clique-colouring formula consists of the following clauses.

• for each k ∈ [m], some vertex in G is the kth member of the clique:∨
i∈[n]

qk,i , (4.1a)

• for all k, k′ ∈ [m], k 6= k′, i ∈ [n], clique vertices have unique member numbers:

qk,i ∨ qk′,i , (4.1b)

• for all k, k′ ∈ [m], k 6= k′, i, j ∈ [n], i < j, the clique members are connected by edges:

pi,j ∨ qk,i ∨ qk′,j , (4.1c)

• for each i ∈ [n], vertex i gets assigned a colour:∨
`∈[m]

ri,` , (4.1d)

• for all ` ∈ [m− 1], i, j ∈ [n], i < j, neighbouring vertices have distinct colours:

pi,j ∨ ri,` ∨ rj,` . (4.1e)

We observe for later use that the clauses in the clique-colouring formula can be split into two parts
sharing only the variables p encoding the edges of the graph. That is, it can be written asA(p,q)∧B(p, r)
for A(p,q) being the conjunction of the clauses (4.1a)–(4.1c) and B(p, r) being the conjunction of the
clauses (4.1d)–(4.1e), where the sets of variables p,q, r are disjoint.

Given a partial truth value assignment, or restriction, ρ to the variables Vars(F ) of a CNF formula F ,
we write F�ρ for the new formula obtained by assigning variable values according to ρ and then sim-
plifying F . To simplify, we remove satisfied clauses and falsified literals. For example, for the formula
F = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) and restriction ρ = {z 7→ 0} = {z} we obtain F�ρ = (x ∨ y) ∧ x.

Suppose we have a an unsatisfiable CNF formula in the form A(p,q) ∧ B(p, r) as above (but not
necessarily the clique-colouring formula). Notice that when we plug in a particular assignment ρ to p
we get the conjunction of two formulas A(p,q)�ρ = A′(q) and B(p, r)�ρ = B′(r) on disjoint sets of
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variables q and r. Since the original formula was unsatisfiable, at least one of these restricted subformulas
must be unsatisfiable.

We say that a Boolean circuit I(p) is an interpolant for CNF formula A(p,q) ∧B(p, r) with disjoint
sets of variables p,q, r if for every assignment ρ to the variables p it holds that I(ρ) = 0 implies that A�ρ
is unsatisfiable and I(ρ) = 1 implies that B�ρ is unsatisfiable. In case both subformulas are unsatisfiable
the interpolant is free to choose whichever subformula it likes best (but the function has to be well-defined,
so it has to make a choice). Note that such an interpolant always exists by definition—we can define a
function I(p) that evaluates to 0 whenever A�ρ is unsatisfiable and takes the value 1 otherwise, and this is
a well-defined mathematical function that can be computed by some circuit—but the interpolating circuit
might be quite large. We are interested in when the interpolant can be written as a small (polynomial-size)
Boolean circuit. It turns out this is possible if the formula A(p,q) ∧ B(p, r) has a short resolution
refutation! Flipping this implication around, in the other direction this means that interpolants can be
used to obtain proof complexity lower bounds from circuit complexity lower bounds.

This suggests the following strategy for proving lower bounds on refutation length:

• Start with a formula A(p,q) ∧B(p, r).

• Assume, towards contradiction, that the formula has a short resolution refutation.

• Deduce then that there exist a small interpolating circuit.

• Appeal to a(n already known) circuit complexity lower bound saying no such circuit can exist.

• Contradiction! Hence there cannot exist any short resolution refutation.

Proof systems for which this strategy works are said to have feasible interpolation. Resolution has
feasible interpolation (as does cutting planes). We will use this fact to show that clique-colouring formulas
are hard for resolution.

5 Statement of Clique-Colouring Formula Lower Bound

In order to establish lower bounds on the refutation length of clique-colouring formulas, we will need the
following circuit complexity lower bound.

Theorem 5.1 ([Raz85, AB87]). Let an undirected graph G be represented by
(
n
2

)
bits encoding its edges

and non-edges. Then for m = Θ
(

4
√
n
)

there is no monotone circuit of size 2o(
√
m) that can distinguish

the following two cases:

• G has an m-clique.

• G is (m− 1)-colourable.

But what an interpolant I(p) for the clique-colouring formula does is exactly to distinguish the two
cases in Theorem 5.1. Since an interpolant determines which part of the formula is unsatisfiable for a
given assignment to the variables p encoding the graph, it can separate the cases when G has an m-clique
and when it is (m− 1)-colourable. What Theorem 5.1 says is that every monotone circuit computing such
an interpolant must have size exp

(
Ω
(

8
√
n
))

.

Remark 5.2. The monotonicity assumption in Theorem 5.1 is very important. We do not have such strong
lower bounds for explicit functions for non-monotone circuits.

In what follows, we will focusing on constructing an interpolant I(p) without caring too much about
the (crucial) fact that we want it to be a monotone circuit. Let us define the ternary selector function sel by

sel(x, y, z) =

{
y if x = 0,

z if x = 1.
(5.1)
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We will build circuits with gates {∧,∨, sel}. It is not hard to see that sel can be implemented by a subcircuit
over {∧,∨,¬} of constant size, so using sel is just a convenient shorthand. A more serious concern is that
sel is not a monotone function, but let us decide not to worry about this for now and take care of it at the
end of the lecture.

We can now state the theorem that is the main goal of this lecture.

Theorem 5.3 ([Pud97]). Suppose that A(p,q) ∧B(p, r) is an unsatisfiable CNF formula over disjoint
sets of variables p,q, r, and that there is a resolution refutation π : A ∧ B ` ⊥ in length L. Then the
following holds:

1. There is an interpolating circuit I(p) over gates {∧,∨, sel} of size O(L);

2. From π we can construct a resolution refutation

(a) πA : A(ρ,q) ` ⊥ if I(ρ) = 0, or

(b) πB : B(ρ, r) ` ⊥ if I(ρ) = 1,

in both cases of length at most L;

3. If the p-variables occur only positively in A(p,q) or only negatively in B(p, r), then sel-gates can
be replaced by ∧- and ∨-gates, yielding a monotone circuit of size O(L).

Here is the plan for the proof:

• Fixing p to ρ, we will split the (restricted) clauses of π into two derivations πA from A(ρ,q) and
πB from B(ρ, r).

• At least one of πA and πB will be assigned the final empty clause and will thus be a resolution
refutation of A(ρ,q) or B(ρ, r), respectively.

• We can build a circuit representing our choice of how to split the clauses in π that figures out whether
πA or πB gets assigned the final clause, and hence which of the formulas A(ρ,q) and B(ρ, r) is
unsatisfiable.

6 Proof of Clique-Colouring Formula Lower Bound

Let π = (C1, . . . , CL) be any resolution refutation of A(p,q) ∧B(p, r) and let ρ be any assignment of
the p variables. Let us first prove part 2 of Theorem 5.3.

6.1 Extracting a Resolution Refutation of One of the Subformulas

We start by making a pair of key definitions. For a fixed restriction ρ to p, we define a q-clause to be
a clause C over variables q that is in A(ρ,q) or is derivable from A(ρ,q). Similarly, an r-clause is a
clause C over variables r which is a member of or derivable from B(ρ, r). We will let 1 denote the trivial
clause that is always satisfied, and we will consider 1 to be derivable from anything so that it qualifies
both as a q-clause and as an r-clause.

We will go trough the clauses in π = (C1, . . . , CL) in order and construct a sequence of clauses
π̃ =

(
C̃1, . . . , C̃L

)
which will contain the two derivationsπA fromA(ρ,q) andπB fromB(ρ, r) mentioned

above in our proof plan for Theorem 5.3. More precisely, from each Ci in π we will obtain a clause C̃i
satisfying the following properties:

1. C̃i is designated to be either a q-clause or r-clause as defined above, where we write type
(
C̃i
)

= q

or type
(
C̃i
)

= r to denote the label chosen for C̃i.

2. C̃i = 1 only if Ci�ρ = 1, and if C̃i 6= 1 it holds that C̃i ⊆ Ci \ {a, a | a ∈ ρ}.
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3. With any C̃i = 1 we associate an axiom clause Ei that is satisfied by an assignment ρ(a) = 1 for
some literal a ∈ Ci ∩ Ei, where we have Ei ∈ A(p,q) if type

(
C̃i
)

= q and Ei ∈ B(p, r) if
type

(
C̃i
)

= r.

The clauses C̃i that are mainly of interest to us are nontrivial clauses, but in general we can expect to
have a number of trivial clauses since the restriction ρ might satisfy a large portion of the clauses in the
formula. For such trivial clauses we can think of the clause Ei in Property 3 as a justification axiom with
justification literal a ∈ Ci ∩ Ei such that ρ(a) = 1 explaining why we chose the trivial clause 1 for C̃i.
These justification axioms and literals will not be needed in our construction of the resolution refutation in
part 2 of Theorem 5.3, but will play an important role later when we prove part 3 about monotone circuits
in Section 6.3.

We construct C̃i for eachCi ∈ π by forward induction over π. Observe that this is sufficient to establish
part 2 of Theorem 5.3. To see this, note that when we reach the final clause CL = ⊥ ∈ π, by Property 2
we will have that C̃L ⊆ CL�ρ = ⊥, i.e., C̃L = ⊥. Furthermore, C̃L will be labelled as either a q-clause
or an r-clause by Property 1, meaning that it is derived from A(ρ,q) only or B(ρ, r) only, respectively. It
will be clear from the construction that follows below that the length of this derivation is at most L.

In the base case Ci is an axiom. In this case simply let C̃i = Ci�ρ. If Ci is part ofA(p,q), we label C̃i
as a q-clause, and if Ci is from B(p, r), then C̃i is an r-clause. Properties 1 and 2 are clearly satisfied by
definition. It is important to note that for many axiom clauses Ci we might have C̃i = 1, but that does not
violate Property 2. If C̃i = Ci�ρ = 1, then we let Ei = Ci be the justification axiom, which obviously
fulfils the conditions in Property 3.

For the inductive step, suppose Ci = C ∨D was derived by applying the resolution rule
C ∨ x D ∨ x

C ∨D (6.1)

to two previous clauses Cj = C ∨ x and Ck = D ∨ x for j, k < i. By induction, we have already
constructed C̃j and C̃k and we know their types as q- or r-clauses. Also, if C̃j = 1 and/or C̃k = 1,
then we have justification axioms Ej and/or Ek that are satisfied by ρ. We make a case analysis over the
variable x resolved over depending on whether x ∈ p, x ∈ q, or x ∈ r.

Case 1 (x ∈ p): If ρ(x) = 0, then we set C̃i = C̃j and let type
(
C̃i
)

= type
(
C̃j
)
. Observe that if

Ci�ρ 6= 1, then we have C̃i ⊆ Cj�ρ ⊆ Ci�ρ. If C̃i = C̃j = 1, we copy the justification axiom also
and let Ei = Ej . Note that any justification literal a ∈ Cj ∩Ej (which cannot be x since ρ(x) = 0)
is present in Ci as well. If instead ρ(x) = 1, then if Ci�ρ 6= 1 we have C̃k ⊆ Ck�ρ ⊆ Ci�ρ, so we set
C̃i = C̃k and let C̃i inherit its type, and possibly its justification axiom Ei, from C̃k. This ensures
that we maintain Properties 2 and 3. Property 1 holds since if ρ(x) = 0, then by the inductive
hypothesis we have that C̃i = C̃j is derivable from only A(ρ,q) or only B(ρ, r) depending on its
type, and if ρ(x) = 1 then the same holds for C̃i = C̃k.
As noted above, it might well be that C̃j = 1 or C̃k = 1 (or both), but we do not care about this.
The case analysis based on the value of ρ(x) remains valid, and Properties 1 and 2 are preserved.

Case 2 (x ∈ q): Here we divide the analysis into subcases depending on the types of C̃j and C̃k.

• If exactly one of C̃j or C̃k is an r-clause, set C̃i to that r-clause. If both C̃j or C̃k are r-clauses,
arbitrarily pick one of them (say, the one with smallest index). Label C̃i as an r-clause, and
if C̃i = 1 let it inherit the justification clause from its chosen parent clause. Note that by
our inductive hypothesis C̃i constructed in this way will not contain any variable in q. Since
x ∈ q is the only variable that disappears in the resolution step, this means that we preserve
Properties 2 and 3.
• Otherwise, if either C̃j or C̃k is a q-clause not containing x (which is true, for instance, if one

if them is a trivial clause 1 labelled by type q), let C̃i equal that q-clause and set type
(
C̃i
)

= q.
(Again, if both C̃j or C̃k qualify, just arbitrarily pick one of them.) Also, let C̃i inherit the
justification clause from its chosen parent if it is trivial.
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• Otherwise, if either C̃j or C̃k is a q-clause not containing x, then let C̃i equal that q-clause (or
choose a clause arbitrarily if both qualify), label C̃i a q-clause, and let it inherit the justification
clause from its parent if needed.

• If none of the above cases apply, then we have two q-clauses C̃j = C̃ ′j ∨ x and C̃k = C̃ ′k ∨ x
which are both nontrivial (i.e., distinct from 1). Set C̃i to be the resolvent C̃ ′j ∨ C̃ ′k of these two
clauses and let type

(
C̃i
)

= q. (Note that this is the first time we actually used the resolution
rule to construct C̃i.)

By construction, C̃i will not contain x and it can be verified that we will only have C̃i = 1 if
Ci�ρ = 1 (using again that x ∈ q is the only variable that disappears in the resolution step, and
recalling that ρ does not assign values to any variables in q). Hence, Property 2 holds. Property 3
holds since no variables in p disappear in the resolution step. For Property 1, just observe that if C̃i
gets classified as an r-clause then no resolution step is involved, and if the end result is a q-clause
obtained by resolution, then both premises are q-clauses derivable from A(ρ,q) and so this holds
also for their resolvent.

Case 3 (x ∈ r): this case is analogous to the case x ∈ q but exchanging the roles of r- and q-variables.
We leave the details to the reader.

As explained above, part 2 of Theorem 5.3 now follows by the induction principle.

6.2 Writing down the Interpolating Circuit

We proceed to prove part 1 of Theorem 5.3. We will use the construction in Section 6.1 with the labelling
of the clauses C̃i as q- or r-clauses to build the desired interpolant I(p). Note that at the very end of the
process we label the final clause C̃L as either a q-clause or an r-clause, and this tells us whether A(ρ,q)
or B(ρ, r) is unsatisfiable. All that we need to do is to build a circuit that performs the same kind of
classification of the clauses in the refutation until we know what type is assigned to C̃L.

We will build this circuit I(p) using gates {∨,∧, sel} and constants {0, 1}.2 As we construct the
circuit we will associate the vertices vi in it with the clauses Ci ∈ π. We will maintain the invariant that if
C̃i is labelled as a q-clause under some assignment ρ of p, then the value computed at vi in the circuit
on input ρ is 0, and if C̃i is labelled as an r-clause, then vi computes value 1. The output of the circuit,
which is the type of C̃L = ⊥, will then tell us that A(ρ,q) is unsatisfiable if I(ρ) = 0 and that B(ρ, r) is
unsatisfiable if I(ρ) = 1. This is all that we need to show part 1 of the theorem.

More formally, as the blueprint for our circuit I(p) we will take the DAG representation Gπ of the
resolution refutation π. For every clause Ci ∈ π we will label the vertex vi in I(p) with a suitable gate
taking suitable inputs. As in Section 6.1, we argue by forward induction over π = (C1, . . . , CL).

If Ci is an axiom inA(p,q) we fix vi to the constant 0, otherwise if it belongs toB(p, r) we fix vi to 1.
Remember that we want to maintain the invariant that q-clauses correspond to vertices vi computing 0
and r-clauses correspond to vertices vi computing 1. So far, so good.

If Ci was derived by resolution from Cj = C ∨ x and Ck = D ∨ x for j, k < i, we have the same
kind of case analysis as in Section 6.1. Let us overload type

(
C̃i
)

to denote the binary value of the type of
the clause as defined above, so that

type
(
C̃i
)

=

{
0 if C̃i is a q-clause,
1 if C̃i is a r-clause.

(6.2)

We now choose the gate for vi as follows.

2We did not have constants in Definition 3.1, but if this troubles us we can get rid of them in a postprocessing step by
propagating simplifications 0 ∧ x = 0, 1 ∧ x = x, 0 ∨ x = x, and 1 ∨ x = 1 through the circuit until all constants have been
removed.
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Case 1 (x ∈ p): Mark vertex vi with the selector function sel taking as inputs x and the outputs of vj
and vk (which by our inductive hypothesis compute type

(
C̃j
)

and type
(
C̃k
)
, respectively). It is

straightforward to verify that the way the type of C̃i is determined in Section 6.1 is by computing

type
(
C̃i
)

= sel
(
x, type

(
C̃j
)
, type

(
C̃k
))

= sel(x, vj , vk) . (6.3)

Case 2 (x ∈ q): Mark vertex vi with an OR-gate ∨ taking vj and vk as inputs. If at least one of C̃j or C̃k
has been classified as an r-clause, which by our inductive hypothesis means that either vj or vk
computes the value 1, then C̃i gets classified as an r-clause, and otherwise it becomes a q-clause.
This is just another way of saying that type

(
C̃i
)

= type
(
C̃j
)
∨ type

(
C̃k
)
, which is exactly the

values that vi now computes.

Case 3 (x ∈ r): Mark vertex vi with an AND-gate ∧ taking inputs vj and vk. This is (anti-)symmetric to
the case when x ∈ q, and as in Section 6.1 we leave the details of this case to the reader.

6.3 Removing Selector Gates

We have constructed an interpolating circuit and have proven parts 1 and 2 of our main theorem for
today. To establish part 3 we need to prove that if the p-variables occur only positively in A(p,q) or only
negatively in B(p, r), then we can change the circuit above slightly by replacing the sel-gates with small
monotone subcircuits. This will give us a monotone interpolating circuit.

Let as assume that the p-variables appear only positively in A(p,q). In this case we choose to replace
all occurrences of

sel(x, a, b) = (x ∨ a) ∧ (x ∨ b) (6.4)

by the function
(x ∨ a) ∧ b . (6.5)

What this means is that we replace sel-gates in (6.3), the only case where a non-monotone gate could be
introduced in I(p), with the computation

type
(
C̃i
)

=
(
x ∨ type

(
C̃j
))
∧ type

(
C̃k
)
. (6.6)

A closer study of the functions in (6.4) and (6.5) reveals that the only differ in that the monotone function
in (6.5) returns 0 instead of 1 on input (x, a, b) = (0, 1, 0).

When does this happen in our proof? This is when we are in the first case in our case analysis, i.e., when
we have Ci = C ∨D derived from Cj = C ∨x and Ck = D∨x for x ∈ p such that ρ(x) = 0. Moreover,
C̃j has been classified as an r-clause and C̃k as a q-clause under the current restriction ρ. According to
our original case analysis we should have set C̃i = C̃j and classified C̃i as an r-clause. Instead, according
to (6.5) we set C̃i = C̃k, which is a q-clause.

Why is this a problem? The clause C̃k does not contain x ∈ p by construction, and so if C̃k is
nontrivial Property 2 holds since x ∈ p is the only variable that disappears in the resolution step. It is also
easy to see that Property 1 always holds by the inductive hypothesis when we copy a clause. What is more
problematic, though, is if we have a resolvent Ci such that

Ci�ρ = (C ∨D)�ρ 6= 1 (6.7)

but have chosen C̃k = 1 since
Ck�ρ = (D ∨ x)�ρ = 1 . (6.8)

If this is the case, then setting C̃i = C̃k violates Property 2 in the definition of q- and r-clauses, since now
C̃i = 1 but Ci�ρ 6= 1. Should this happen, the whole proof crashes and burns. Not good.

Let us analyse this worrying scenario more closely. If C̃k = 1, then by Property 3 in our construction
there is also a justification axiom clauseEk satisfied by an assignment ρ(a) = 1 for some literal a ∈ Ck∩Ek,
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where in additionEk ∈ A(p,q) since C̃k is a q-clause. In view of (6.7) and (6.8), the justification literal a
must satisfy a ∈ (D ∨ x) \ (C ∨D), i.e., we must have a = x satisfied by the assignment ρ(x) = 0. But
this means that the axiom clause Ek ∈ A(p,q) would need to contain the literal x, and by assumption
variables x ∈ p appear only positively in A(p,q). So we do not need to worry—this problematic scenario
never arises. Although the computation for vi in the monotone version of the circuit seems to make a
mistake for the input (x, a, b) = (0, 1, 0), the previously constructed clause C̃k is guaranteed to be nice
enough for the invariants to be preserved when we set C̃i = C̃k and type

(
C̃i
)

= type
(
C̃k
)
.

An analogous hack works if p-variables instead appear only negatively inB(p, r). We leave the details
to the reader. This concludes our proof of part 3 of Theorem 5.3. If we apply this theorem to the formulas
in (4.1a)–(4.1e) and combine it with Theorem 5.1, then we can deduce that for the clique-colouring
formulas for graphs over n vertices with m = Θ

(
4
√
n
)

it holds that resolution needs refutations of length
exp
(
Ω
(
nδ
))

for δ = 1/8.
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