
DD2445 Complexity Theory: Problem Set 3

Submission: Due Friday December 1, 2017, at 23:59 AoE. Submit your solutions as a PDF
�le by e-mail to jakobn at kth dot se with the subject line Problem set 3: 〈your full

name〉. Name the PDF �le PS3_〈YourFullName〉.pdf with your name written in CamelCase
without blanks and in ASCII without national characters. State your name and e-mail
address close to the top of the �rst page. Solutions should be written in LATEX or some other
math-aware typesetting system with reasonable margins on all sides (at least 2.5 cm). Please
be precise and to the point in your solutions and refrain from vague statements. Write so

that a fellow student of yours can read, understand, and verify your solutions. In addition
to what is stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should always write up your solutions completely on your own, from
start to �nish, and you should understand all aspects of them fully. It is not allowed to
compose draft solutions together and then continue editing individually. You should also
clearly acknowledge any collaboration. State close to the top of the �rst page of your problem
set solutions if you have been collaborating with someone and if so with whom. Note that

collaboration is on a per problem set basis, so you should not discuss di�erent problems on

the same problem set with di�erent people.

Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes should be fair game, though, unless you are speci�cally asked to show
something that we claimed without proof in class. All de�nitions should be as given in class
or in Arora-Barak and cannot be substituted by versions from other sources. It is hard to
pin down 100% watertight formal rules on what all of this means�when in doubt, ask the
main instructor.
About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. A total score of 100 points will be enough
for grade E, 140 points for grade D, 180 points for grade C, 220 points for grade B, and
260 points for grade A on this problem set. Any corrections or clari�cations will be given
at piazza.com/kth.se/fall2017/dd2445/ and any revised versions will be posted on the
course webpage www.csc.kth.se/DD2445/kplx17/.

1 (10 p) Show that if one-way functions exist, then P 6= NP.

2 (20 p) Show that BP · NP = AM[2].

3 (20 p) For a function f : X×Y → {0, 1}, letMf be the matrix of size |X|×|Y | with rows indexed
by x ∈ X and columns by y ∈ Y such that Mf (x, y) = f(x, y). Prove that the deterministic

2-party communication complexity of f is bounded from above by Dcc(f) ≤ rank(Mf ) + 1.

Comment: The rank of a matrix can be de�ned over di�erent �elds. You may use without proof

the fact that the rank of a matrix over any �nite �eld is bounded from above by the rank over

the reals.
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4 (30 p) Recall that we de�ned an encryption scheme for plaintexts x ∈ {0, 1}m with encryption

keys k ∈ {0, 1}n to be a pair of functions
(
E(k, x), D(k, x)

)
=
(
Ek(x), Dk(x)

)
such that for every

key k and plaintext x it holds that Dk(Ek(x)) = x. An encryption scheme is perfectly secret

if for every pair of plaintext messages x, x′ ∈ {0, 1}m it holds that the distributions EUn(x)
and EUn(x′) are identical (where Un denotes the uniform distribution over {0, 1}n).

We claimed in class that no encryption scheme (E,D) with m > n can be perfectly secure.

Prove that this is so.

Hint: What happens if all distributions EUn(x) have the same support?

5 (40 p) Let Rt denote the set of all restrictions of subsets of exactly t out of n variables, where

n is supposed to be large and t ≥ n/2. When proving Håstad's switching lemma in class, we

argued that the set B ⊆ Rt of bad restrictions for which the conclusion of the lemma does not

hold is very small compared to all of Rt, and hence it is very unlikely that a randomly chosen

restriction will be bad (which is exactly what the lemma claims).

More formally, we constructed a one-to-one mapping from B to Rt+s × {0, 1}` for some

` = O(s log k) (where s and k are the parameters in the switching lemma), and claimed this

showed that the probability to get a bad restriction is

|B|
|Rt|

≤
∣∣Rt+s × {0, 1}`∣∣

|Rt|
= n−Ω(s) .

The purpose of this problem is to �ll in the details in these calculations and show that one gets

a failure probability for the restriction as small as the one claimed in Håstad's switching lemma

exactly as stated in the textbook Arora-Barak.

That is, just trusting that the one-to-one map m : B → Rt+s × {0, 1}` constructed in class

was correct, show that the qoutient
∣∣Rt+s × {0, 1}`∣∣/|Rt| is small enough to give the probability

bound in the switching lemma as stated in the textbook.

Hint: Show that for t > n/2 it holds that(
n

t+ s

)
≤
(
n

t

)(
e(n− t)

n

)s
by �rst proving(

n

t+ s

)
=

(
n

t

)(
n− t
s

)/(t+ s

t

)
(and try to �nd a nice combinatorial proof for this latter equality). You can use the well-known

inequalities(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
without proof.
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6 (70 p) The purpose of this problem is to investigate some of the conditions in Håstad's switching

lemma, in particular, the requirement of bounded fan-in (i.e., that the restrictions operate on

k-CNF and k-DNF formulas).

6a (25 p) Let f : {0, 1}n → {0, 1} be some Boolean function. Prove that if all (minimal)

maxterms of f have size at most s, then f can be represented as an s-CNF formula.

Does the other direction hold as well? That is, is it true that if f can be represented as an

s-CNF formula then all (minimal) maxterms of f have size at most s?

6b (25 p) Prove that any CNF formula that computes parity of n bits must have size expo-

nential in n. For full credit, prove an exact, tight bound. (And for concreteness, de�ne the

size of a CNF formula as the number of literals in it, counted with repetitions).

6c (20 p) Argue that in view of Problem 6b, we actually do not need the added requirement

of bounded fan-in in the �nal step of the proof of Parity /∈ AC0, i.e., after (d− 2) rounds
of restrictions have been applied on C ′ so that the circuit has collapsed to a CNF formula.

In our proof in class, we crucially used in this step that the formula obtained was a k′-CNF
formula for some constant k′. (Let us note in passing that there is a lower bound on DNF

formulas analogous to that in Problem 6b in case the circuit collapses to a DNF formula,

but there is no need to prove this or even consider the DNF case to get a full score.)

This raises the question whether we could in fact drop the restriction on fan-in in the

bottom layer completely at all (d− 2) stages of the proof if we just did a little bit of extra

work. Explain how to modify the proof of Parity /∈ AC0 to work also if there is no bound

on the bottom-level fan-in of C ′ (if this can be done), or point out where in the proof we

run into trouble (if it cannot be done).

7 (50 p) Let multiprover interactive protocols be de�ned as the interactive protocols in Section 8.1

in Arora-Barak, except that there are several provers and that the veri�er's messages in each

round depends on previous messages from all provers (and on the veri�er's private randomness).

The messages sent by each prover only depends on the communication with the veri�er, however,

just as before. Let MIP[N ] denote the set of languages that can be decided by N -multiprover

interactive protocols in a polynomial number of rounds (in analogy with IP = MIP[1] in De�ni-

tion 8.6 in Arora-Barak).

Prove that, as claimed in class, only two provers are needed to realize the full power of

multiprover interactive protocols. That is, prove that MIP[2] = MIP[poly], where MIP[poly]-
protocols have a number of provers scaling polynomially with the size of the input.
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(a) Pyramid graph Π2 of height 2.

u

∧ v
∧ w
∧ (u ∨ v ∨ x)

∧ (v ∨ w ∨ y)

∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction PebΠ2
.

Figure 1: Example pebbling contradiction for the pyramid of height 2.

8 (50 p) The falsi�ed clause search problem is the following communication problem. The starting

point is some �xed unsatis�able CNF formula F and some �xed partition X
.
∪Y = Vars(F ) of the

variables of F between Alice and Bob. Given as inputs truth value assignments αX : X → {0, 1}
and αY : Y → {0, 1}, Alice and Bob should communicate to �nd a clause C ∈ F that is falsi�ed

by the assignment α = αX ∪ αY . (Such a clause always exists since F is unsatis�able.)

The pyramid graph Πh of height h is a DAG with h + 1 layers, where there is one vertex in

the highest layer (the sink z), two vertices in the next layer et cetera, down to h + 1 vertices

in the lowest layer 0. The ith vertex in layer L has incoming edges from the ith and (i + 1)st
vertices in layer L− 1. See Figure 1a for an illustration of the pyramid graph of height 2.

The purpose of this problem is to investigate the hardness of the falsi�ed clause search

problems for certain CNF formulas de�ned in terms of pyramids.

8a (30 p) The so-called pebbling formula over Πh, denoted PebΠh
, is the conjunction of the

following clauses:

� for all vertices s in the bottom layer, a unit clause s (i.e., a clause of size 1),

� For all vertices w in layers L ≥ 1 with predecessors u, v, the clause u ∨ v ∨ w,
� for the sink z, the unit clause z.

Figure 1b shows the formula corresponding to the pyramid in Figure 1a.

Give the best upper and lower bounds you can for the deterministic communication com-

plexity of the falsi�ed clause search problem for PebΠh
. Your bounds should hold for any

(arbitrary but �xed) partition X
.
∪Y = Vars

(
PebΠh

)
of the variables. Express your bounds

in terms of the number of vertices n = (h + 1)(h + 2)/2 in the graph Πh. For full credit

the bounds should be asymptotically tight.
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(u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

Figure 2: XORi�ed pebbling contradiction PebΠ2
[⊕].

8b (20 p) In the XORi�ed pebbling formula PebΠh
[⊕] over Πh we instead think of each vertex v

as the exclusive or of two variables v1 ⊕ v2 and have the following clauses:

� for all vertices s in the bottom layer, the CNF encoding of s1 ⊕ s2,

� For all w in layers L ≥ 1 with predecessors u, v, the CNF encoding of ¬(u1 ⊕ u2) ∨
¬(v1 ⊕ v2) ∨ (w1 ⊕ w2),

� for the sink z, the CNF encoding of ¬(z1 ⊕ z2).

Figure 2 shows the XORi�ed pebbling formula for the pyramid in Figure 1a.

Give the best upper bound you can for the deterministic communication complexity of

the falsi�ed clause search problem for PebΠh
[⊕], where Alice gets all variables X =

{u1, v1, w1, . . .} and Bob gets all variables Y = {u2, v2, w2, . . .} (again expressed in terms

of the number of vertices n = (h+ 1)(h+ 2)/2 in Πh).

8c (∞ p) Prove a ω(log n) deterministic communication complexity lower bound for the falsi-

�ed clause search problem for PebΠh
[⊕] with variables partitioned as in Problem 8b (ideally

a bound on the form Ω
(
nδ
)
for some δ > 0), or establish that no such lower bound exist.

Remark: This is an open research problem, and so you are not necessarily expected to

solve it. . .
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9 (60 p) Consider a set A ⊆ An where we interpret a ∈ A as a vector of length n with an element

from A in each coordinate ai. For each i ∈ [n], de�ne the bipartite graph G(A, i) = (Ui
.
∪ Vi, E)

to have left vertex set Ui = {ai | a ∈ A} and right vertex set Vi = {a 6=i | a ∈ A}, where a 6=i
denotes the vector of length n − 1 obtained by omitting the coordinate ai from a, and to have

an edge between ai ∈ Ui and a6=i ∈ Vi for each a ∈ A. Let us de�ne the quantities

dmin(A, i) = min
v∈Vi
{
∣∣Ext(v)

∣∣}
and

davg(A, i) =
|A|
|A 6=i|

,

where Ext(v) = {a ∈ A | a6=i = v}. Prove that for n ≥ 2 it holds that if davg(A, i) ≥ K · |A| for
all i ∈ [n], then there is a subset A′ ⊆ A with

∣∣A′∣∣ ≥ |A|2 such that dmin(A′, i) ≥ K
2n · |A| for all

i ∈ [n].

Comment: This is Lemma 13.4 from Lecture 13.

10 (60 p) The goal of this exercise is to give a complete proof that PSPACE ⊆ IP, strengthening the

result coNP ⊆ IP that was proven in class.

Given a quanti�ed Boolean formula (QBF) ψ = ∀x1∃x2∀x3 · · · ∃xn φ(x1, . . . , xn), we can

use arithmetization as in our proof of coNP ⊆ IP to construct a polynomial Pφ such that ψ is

true if and only if
∏
b1∈{0,1}

∑
b2∈{0,1}

∏
b3∈{0,1} · · ·

∑
bn∈{0,1} Pφ(b1, . . . , bn) 6= 0. However, the

SumCheck protocol we used to decide the #SatD problem for CNF formulas no longer works,

since each multiplication corresponding to a ∀-quanti�er can double the degree of the polynomial.

10a (20 p) Suppose that ψ is a QBF formula (not necessarily in prenex normal form as described

in De�nition 4.10 and discussed further below in Arora-Barak) satisfying the following

property: if x1, . . . , xn are the variables of ψ sorted in order of �rst appearance, then for

every variable xi there is at most a single universal quanti�er involving xj for any j > i
appearing before the last occurrence of xi in ψ. Show that in this case, when we run

the SumCheck protocol with the modi�cation that we check s(0) · s(1) = K for product

operations (i.e., ∀-quanti�ers), the prover only needs to send polynomials of degree O(n)
since the degree blow-up is at most a constant factor 2.

10b (20 p) Assuming that any QBF formula ψ can be rewritten to satisfy the property in

Problem 10a, use this to show that Tqbf ∈ IP and hence PSPACE ⊆ IP.

10c (20 p) Show that any QBF formula ψ of sizem can be transformed into a logically equivalent

formula ψ′ of size O(m2) that satis�es the property in Problem 10a.

Hint: Introduce a new variable yi for any occurrence of xi that we need to get rid of and

encode that xi and yi take the same truth value.
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