
Complexity Theory

Johan H̊astad
Department of Numerical Analysis and Computing Science

Royal Institute of Technology
S-100 44 Stockholm

SWEDEN
johanh@nada.kth.se

May 13, 2009

1

Contents

1 Preface 4

2 Recursive Functions 5
2.1 Primitive Recursive Functions 6
2.2 Partial recursive functions . 10
2.3 Turing Machines . 11
2.4 Church’s thesis . 15
2.5 Functions, sets and languages 16
2.6 Recursively enumerable sets 16
2.7 Some facts about recursively enumerable sets 19
2.8 Gödel’s incompleteness theorem 26
2.9 Exercises . 27
2.10 Answers to exercises . 28

3 Efficient computation, hierarchy theorems. 32
3.1 Basic Definitions . 32
3.2 Hierarchy theorems . 33

4 The complexity classes L, P and PSPACE. 39
4.1 Is the definition of P model dependent? 40
4.2 Examples of members in the complexity classes. 48

5 Nondeterministic computation 56
5.1 Nondeterministic Turing machines 56

6 Relations among complexity classes 64
6.1 Nondeterministic space vs. deterministic time 64
6.2 Nondeterministic time vs. deterministic space 65
6.3 Deterministic space vs. nondeterministic space 66

7 Complete problems 69
7.1 NP-complete problems . 69
7.2 PSPACE-complete problems 78
7.3 P-complete problems . 82
7.4 NL-complete problems . 85

8 Constructing more complexity-classes 86

2

9 Probabilistic computation 89
9.1 Relations to other complexity classes 94

10 Pseudorandom number generators 95

11 Parallel computation 106
11.1 The circuit model of computation 106
11.2 NC . 108
11.3 Parallel time vs sequential space 112

12 Relativized computation 116

13 Interactive proofs 123

3

1 Preface

The present set of notes have grown out of a set of courses I have given at
the Royal Institute of Technology. The courses have been given at an in-
troductory graduate level, but also interested undergraduates have followed
the courses.

The main idea of the course has been to give the broad picture of mod-
ern complexity theory. To define the basic complexity classes, give some
examples of each complexity class and to prove the most standard relations.
The set of notes does not contain the amount of detail wanted from a text-
book. I have taken the liberty of skipping many boring details and tried to
emphasize the ideas involved in the proofs. Probably in many places more
details would be helpful and I would be grateful for hints on where this is
the case.

Most of the notes are at a fairly introductory level but some of the section
contain more advanced material. This is in particular true for the section
on pseudorandom number generators and the proof that IP = PSPACE.
Anyone getting stuck in these parts of the notes should not be disappointed.

These notes have benefited from feedback from colleagues who have
taught courses based on this material. In particular I am grateful to Jens
Lagergren and Ingrid Lindström. The students who have taken the courses
together with other people have also helped me correct many errors. Sincere
thanks to Jerker Andersson, Per Andersson, Lars Arvestad, Jörgen Back-
elin, Christer Berg, Christer Carlsson, Jan Frelin, Mikael Goldmann, Pelle
Grape, Joachim Hollman, Andreas Jakobik, Wojtek Janczewski, Kai-Mikael
Jää-Aro, Viggo Kann, Mats Näslund, and Peter Rosengren.

Finally, let me just note that there are probably many errors and inac-
curacies remaining and for those I must take full responsibility.

4

2 Recursive Functions

One central question in computer science is the basic question:
What functions are computable by a computer?

Oddly enough, this question preceded the invention of the modern com-
puter and thus it was originally phrased: “What functions are mechanically
computable?” The word “mechanically” should here be interpreted as “by
hand without really thinking”. Several independent attempts to answer this
question were made in the mid-1930’s. One possible reason that several
researchers independently came to consider this question is its close connec-
tions to the proof of Gödel’s incompleteness theorem (Theorem 2.32) which
was published in 1931.

Before we try to formalize the concept of a computable function, let
us be precise about what we mean by a function. We will be considering
functions from natural numbers (N= {0, 1, 2 . . .}) to natural numbers. This
might seem restrictive, but in fact it is not since we can code almost any
type of object as a natural number. As an example, suppose that we are
given a function from words of the English alphabet to graphs. Then we can
think of a word in the English alphabet as a number written in base 27 with
a = 1, b = 2 and so on. A graph on n nodes can be thought of as a sequence
of
(n
2

)
binary symbols where each symbol corresponds to a potential edge

and it is 1 iff the edge actually is there. For instance suppose that we are
looking at graphs with 3 nodes, and hence the possible edges are (1, 2), (1, 3)
and (2, 3). If the graph only contains the edges (1, 3) and (2, 3) we code it
as 011. Add a leading 1 and consider the result as a number written in
binary notation (our example corresponds to (1011)2 = 11). It is easy to
see that the mapping from graphs to numbers is easy to compute and easy
to invert and thus we can use this representation of graphs as well as any
other. Thus a function from words over the English alphabet to graphs can
be represented as a function from natural numbers to natural numbers.

In a similar way one can see that most objects that have any reasonable
formal representation can be represented as natural numbers. This fact will
be used constantly throughout these notes.

After this detour let us return to the question of which functions are me-
chanically computable. Mechanically computable functions are often called
recursive functions. The reason for this will soon be obvious.

5

2.1 Primitive Recursive Functions

The name “recursive” comes from the use of recursion, i.e. when a function
value f(x+ 1) is defined in terms of previous values f(0), f(1) . . . f(x). The
primitive recursive functions define a large class of computable functions
which contains most natural functions. It contains some basic functions and
then new primitive recursive functions can be built from previously defined
primitive recursive functions either by composition or primitive recursion.
Let us give a formal definition.

Definition 2.1 The following functions are primitive recursive

1. The successor function, σ(x) = x+ 1.

2. Constants, m(x) = m for any constant m.

3. The projections, πni (x1, x2 . . . xn) = xi for 1 ≤ i ≤ n and any n.

The primitive recursive functions are also closed under the following
two operations. Assume that g, h, g1, g2 . . . gm are known to be prim-
itive recursive functions, then we can form new primitive recursive
functions in the following ways.

4. Composition, f(x1, x2 . . . xn) = h(g1(x1, . . . xn), g2(x1, . . . , xn), . . . gm(x1, . . . xn))

5. Primitive recursion The function defined by

• f(0, x2, x3, . . . xn) = g(x2, x3, . . . xn)

• f(x1 + 1, x2, x3, . . . xn) = h(x1, f(x1, . . . xn), x2, . . . xn)

To get a feeling for this definition let us prove that some common functions
are primitive recursive.

Example 2.2 Addition is defined as

Add(0, x2) = π1
1(x2)

Add(x1 + 1, x2) = σ(π3
2(x1, Add(x1, x2), x2))

= σ(Add(x1, x2))

It will be very cumbersome to follow the notation of the definition of
the primitive recursive functions strictly. Thus instead of the above, not

6

very transparent (but formally correct definition) we will use the equivalent,
more transparent (but formally incorrect) version stated below.

Add(0, x2) = x2

Add(x1 + 1, x2) = Add(x1, x2) + 1

Example 2.3 Multiplication can be defined as

Mult(0, x2) = 0
Mult(x1 + 1, x2) = Add(x2,Mult(x1, x2))

Example 2.4 We cannot define subtraction as usual since we require the
answer to be nonnegative1. However, we can define a function which takes
the same value as subtraction whenever it is positive and otherwise takes the
value 0. First define a function on one variable which is basically subtraction
by 1.

Sub1(0) = 0
Sub1(x+ 1) = x

and now we can let

Sub(x1, 0) = x1

Sub(x1, x2 + 1) = Sub1(Sub(x1, x2)).

Here for convenience we have interchanged the order of the arguments in
the definition of the recursion but this can be justified by the composition
rule.

Example 2.5 If f(x, y) =
∏y−1
i=0 g(x, i) where we let f(x, 0) = 1 and g is

primitive recursive then so is f since it can be defined by

f(x, 0) = 1
f(x, y + 1) = Mult(f(x, y), g(x, y)).

Example 2.6 We can define a miniature version of the signum function by

Sg(0) = 0
Sg(x+ 1) = 1

1This is due to the fact that we have decided to work with natural numbers. If we
instead would be working with integers the situation would be different

7

and this allows us to define equality by

Eq(m,n) = Sub(1, Add(Sg(Sub(n,m)), Sg(Sub(m,n))))

since Sub(n,m) and Sub(m,n) are both zero iff n = m. Equality is here
defined as by Eq(m,n) = 1 ifm and n are equal and Eq(m,n) = 0 otherwise.

Equality is not really a function put a predicate of pairs of numbers i.e.
a property of pairs of numbers. However, as we did above, it is convenient
to identify predicates with functions that take the values 0 and 1, letting
the value of the function be 1 exactly when the predicate is true. With
this convention we define a predicate to be primitive recursive exactly when
the corresponding function is primitive recursive. This naturally leads to an
efficient way to prove that more functions are primitive recursive. Namely,
let g and h be primitive recursive functions and let P be a primitive recursive
predicate. Then the function f(x) defined by g(x) if P (x) and h(x) otherwise
will be primitive recursive since it can be written as

Add(Mult(g(x), P (x)),Mult(h(x), Sub(1, P (x))))

(which in ordinary notation is (P ∗ g + (1− P) ∗ h).
Continuing along these lines it is not difficult (but tedious) to prove that

most simple functions are primitive recursive. Let us now argue that all
primitive recursive functions are mechanically computable. Of course this
can only be an informal argument since “mechanically computable” is only
an intuitive notion.

Each primitive recursive function is defined as a sequence of statements
starting with basic functions of the types 1-3 and then using rules 4-5. We
will call this a derivation of the function. We will argue that primitive recur-
sive functions are mechanically computable by induction over the complexity
of the derivation (i.e. the number of steps in the derivation).

The simplest functions are the basic functions 1-3 and, arguing infor-
mally, are easy to compute. In general a primitive recursive function f will
be obtained using the rules 4 and 5 from functions defined previously. Since
the derivations of these functions are subderivations of the given derivation,
we can conclude that the functions used in the definition are mechanically
computable. Suppose the new function is constructed by composition, then
we can compute f by first computing the gi and then computing h of the
results. On the other hand if we use primitive recursion then we can com-
pute f when the first argument is 0 since it then agrees with g which is

8

computable by induction and then we can see that we can compute f in
general by induction over the size of the first argument. This finishes the
informal argument that all primitive recursive functions are mechanically
computable.

Before we continue, let us note the following: If we look at the proof
in the case of multiplication it shows that multiplication is mechanically
computable but it gives an extremely inefficient algorithm. Thus the present
argument has nothing to do with computing efficiently.

Although we have seen that most simple functions are primitive recursive
there are in fact functions which are mechanically computable but are not
primitive recursive. We will give one such function which, we have to admit,
would not be the first one would like to compute but which certainly is very
important from a theoretical point of view.

A derivation of a primitive recursive function is just a finite number of
symbols and thus we can code it as a number. If the coding is reasonable it
is mechanically computable to decide, given a number, whether the number
corresponds to a correct derivation of a primitive recursive function in one
variable. Now let f1 be the primitive recursive function in one variable which
corresponds to the smallest number giving such a legal derivation and then
let f2 be the function which corresponds to the second smallest number and
so on. Observe that given x it is possible to mechanically find the derivation
of fx by the following mechanical but inefficient procedure. Start with 0 and
check the numbers in increasing order whether they correspond to correct
derivations of a function in one variable. The x’th legal derivation found is
the derivation of fx. Now let

V (x) = fx(x) + 1.

By the above discussion V is mechanically computable, since once we have
found the derivation of fx we can compute it on any input. On the other
hand we claim that V does not agree with any primitive recursive function.
If V was primitive recursive then V = fy for some number y. Now look at
the value of V at the point y. By the definition of V the value should be
fy(y) + 1. On the other hand if V = fy then it is fy(y). We have reached a
contradiction and we have thus proved:

Theorem 2.7 There are mechanically computable functions which are not
primitive recursive.

9

The method of proof used to prove this theorem is called diagonalization.
To see the reason for this name think of an infinite two-dimensional array
with natural numbers along one axis and the primitive recursive functions on
the other. At position (i, j) we write the number fj(i). We then construct
a function which is not primitive recursive by going down the diagonal and
making sure that our function disagrees with fi on input i. The idea is
similar to the proof that Cantor used to prove that the real numbers are not
denumerable.

The above proof demonstrates something very important. If we want
to have a characterization of all mechanically computable functions the de-
scription cannot be mechanically computable by itself. By this we mean that
given x we should not be able to find fx in a mechanical way. If we could
find fx then the above defined function V would be mechanically computable
and we would get a function which was not in our list.

2.2 Partial recursive functions

The way around the problem mentioned last in the last section is to allow a
derivation to define a function which is only partial i.e. is not defined for all
inputs. We will do this by giving another way of forming new function. This
modification will give a new class of functions called the partial recursive
functions.

Definition 2.8 The partial recursive functions contains the basic functions
defined by 1-3 for primitive recursive functions and are closed under the
operations 4 and 5. There is an extra way of forming new functions:

6. Unbounded search Assume that g is a partial recursive function and
let f(x1, . . . xn) be the least m such that g(m,x1, . . . , xn) = 0 and such
that g(y, x1, . . . , xn) is defined for all y < m. If no such m exists then
f(x1, . . . , xn) is undefined. Then f is partial recursive.

Our first candidate for the class of mechanically computable functions
will be a subclass of the partial recursive functions.

Definition 2.9 A function is recursive (or total recursive) if it is a partial
recursive function which is total, i.e. which is defined for all inputs.

Observe that a recursive function is in an intuitive sense mechanically
computable. To see this we just have to check that the property of mechan-
ical computability is closed under the rule 6, given that f is defined. But

10

Figure 1: A Turing machine

this follows since we just have to keep computing g until we find a value for
which it takes the value 0. The key point here is that since f is total we
know that eventually there is going to be such a value.

Also observe that there is no obvious way to determine whether a given
derivation defines a total function and thus defines a recursive function.
The problem being that it is difficult to decide whether the defined func-
tion is total (i.e. if for each value of x1, x2, . . . xn there is an m such that
g(m,x1, x2, . . . xn) = 0. This implies that we will not be able to imitate the
proof of Theorem 2.7 and thus there is some hope that this definition will
give all mechanically computable functions. Let us next describe another
approach to define mechanically computable functions.

2.3 Turing Machines

The definition of mechanically computable functions as recursive functions
given in the last section is due to Kleene. Other definitions of mechanically
computable were given by Church (effective calculability, also by equations),
Post (canonical systems, as rewriting systems) and Turing (Turing machines,
a type of primitive computer). Of these we will only look closer at Turing
machines. This is probably the definition which to most of us today, after
the invention of the modern computer, seems most natural.

A Turing machine is a very primitive computer. A simple picture of one
is given in Figure 1. The infinite tape serves as memory and input and output
device. Each square can contain one symbol from a finite alphabet which
we will denote by Σ. It is not important which alphabet the machine uses
and thus let us think of it as {0, 1, B} where B symbolizes the blank square.
The input is initially given on the tape. At each point in time the head is
located at one of the tape squares and is in one of a finite number of states.
The machine reads the content of the square the head is located at, and

11

State Symbol New State New Symbol Move
q0 0 q1 B R
q0 1 q0 B R
q0 B qh 1
q1 0,1 q1 B R
q1 B qh 0

Table 1: The next step function of a simple Turing machine

based on this value and its state, it writes something into the square, enters
a potentially new state and moves left or right. Formally this is described
by the next-move function

f : Q× Σ→ Q×Σ× {R,L}

where Q is the set of possible states and R(L) symbolizes moving right (left).
From an intuitive point of view the next-move function is the program of
the machine.

Initially the machine is in a special start-state, q0, and the head is located
on the leftmost square of the input. The tape squares that do not contain
any part of the input contain the symbol B. There is a special halt-state,
qh, and when the machine reaches this state it halts. The output is now
defined by the non-blank symbols on the tape.

It is possible to make the Turing machine more efficient by allowing more
than one tape. In such a case there is one head on each tape. If there are k
tapes then the next-step function depends on the contents of all k squares
where the heads are located, it describes the movements of all k heads and
what new symbols to write into the k squares. If we have several tapes then
it is common to have one tape on which the input is located, and not to allow
the machine to write on this tape. In a similar spirit there is one output-tape
which the machine cannot read. This convention separates out the tasks of
reading the input and writing the output and thus we can concentrate on
the heart of the matter, the computation.

However, most of the time we will assume that we have a one-tape Turing
machine. When we are discussing computability this will not matter, but
later when considering efficiency of computation results will change slightly.

Example 2.10 Let us define a Turing Machine which checks if the input
contains only ones and no zeros. It is given in Table 1.

12

Thus the machine starts in state q0 and remains in this state until it has
seen a “0”. If it sees a “B” before it sees a “0” it accepts. If it ever sees a
“0” it erases the rest of the input, prints the answer 0 and then halts.

Example 2.11 Programming Turing machines gets slightly cumbersome
and as an example let us give a Turing machine which computes the sum of
two binary numbers. We assume that we are given two numbers with least
significant bit first and that there is a B between the two numbers. To make
things simpler we also assume that we have a special output-tape on which
we print the answer, also here beginning with the least significant bit.

To make the representation compact we will let the states have two
indices, The first index is just a string of letters while the other is a number,
which in general will be in the range 0 to 3. Let division be integer division
and let lsb(i) be the least significant bit of i. The program is given in Table
2.3, where we assume for notational convenience that the machine starts in
state q0,0:

It will be quite time-consuming to explicitly give Turing machines which
compute more complicated functions. For this reason this will be the last
Turing machine that we specify explicitly. To be honest there are more
economic ways to specify Turing machines. One can build up an arsenal
of small machines doing basic operations and then define composition of
Turing machines. However, since programming Turing machines is not our
main task we will not pursue this direction either.

A Turing machine defines only a partial function since it is not clear
that the machine will halt for all inputs. But whenever a Turing machine
halts for all inputs it corresponds to a total function and we will call such a
function Turing computable.

The “Turing computable functions” is a reasonable definition of the me-
chanically computable functions and thus the first interesting question is
how this new class of functions relates to the recursive functions. We have
the following theorem.

Theorem 2.12 A function is Turing computable iff it is recursive.

We will not give the proof of this theorem. The proof is rather tedious,
and hence we will only give an outline of the general approach. The easier
part of the theorem is to prove that if a function is recursive then it is
Turing computable. Before, when we argued that recursive functions were
mechanically computable, most people who have programmed a modern

13

State Symbol New State New Symbol Move Output
q0,i 0, 1(= j) qx,i+j B R
qx,i 0, 1 qxm,i same R
qx,i B qxo,i B R
qxo,i B qxo,i B R
qxo,i 0, 1(= j) qyc, i+j

2
B R lsb(i+j)

qyc,i 0, 1(= j) qyc, i+j
2

B R lsb(i+j)

qyc,i B qh B i
qxm,i 0, 1 qxm,i same R
qxm,i B qsy,i B R
qsy,i B qsy,i B R
qsy,i 0, 1(= j) qy, i+j

2
B R lsb(i+j)

qy,i 0, 1 qsx,i same L
qy,i B qyo,i B L
qsx,i B qsx,i B L
qsx,i 0, 1 qfx,i same L
qfx,i 0, 1 qfx,i same L
qfx,i B q0,i B R
qyo,i B qyo,i B L
qyo,i 0, 1 qxf,i same L
qxf,i 0, 1 qxf,i same L
qxf,i B qcx,i B R
qcx,i 0, 1(= j) qcx, i+j

2
B R lsb(i+j)

qcx,i B qh B i

Table 2: A Turing machine for addition

14

computer probably felt that without too much trouble one could write a
program that would compute a recursive function. It is harder to program
Turing machines, but still feasible.

For the other implication one has to show that any Turing computable
function is recursive. The way to do this is to mimic the behavior of the
Turing machine by equations. This gets fairly involved and we will not
describe this procedure here.

2.4 Church’s thesis

In the last section we stated the theorem that recursive functions are iden-
tical to the Turing computable functions. It turns out that all the other at-
tempts to formalize mechanically computable functions give the same class
of functions. This leads one to believe that we have captured the right no-
tion of computability and this belief is usually referred to as Church’s thesis.
Let us state it for future reference.

Church’s thesis: The class of recursive functions is the class of mechan-
ically computable functions, and any reasonable definition of mechanically
computable will give the same class of functions.

Observe that Church’s thesis is not a mathematical theorem but a state-
ment of experience. Thus we can use such imprecise words as “reasonable”.
Church’s thesis is very convenient to use when arguing about computabil-
ity. Since any high level computer language describes a reasonable model of
computation the class of functions computable by high level programs is in-
cluded in the class of recursive functions. Thus as long as our descriptions of
procedures are detailed enough so that we feel certain that we could write a
high level program to do the computation, we can draw the conclusion that
we can do the computation on a Turing machine or by a recursive function.
In this way we do not have to worry about actually programming the Turing
machine.

For the remainder of these notes we will use the term “recursive func-
tions” for the class of functions described by Church’s thesis. Sometimes,
instead of saying that a given function, f , is a recursive function we will
phrase this as “f is computable”. When we argue about such functions
we will usually argue in terms of Turing machines but the algorithms we
describe will only be specified quite informally.

15

2.5 Functions, sets and languages

If a function f only takes two values (which we assume without loss of
generality to be 0 and 1) then we can identify f with the set, A, of inputs
for which the function takes the value 1. In formulas

x ∈ A⇔ f(x) = 1.

In this connection sets are also called languages, e.g. the set of prime num-
bers could be called the language of prime numbers. The reason for this is
historical and comes from the theory of formal languages. The function f is
called the characteristic function of A. Sometimes the characteristic func-
tion of A will be denoted by χA. A set is called recursive iff its characteristic
function is recursive. Thus A is recursive iff given x one can mechanically
decide whether x ∈ A.

2.6 Recursively enumerable sets

We have defined recursive sets to be the sets for which membership can be
tested mechanically i.e.a set A is recursive if given x it is computable to test
whether x ∈ A. Another interesting class of sets is the class of sets which
can be listed mechanically.

Definition 2.13 A set A is recursively enumerable iff there is a Turing
machine MA which, when started on the empty input tape, lists the members
of A on its output tape.

It is important to remember that, while any member of A will eventually
be listed, the members of A are not necessarily listed in order and that M
will probably never halt since A is infinite most of the time. Thus if we
want to know whether x ∈ A it is not clear how to use M for this purpose.
We can watch the output of M and if x appears we know that x ∈ A, but
if we have not seen x we do not know whether x �∈ A or we have not waited
long enough. If we would require that A was listed in order we could check
whether x ∈ A since we would only have had to wait until we had seen x
or a number greater than x.2 Thus in this case we can conclude that A is
recursive, but in general this is not true.

2There is a slightly subtle point here since it might be the case that M never outputs
such a number, which would happen in the case when A is finite and does not contain x or
any larger number. However also in this case A is recursive since any finite set is recursive.
It is interesting to note that given the machine M it is not clear which alternative should
be used to recognize A, but one of them will work and that is all we care about.

16

Theorem 2.14 If a set is recursive then it is recursively enumerable. How-
ever there are sets that are recursively enumerable that are not recursive.

Proof: That recursive implies recursively enumerable is not too hard, the
procedure below will even print the members of A in order.

For i = 0, 1 . . .∞
If i ∈ A print i.

Since it is computable to determine whether i ∈ A this will give a correct
enumeration of A.

The other part of the theorem is harder and requires some more notation.
A Turing machine is essentially defined by the next-step function which can
be described by a number of symbols and thus can be coded as an integer.
Let us outline in more detail how this is done. We have described a Turing
machine by a number of lines where each line contains the following items:
State, Symbol, New state, New Symbol, Move and Output. Let us make
precise how to code this information. A state should be written as qx where
x is a natural number written in binary. A symbol is from the set {0, 1, B},
while a move is either R or L and the output is either 0, 1 or B. Each item
is separated from the next by the special symbol &, the end of a line is
marked as & & and the end of the specification is marked as & & &. We
assume that the start state is always q0 and the halt state q1. With these
conventions a Turing machine is completely specified by a finite string over
the alphabet {0, 1, B,&, R, L, q}. This coding is also efficient in the sense
that given a string over this alphabet it is possible to mechanically decide
whether it is a correct description of a Turing machine (think about this for
a while). By standard coding we can think of this finite string as a number
written in base 8. Thus we can uniquely code a Turing machine as a natural
number.

For technical reason we allow the end of the specification not to be the
last symbols in the coding. If we encounter the end of the specification we
will just discard the rest of the description. This definition implies that each
Turing machine occurs infinitely many times in any natural enumeration.

We will denote the Turing machine which is given by the description
corresponding to y by My. We again emphasize that given y it is possible
to mechanically determine whether it corresponds to a Turing machine and
in such a case find that Turing machine. Furthermore we claim that once
we have the description of the Turing machine we can run it on any input

17

(simulate My on a given input). We make this explicit by stating a theorem
we will not prove.

Theorem 2.15 There is a universal Turing machine which on input (x, y, z)
simulates z computational steps of My on input x. By this we mean that
if My halts with output w on input x within z steps then also the universal
machine outputs w. If My does not halt within z steps then the universal
machine gives output “not halted”. If y is not the description of a legal
Turing machine, the universal Turing machine enters a special state qill,
where it usually would halt, but this can be modified at will.

We will sometimes allow z to take the value ∞. In such a case the
universal machine will simulate My until it halts or go on for ever without
halting if My does not halt on input x. The output will again agree with
that of My.

In a more modern language, the universal Turing machine is more or less
an interpreter since it takes as input a Turing machine program together with
an input and then runs the program. We encourage the interested reader
to at least make a rough sketch of a program in his favorite programming
language which does the same thing as the universal Turing machine.

We now define a function which is in the same spirit of the function V
which we proved not to be primitive recursive. To distinguish it we call it
VT .

VT (x) =
{

1, if Mx halts on input x with output 0;
0, otherwise.

VT is the characteristic function of a set which we will denote byKD. We
call this set “the diagonal halting set” since it is the set of Turing machines
which halt with output 0 when given their own encoding as input. We claim
that KD is recursively enumerable but not recursive. To prove the first claim
observe that KD can be enumerated by the following procedure

For i = 1, 2 . . .∞
For j = 1, 2, . . . i, If Mj is legal, run Mj , i steps on input j, if it halts
within these i steps and gives output 0 and we have not listed j before,
print j.

Observe that this is an recursive procedure using the universal Turing
machine. The only detail to check is that we can decide whether j has

18

been listed before. The easiest way to do this is to observe that j has not
been listed before precisely if j = i or Mj halted in exactly i steps. The
procedure lists KD since all numbers ever printed are by definition members
in KD and if x ∈ KD and Mx halts in T steps on input x then x will be
listed for i = max(x, T) and j = x.

To see that KD is not recursive, suppose that VT can be computed by
a Turing machine M . We know that M = My for some y. Consider what
happens when M is fed input y. If it halts with output 0 then VT (y) = 1.
On the other hand if M does not halt with output 0 then VT (y) = 0. In
either case My makes an error and hence we have reached a contradiction.
This finishes the proof of Theorem 2.14

We have proved slightly more than was required by the theorem. We have
given an explicit function which cannot be computed by a Turing machine.
Let us state this as a separate theorem.

Theorem 2.16 The function VT cannot be computed by a Turing machine,
and hence is not recursive.

2.7 Some facts about recursively enumerable sets

Recursion theory is really the predecessor of complexity theory and let us
therefore prove some of the standard theorems to give us something to com-
pare with later. In this section we will abbreviate recursively enumerable as
“r.e.”.

Theorem 2.17 A is recursive if and only if both A and the complement of
A, (Ā) are r.e.

Proof: If A is recursive then also Ā is recursive (we get a machine recog-
nizing Ā from a machine recognizing A by changing the output). Since any
recursive set is r.e. we have proved one direction of the theorem. For the
converse, to decide whether x ∈ A we just enumerate A and Ā in parallel,
and when x appears in one of lists, which we know it will, we can give the
answer and halt.

From Theorem 2.16 we have the following immediate corollary.

Corollary 2.18 The complement of KD is not r.e..

19

For the next theorem we need the fact that we can code pairs of natural
numbers as natural numbers. For instance one such coding is given by
f(x, y) = (x+ y)(x+ y + 1)/2 + x.

Theorem 2.19 A is r.e. iff there is a recursive set B such that x ∈ A ⇔
∃y (x, y) ∈ B.

Proof: If there is such a B then A can be enumerated by the following
program:

For z = 0, 1, 2, . . .∞
For x = 0, 1, 2 . . . z If for some y ≤ z we have (x, y) ∈ B and (x, y′) �∈ B
for y′ < y and x has not been printed before then print x.

First observe that x has not been printed before if either x or y is equal
to z. By the relation between A and B this program will list only members
of A and if x ∈ A and y is the smallest number such that (x, y) ∈ B then x
is listed for z = max(x, y).

To see the converse, let MA be the Turing machine which enumerates
A. Define B to be the set of pairs (x, y) such that x is output by MA in at
most y steps. By the existence of the universal Turing machine it follows
that B is recursive and by definition ∃y(x, y) ∈ B precisely when x appears
in the output of MA, i.e. when x ∈ A. This finishes the proof of Theorem
2.19.

The last theorem says that r.e.sets are just recursive sets plus an existen-
tial quantifier. We will later see that there is a similar relationship between
the complexity classes P and NP .

Let the halting set, K, be defined by

K = {(x, y)|My is legal and halts on input x}.

To determine whether a given pair (x, y) ∈ K is for natural reasons called the
halting problem. This is closely related to the diagonal halting problem which
we have already proved not to be recursive in the last section. Intuitively
this should imply that the halting problem also is not recursive and in fact
this is the case.

Theorem 2.20 The halting problem is not recursive.

20

Proof: Suppose K is recursive i.e. that there is a Turing machine M which
on input (x, y) gives output 1 precisely when My is legal and halts on input
x. We will use this machine to construct a machine that computes VT using
M as a subroutine. Since we have already proved that no machine can
compute VT this will prove the theorem.

Now consider an input x and that we want to compute VT (x). First
decide whether Mx is a legal Turing machine. If it is not we output 0 and
halt. If Mx is a legal machine we feed the pair (x, x) to M . If M outputs
0 we can safely output 0 since we know that Mx does not halt on input x.
On the other hand if M outputs 1 we use the universal machine on input
(x, x,∞) to determine the output ofMx on input x. If the output is 0 we give
the answer 1 and otherwise we answer 0. This gives a mechanical procedure
that computes VT and we have reached the desired contradiction.

It is now clear that other problems can be proved to be non-recursive by
a similar technique. Namely we assume that the given problem is recursive
and we then make an algorithm for computing something that we already
know is not recursive. One general such method is by a standard type of
reduction and let us next define this concept.

Definition 2.21 For sets A and B let the notation A ≤m B mean that
there is a recursive function f such that x ∈ A⇔ f(x) ∈ B.

The reason for the letter m on the less than sign is that one usually
defines several different reductions. This particular reduction is usually re-
ferred to as a many-one reduction. We will not study other definitions in
detail, but since the only reduction we have done so far was not a many-one
reduction but a more general notion called Turing reduction, we will define
also this reduction.

Definition 2.22 For sets A and B let the notation A ≤T B mean that given
a Turing machine that recognizes B then using this machine as a subroutine
we can construct a Turing machine that recognizes A.

The intuition for either of the above definitions is that A is not harder
to recognize than B. This is formalized as follows:

Theorem 2.23 If A ≤m B and B is recursive then A is recursive.

Proof: To decide whether x ∈ A, first compute f(x) and then check
whether f(x) ∈ B. Since both f and B are recursive this is a recursive
procedure and it gives the correct answer by the definition of A ≤m B.

21

Clearly the similar theorem with Turing reducibility rather than many-
one reducibility is also true (prove it). However in the future we will only
reason about many-one reducibility. Next let us define the hardest problem
within a given class.

Definition 2.24 A set A is r.e.-complete iff

1. A is r.e.

2. If B is r.e. then B ≤m A.

We have

Theorem 2.25 The halting set is r.e.-complete.

Proof: The fact that the halting problem is r.e.can be seen in a similar way
that the diagonal halting problem KD was seen to be r.e.. Just run more
and more machines more and more steps and output all pairs of machines
and inputs that leads to halting.

To see that it is complete we have to prove that any other r.e. set, B can
be reduced to K. Let M be the Turing machine that enumerates B. Define
M ′ to be the Turing machine which on input x runs M until it outputs x (if
ever) and then halts with output 0. Then M ′ halts precisely when x ∈ B.
Thus if M ′ = My we can let f(x) = (x, y) and this will give a reduction
from B to K. The proof is complete.

It is also true that the diagonal halting problem is r.e.-complete, but we
omit the proof. There are many other (often more natural) problems that
can be proved r.e.-complete (or to be even harder) and let us define two such
problems.

The first problem is called tiling a can be thought of as a two-dimensional
domino game. Given a finite set of squares (which will be called tiles), each
with a marking on all four sides and one tile placed at the origin in the
plane. The question is whether it is possible to cover the entire positive
quadrant with tiles such that on any two neighboring tiles, the markings
agree on their common side and such that each tile is equal to one of the
given tiles.

Theorem 2.26 The complement problem of tiling is r.e.-complete.

22

Proof: (Outline) Given a Turing machine Mx we will construct a set of
tiles and a tile at the origin such that the entire positive quadrant can be
tiled iff Mx does not halt on the empty input. The problem whether a
Turing machine halts on the empty input is not recursive (this is one of the
exercises in the end of this chapter). We will construct the tiles in such a
way that the only way to put down tiles correctly will be to make them
describe a computation of Mx. The tile at the origin will make sure that the
machine starts correctly (with some more complication this tile could have
been eliminated also).

Let the state of a tape cell be the content of the cell with the additional
information whether the head is there and in such a case which state the
machine is in. Now each tile will describe the state of three adjacent cells.
The tile to be placed at position (i, j) will describe the state of cells j, j+ 1
and j + 2 at time i of the computation. Observe that this implies that tiles
which are to the left and right of each other will describe overlapping parts
of the tape. However, we will make sure that the descriptions do not conflict.

A tile will thus be partly be specified by three cell-states s1, s2 and s3
(we call this the signature of the tile) and we need to specify how to mark
its four sides. The left hand side will be marked by (s1, s2) and the right
hand side by (s2, s3). Observe that this makes sure that there is no conflict
in the descriptions of a cell by different tiles. The markings on the top and
the bottom will make sure that the computation proceeds correctly.

Suppose that the states of cells j, j + 1, and j + 2 are s1, s2, and s3
at time t. Consider the states of these cells at time t + 1. If one of the
si tells us that the head is present we know exactly what states the cells
will be in. On the other hand if the head is not present in any of the
three cells there might be several possibilities since the head could be in
cells j − 1 or j + 3 and move into one of our positions. In a similar way
there might be one or many (or even none) possible states for the three
cells at time t− 1. For each possibility (s−1

1 , s
−1
2 , s

−1
3) and (s+1

1 , s
+1
2 , s

+1
3) of

states in the previous and next step we make a tile. The marking on the
lower side is (s−1

1 , s
−1
2 , s

−1
3), (s1, s2, s3) while the marking on the top side is

(s1, s2, s3), (s+1
1 , s

+1
2 , s

+1
3). This completes the description of the tiles.

Finally at the origin we place a tile which describes that the machine
starts in the first cell in state q0 and blank tape. Now it is easy to see that
a valid tiling describes a computation of Mx and the entire quadrant can be
tiled iff Mx goes on for ever i.e. it does not halt.

There are a couple of details to take care of. Namely that new heads
don’t enter from the left and that the entire tape is blank from the beginning.

23

A couple of special markings will take care of this. We leave the details to
the reader.

The second problem we will consider is number theoretic statements,
i.e. given a number theoretic statement is it false or true? One particular
statement people have been interested in for a long time (which supposedly
was proved true in 1993) is Fermat’s last theorem, which can be written as
follows

∀n > 2 ∀x, y, zxn + yn = zn ← xyz = 0.

In general a number theoretic statement involves the quantifiers ∀ and ∃,
variables and usual arithmetical operations. Quantifiers range over natural
numbers.

Theorem 2.27 The set of true number theoretic statements is not recur-
sive.

Remark 2.28 In fact the set of true number theoretic statements is not
even r.e. but have a much more complicated structure. To prove this would
lead us to far into recursion theory. The interested reader can consult any
standard text in recursion theory.

Proof: (Outline) Again we will prove that we can reduce the halting
problem to the given problem. This time we will let an enourmous integer
z code the computation. Thus assume we are given a Turing machine Mx
and that we want to decide whether it halts on the empty input.

The state of each cell will be given by a certain number of bits in the
binary expansion of z. Suppose that each cell has at most S ≤ 2r states.
A computation of Mx that runs in time t never uses more than t tape cells
and thus such a computation can be described by the content of t2 cells (i.e.
t cells each at t different points in time). This can now be coded as rt2

bits and these bits concatenated will be the integer z. Now let Ax be an
arithmetic formula such that Ax(z, t) is true iff z is a rt2 bit integer which
describes a correct computation for Mx which have halted. To check that
such a formula exists requires a fair amount of detailed reasoning and let us
just sketch how to construct it. First one makes a predicate Cell(i, j, z, t, p)
which is true iff p is the integer that describes the content of cell i at time
j. This amounts to extracting the r bits of z which are in position starting
at (it+ j)r. Next one makes a predicate Move(p1, p2, p3, q) which says that
if p1, p2 and p3 are the states of squares i− 1, i and i+ 1 at time j then q is

24

the resulting state of square i at time j + 1. The Cell predicate is from an
intuitive point of view very arithmetic (and thus we hope the reader feels
that it can be constructed). Move on the other hand is of constant size
(there are only 24r inputs, which is a constant depending only on x and
independent of t) and thus can be coded by brute force. The predicate
Ax(z, t) is now equivalent to the conjunction of

∀i, j, p1, p2, p3, q Cell(i− 1, j, z, t, p1)∧
Cell(i, j, z, t, p2) ∧ Cell(i+ 1, j, z, t, p3)∧
Cell(i, j + 1, z, t, pq)⇒Move(p1, p2, p3, q)

and
∀q′ Cell(1, t, z, t, q′)⇒ Stop(q′)

where Stop(p) is true if p is a haltstate. Now we are almost done since Mx
halts iff

∃z, tAx(z, t)
and thus if we can decide the truth of arithmetic formulae with quantifiers
we can decide if a given Turing machine halts. Since we know that this is
not possible we have finished the outline of the proof.

Remark 2.29 It is interesting to note that (at least to me) the proofs of
the last two theorems are in some sense counter intuitive. It seems like the
hard part of the tiling problem is what to do at points where we can put down
many different tiles (we never know if we made the correct decision). This
is not utilized in the proof. Rather at each point we have only one choice
and the hard part is to decide whether we can continue for ever. A similar
statement is true about the other proof.

Let us explicitly state a theorem we have used a couple of times.

Theorem 2.30 If A is r.e.-complete then A is not recursive.

Proof: Let B be a set that is r.e.but not recursive (e.g.the halting problem)
then by the second property of being r.e.-complete B ≤m A. Now if A was
recursive then by Theorem 2.7.6 we could conclude that B is recursive,
contradicting the initial assumption that B is not recursive.

25

Before we end this section let us make an informal remark. What does
it mean that the halting problem is not recursive? Experience shows that
for most programs that do not halt there is a simple reason that they do not
halt. They often tend to go into an infinite loop and of course such things can
be detected. We have only proved that there is not a single program which
when given as input the description of a Turing machine and an input to that
machine, the program will always give the correct answer to the question
whether the machine halts or not. One final definition: A problem that is
not recursive is called undecidable. Thus the halting problem is undecidable.

2.8 Gödel’s incompleteness theorem

Since we have done many of the pieces let us briefly outline a proof of
Gödel’s incompleteness theorem. This theorem basically says that there are
statements in arithmetic which neither have proof or a disproof. We want
to avoid a too elaborate machinery and hence we will be rather informal
and give an argument in the simplest case. However, before we state the
theorem we need to address what we mean by “statement in arithmetic”
and “proof”.

Statements in arithmetic will simply be the formulas considered in the
last examples, i.e. quantified formulas where the variables values which are
natural numbers. We encourage the reader to write common theorems and
conjectures in number theory in this form to check its power.

The notion of a proof is more complicated. One starts with a set of
axioms and then one is allowed to combine axioms (according to some rules)
to derive new theorems. A proof is then just such a derivation which ends
with the desired statement.

First note that most proofs used in modern mathematics is much more
informal and given in a natural language. However, proof can be formalized
(although most humans prefer informal proofs).

The most common set of axioms for number theory was proposed by
Peano, but one could think of other sets of axioms. We call a set of axioms
together with the rules how they can be combined a proofsystem. There are
two crucial properties to look for in a proofsystem. We want to be able to
prove all true theorem (this is called completeness) and we do not want to be
able to prove any false theorems (this is called that the system is consistent).
In particular, for each statement A we want to be able to prove exactly one
of A and ¬A.

Our goal is to prove that there is no proof system that is both consistent

26

and complete. Unfortunately, this is not true since we can as axioms take all
true statements and then we need no rules for deriving new theorems. This
is not a very practical proofsystem since there is no way to tell whether a
given statement is indeed an axiom. Clearly the axioms need to be specified
in a more efficient manner. We take the following definition.

Definition 2.31 A proofsystem is recursive iff the set of proofs (and hence
the set of axioms) form a recursive set.

We can now state the theorem.

Theorem 2.32 (Gödel) There is no recursive proofsystem which is both
consistent and complete.

Proof: Assume that there was indeed such a proofsystem. Then we claim
that also the set of all theorems would be recursive. Namely to decide
whether a statement A is true we could proceed as follows:

For z = 0, 1, 2, . . .∞
If z is a correct proof of A output “true” and halt.
If z is a correct proof of ¬A output “false” and halt.

To check whether a given string is a correct proof is recursive by as-
sumption and since the proofsystem is consistent and complete sooner or
later there will be a proof of either A or ¬A. Thus this procedure always
halts with the correct answer. However, by Theorem 2.27 the set of true
statements is not recursive and hence we have reached a contradiction.

2.9 Exercises

Let us end this section with a couple of exercises (with answers). The reader
is encouraged to solve the exercises without looking too much at the answers.

II.1: Given x is it recursive to decide whether Mx halts on an empty input?
II.2: Is there any fixed machine M , such that given y, deciding whether M
halts on input y is recursive?
II.3: Is there any fixed machine M , such that given y, deciding whether M
halts on input y is not recursive?

27

II.4: Is it true that for each machine M , that given y, it is recursive to
decide whether M halts on input y in y2 steps?
II.5: Given x is it recursive to decide whether there exists a y such that Mx
halts on y?
II.6: Given x is it recursive to decide whether for all y, Mx halts on y?
II.7: IfMx halts on empty input let f(x) be the number of steps it needs be-
fore it halts and otherwise set f(x) = 0. Define the maximum time function
by MT (y) = maxx≤y f(x). Is the maximum time function computable?
II.8 Prove that the maximum time function (cf ex. II.7) grows at least as
fast as any recursive function. To be more precise let g be any recursive
function, then there is an x such that MT (x) > g(x).
II.9 Given a set of rewriting rules over a finite alphabet and a starting
string and a target string, is it decidable whether we, using the rewriting
rules, can transform the starting string to the target string? An example
of this instance is: Rewriting rules ab → ba, aa → bab and bb → a. Is it
possible to transform ababba to aaaabbb?
II.10 Given a set of rewriting rules over a finite alphabet and a starting
string. Is it decidable whether we, using the rewriting rules, can transform
the starting string to an arbitrarily long string?
II.11 Given a set of rewriting rules over a finite alphabet and a starting
string. Is it decidable whether we, using the rewriting rules, can transform
the starting string to an arbitrarily long string, if we restrict the left hand
side of each rewriting rule to be of length 1?

2.10 Answers to exercises

II.1 The problem is undecidable. We will prove that if we could decide
whether Mx halts on the empty input, then we could decide whether Mz
halts on input y for an arbitrary pair z, y. Namely given z and y we make a
machine Mx which basically looks like Mz but has a few special states. We
have one special state for each symbol of y. On empty input Mx first goes
trough all its special states which writes y on the tape. The machine then
returns to the beginning of the tape and from this point on it behaves as
Mz. This new machine halts on empty input-tape iff Mz halted on input y
and thus if we could decide the former we could decide the latter which is
known undecidable. To conclude the proof we only have to observe that it
is recursive to compute the number x from the pair y and z.

28

II.2 There are plenty of machines of this type. For instance let M be the
machine that halts without looking at the input (or any machine defining a
total function). In one of these cases the set of y’s for which the machine
halts is everything which certainly is a decidable set.
II.3 Let M be the universal machine. Then M halts on input (x, y) iff Mx
halts on input y. Since the latter problem is undecidable so is the former.
II.4 This problem is decidable by the existence of the universal machine. If
we are less formal we could just say that running a machine a given number
of steps is easy. What makes halting problems difficult is that we do not
know for how many steps to run the machine.
II.5 Undecidable. Suppose we could decide this problem, then we show that
we could determine whether a machine Mx halts on empty input. Given Mx
we create a machineMz which first erases the input and then behaves asMx.
We claim that Mz halts on some input iff Mx halts on empty input. Also
it is true that we can compute z from x. Thus if we could decide whether
Mz halts on some input then we could decide whether Mx halts on empty
input, but this is undecidable by exercise II.1.
II.6 Undecidable. The argument is the same as in the previous exercise.
The constructed machine Mz halts on all inputs iff it halts on some input.
II.7 MT is not computable. Suppose it was, then we could decide whether
Mx halts on empty input as follows: First compute MT (x) and then runMx
for MT (x) steps on the empty input. If it halts in this number of steps, we
know the answer and if it did not halt, we know by the definition ofMT that
it will never halt. Thus we always give the correct answer. However we know
by exercise II.1 that the halting problem on empty input is undecidable. The
contradiction must come from our assumption that MT is computable.
II.8 Suppose we had a recursive function g such that g(x) ≥MT (x) for all
x. Then g(x) would work in the place of MT (x) in the proof of exercise II.7
(we would run more steps than we needed to, but we would always get the
correct answer). Thus there can be no such function.
II.9 The problem is undecidable, let us give an outline why this is true. We
will prove that if we could decide this problem then we could decide whether
a given Turing machine halts on the empty input. The letters in our finite
alphabet will be the nonblank symbols that can appear on the tape of the
Turing machine, plus a symbol for each state of the machine. A string in
this alphabet containing exactly one letter corresponding to a state of the
machine can be viewed as coding the Turing machine at one instant in time

29

by the following convention. The nonblank part of the tape is written from
left to write and next to the letter corresponding to the square where the
head is, we write the letter corresponding to the state the machine is in.
For instance suppose the Turing machine has symbols 0 and 1 and 4 states.
We choose a, b, c and d to code these states. If, at an instant in time, the
content of the tape is 0110000BBBBBBBBBBBB . . . and the head is in
square 3 and is in state 3, we could code this as: 011c000. Now it is easy
to make rewriting rules corresponding to the moves of the machine. For
instance if the machine would write 0, go into state 2 and move left when
it is in state 3 and sees a 1 this would correspond to the rewriting rule
1c → b0. Now the question whether a machine halts on the empty input
corresponds to the question whether we can rewrite a to a description of a
halted Turing machine. To make this description unique we add a special
state to the Turing machine such that instead of just halting, it erases the
tape and returns to the beginning of the tape and then halts. In this case
we get a unique halting configuration, which is used as the target string.

It is very interesting to note that although one would expect that the
complexity of this problem comes from the fact that we do not know which
rewriting rule to apply when there is a choice, this is not used in the proof.
In fact in the special cases we get from the reduction from Turing machines,
at each point there is only one rule to apply (corresponding to the move of
the Turing machine).

In the example given in the exercise there is no way to transform the
start string to the target string. This might be seen by letting a have weight
2 and b have weight 1. Then the rewriting rules preserve weight while the
two given words are of different weight.
II.10 Undecidable. Do the same reduction as in exercise II.9 to get a rewrit-
ing system and a start string corresponding to a Turing machineMx working
on empty input. If this system produces arbitrarily long words then the ma-
chine does not halt. On the other hand if we knew that the system did not
produce arbitrarily long words then we could simulate the machine until
it either halts or enters the same state twice (we know one of these two
cases will happen). In the first case the machine halted and in the second
it will loop forever. Thus if we could decide if a rewriting system produced
arbitrarily long strings we can decide if a Turing machine halts on empty
input.
II.11 This problem is decidable. Make a directed graph G whose nodes cor-
respond to the letters in the alphabet. There is an edge from v to w if there

30

is a rewriting rule which rewrites v into a string that contains w. Let the
weight of this string be 1 if the rewriting rule replaces v by a longer string
and 0 otherwise. Now we claim that the rewriting rules can produce arbi-
trarily long strings iff there is a circuit of positive weight that can be reached
from one of the letters contained in the starting word. The decidability now
follows from standard graph algorithms.

31

3 Efficient computation, hierarchy theorems.

To decide what is mechanically computable is of course interesting, but what
we really care about is what we can compute in practice, i.e by using an
ordinary computer for a reasonable amount of time. For the remainder of
these notes all functions that we will be considering will be recursive and
we will concentrate on what resources are needed to compute the function.
The two first such resources we will be interested in are computing time and
space.

3.1 Basic Definitions

Let us start by defining what we mean by the running time and space usage
of a Turing machine. The running time is a function of the input and
experience has showed that it is convenient to treat inputs of the same
length together.

Definition 3.1 A Turing machine M runs in time T (n) if for every input
of length n, M halts within T (n) steps.

Definition 3.2 The length of string x is denoted by |x|.

The natural definition for space would be to say that a Turing machine
uses space S(n) if its head visits at most S(n) squares on any input of
length n. This definition is not quite suitable under all circumstances. In
particular, the definition would imply that if the Turing machine looks at the
entire input then S(n) ≥ n. We will, however, also be interested in machines
which use less than linear space and to make sense of this we have to modify
the model slightly. We will assume that there is a special input-tape which
is read-only and a special output-tape which is write-only. Apart from these
two tapes the machine has one or more work-tapes which it can use in the
oldfashioned way. We will then only count the number of squares visited on
the work-tapes.

Definition 3.3 Assume that a Turing machine M has a read-only input-
tape, a write-only output-tape and one or more work-tapes. Then we will
say that M uses space S(n) if for every input of length n, M visits at most
S(n) tape squares on its work-tapes before it halts.

32

When we are discussing running times we will most of the time not be
worried about constants i.e.we will not really care if a machine runs in time
n2 or 10n2. Thus the following definition is useful:

Definition 3.4 O(f(n)) is the set of functions which is bounded by cf(n)
for some positive constant c.

Having done the definitions we can go on to see whether more time
(space) actually enables us to compute more functions.

3.2 Hierarchy theorems

Before we start studying the hierarchy theorems (i.e. theorems of the type
“more time helps”) let us just prove that there are arbitrarily complex func-
tions.

Theorem 3.5 For any recursive function f(n) there is a function Vf which
is recursive but cannot be computed in time f(n).

Proof: Define Vf by letting Vf (x) be 1 if Mx is a legal Turing machine
which halts with output 0 within f(|x|) steps on input x and let Vf (x) take
the value 0 otherwise.

We claim that Vf cannot be computed within time f(n) on any Turing
machine. Suppose for contradiction that My computes Vf and halts within
time f(|x|) for every input x. Consider what happens on input y. Since we
have assumed that My halts within time f(|y|) we see that Vf (y) = 1 iff My
gives output 0, and thus we have reached a contradiction.

To finish the proof of the theorem we need to check that Vf is recursive,
but this is fairly straightforward. We need to do two things on input x.

1. Compute f(|x|).
2. Check if Mx is a legal Turing machine and in such a case simulate Mx

for f(|x|) steps and check whether the output is 0.

The first of these two operations is recursive by assumption while the
second can be done using the universal Turing machine as a subroutine.
This completes the proof of Theorem 3.5

33

Up to this point we have not assumed anything about the alphabet of
our Turing machines. Implicitly we have thought of it as {0, 1, B} but let
us now highlight the role of the alphabet in two theorems.

Theorem 3.6 If a Turing machine M computes a {0, 1} valued function f
in time T (n) then there is a Turing machine M ′ which computes f in time
2n + T (n)

2 .

Proof: (Outline) Suppose that the alphabet of M is {0, 1, B} then the
alphabet of M ′ will be 5-tuples of these symbols. Then we can code every
five adjacent squares on the tape of M into a single square of M ′. This will
enable M ′ to take several steps of M in one step provided that the head
stays within the same block of 5 symbols coded in the same square of M ′.
However, it is not clear that this will help since it might be the case that
many of M ’s steps will cross a boundary of 5-blocks. One can avoid this by
having the 5-tuples of M ′ be overlapping, and we leave this construction to
the reader.

The reason for requiring that f only takes the values 0 and 1 is to make
sure that M does not spend most of its time printing the output and the
reason for adding 2n in the running time of M ′ is that M ′ has to read the
input in the old format before it can be written down more succinctly and
then return to the intitial configuration.

The previous theorem tells us that we can gain any constant factor in
running time provided we are willing to work with a larger alphabet. The
next theorem tells us that this is all we can gain.

Theorem 3.7 If a Turing machine M computes a {0, 1} valued function
f on inputs that are binary strings in time T (n), then there is a Turing
machine M ′ which uses the alphabet {0, 1, B} which computes f in time
cT (n) for some constant c.

Proof: (Outline) Each symbol of M is now coded as a finite binary string
(assume for notational convenience that the length of these strings is 3 for
any symbol of M ’s alphabet). To each square on the tape of M there will
be associated 3 tape squares on the tape of M ′ which will contain the code
of the corresponding symbol of M . Each step of M will be a sequence of
steps of M ′ which reads the corresponding squares. We need to introduce
some intermediate states to remember the last few symbols read and there
are some other details to take care of. However, we leave these details to
the reader.

34

The last two theorems tell us that there is no point in keeping track
of constants when analyzing computing times. The same is of course true
when analyzing space since the proofs naturally extend. The theorems also
say that it is sufficient to work with Turing machines that have the alphabet
{0, 1, B} as long as we remember that constants have no significance. For
definiteness we will state results for Turing machines with 3 tapes.

It will be important to have efficient simulations and we have the follow-
ing theorem.

Theorem 3.8 The number of operations for a universal two-tape Turing
machine needed to simulate T (n) operations of a Turing machine M is at
most αT (n) log T (n), where α is a constant dependent on M , but indepen-
dent of n. If the original machine runs in space S(n) ≥ log n, the simulation
also runs in space αS(n), where α again is a constant dependent on M , but
independent of n.

We skip the complicated proof.
Now consider the function Vf defined in the proof of Theorem 3.5 and

let us investigate how much is needed to compute it. Of the two steps of the
algorithm, the second step can be analyzed using the above result and thus
the unknown part is how long it takes to compute f(|x|). As many times in
mathematics we define away this problem.

Definition 3.9 A function f is time constructible if there is a Turing ma-
chine that on input 1n computes f(n) in time f(n).

It is easy to see that most natural functions like n2, 2n and n log n are
time constructible. More or less just collecting all the pieces of the work
already done we have the following theorem.

Theorem 3.10 If T2(n) is time constructible, T1(n) > n, and

lim
n→∞

T2(n)
T1(n) log T1(n)

=∞

then there is a function computable in time O(T2(n)) but not in T1(n). Both
time bounds refer to Turing machines with three tapes.

Proof: The intuition would be to use the function VT1 defined previously.
To avoid some technical obstacles we work with a slightly modified function.

35

When simulating Mx we count the steps of the simulating machine rather
than of Mx. I.e. we first compute T2(n) and then run the simulation for
that many steps. We use two of the tapes for the simulation and the third
tape to keep a clock. If we get an answer within this simulation we output
1 if the answer was 0 and output 0 otherwise. If we do not get an answer
we simply answer 0. This defines a function V ′

T2
and we need to check that

it cannot be computed by any My in time T1.
Remember that there are infinitely many yi such that Myi codes My (we

allowed an end marker in the middle of the description). Now note that the
constant α in Theorem 3.8 only depends on the machine My to be simulated
and thus there is a yi which codes My such that

T2(|yi|) ≥ αT1(|yi|) log T1(|yi|).
By the standard argument My will make an error for this input.

It is clear that we will be able to get the same result for space-complexity
even though there is some minor problems to take care of. Let us first prove
that there are functions which require arbitrarily large amounts of space.

Theorem 3.11 If f(n) is a recursive function then there is a recursive
function which cannot be computed in space f(n).

Proof: Define Uf by letting Uf (x) be 1 if Mx is a legal Turing machine
which halts with output 0 without visiting more than f(|x|) tape squares
on input x and let Uf (x) take the value 0 otherwise.

We claim that Uf cannot be computed in space f(n). Given a Turing
machine My which never uses more than f(n) space, then as in all previous
arguments My will output 0 on input y iff Uf (y) = 1 and otherwise Uf (y) =
0.

To finish the theorem we need to prove that Uf is recursive. This might
seem obvious at first since we can just use the universal machine to simulate
Mx and all we have to keep track of is whetherMx uses more than the allowed
amount of space. This is not quite sufficient since Mx might run forever and
never use more than f(|x|) space. We need the following important but not
very difficult lemma.

Lemma 3.12 Let M be a Turing machine which has a work tape alphabet
of size c, Q states and k work-tapes and which uses space at most S(n).
Then on inputs of length n, M either halts within time nQS(n)kckS(n) or it
never halts.

36

Proof: Let a configuration of M be a complete description of the machine
at an instant in time. Thus, the configuration consists of the contents of the
tapes of M , the positions of all its heads and its state.

Let us calculate the number of different configurations ofM given a fixed
input of length n. Since it uses at most space S(n) there at most ckS(n)

possible contents of it work-tapes and at most S(n)k possible positions of
the heads on the worktapes. The number of possible locations of the head on
the input-tape is at most n and there are Q possible states. Thus we have a
total of nQS(n)kckS(n) possible configurations. If the machine does not halt
within this many timesteps the machine will be in the same configuration
twice. But since the future actions of the machine is completely determined
by the present configuration, whenever it returns to a configuration where
it has been previously it will return infinitely many times and thus never
halt. The proof of Lemma 3.12 is complete.

Returning to the proof of Theorem 3.11 we can now prove that Uf is
computable. We just simulate Mx for at most |x|Qf(|x|)kckf(|x|) steps or
until it has halted or used more than f(|x|) space. We use a counter to count
the number of steps used. This finishes the proof of Theorem 3.11

To prove that more space actually enables us to compute more functions
we need the appropriate definition.

Definition 3.13 A function f is space constructible if there is a Turing
machine that on input 1n computes f(n) in space f(n).

We now can state the space-hierarchy theorem.

Theorem 3.14 If S2(n) is space constructible, S(n) ≥ log n and

lim
n→∞

S2(n)
S(n)

=∞

then there is a function computable in space O(S2(n)) but not in space S(n).
These space bounds refer to machines with 3 tapes.

Proof: The function achieving the separation is basically US with the
same twist as in Theorem 3.10. In other words define a function essentially
as US but restrict the computation to using space S2 of the simulating
machine. The rest of the proof is now more or less identical. The only
detail to take care of is that if S(n) ≥ log n then a counter counting up to
|x|QS(|x|)kckS(|x|) can be implemented in space S(n).

37

The reason that we get a tighter separation between space-complexity
classes than time-complexity classes is the fact that the universal machine
just uses constant more space than the original machine.

This completes our treatment of the hierarchy theorems. These results
are due to Hartmanis and Stearns and are from the 1960’s. Next we will
continue into the 1970’s and move further away from recursion theory and
into the realm of more modern complexity theory.

38

4 The complexity classes L, P and PSPACE.

We can now start our main topic, namely the study of complexity classes.
We will in this section define the basic deterministic complexity classes, L,
P and PSPACE.

Definition 4.1 Given a set A, we say that A ∈ L iff there is a Turing
machine which computes the characteristic function of A in space O(log n).

Definition 4.2 Given a set A, we say that A ∈ P iff there is a Turing
machine which for some constant k computes the characteristic function of
A in time O(nk).

Definition 4.3 Given a set A, we say that A ∈ PSPACE iff there is
a Turing machine which for some constant k computes the characteristic
function of A in space O(nk).

There are some relations between the given complexity classes.

Theorem 4.4 L ⊂ PSPACE.
Proof: The inclusion is obvious. That it is strict follows from Theorem
3.14.

Theorem 4.5 P ⊆ PSPACE.
This is also obvious since a Turing machine cannot use more space than
time.

Theorem 4.6 L ⊆ P .
Proof: This follows from Lemma 3.12 since if S(n) ≤ c log n and we assume
that the machine uses a three letter alphabet, has k work-tapes, and Q states
and always halts, then we know it runs in time at most

nQ(c log n)k3c logn ∈ O(n2+c log 3)

where we used that (log n)k ∈ O(n) for any constant k. We can conclude
that a machine which runs in logarithmic space also runs in polynomial
time.

The inclusions given in Theorems 4.5 and 4.6 are believed to be strict
but this is not known. Of course, it follows from Theorem 4.4 that at least
one of the inclusions is strict, but it gives no idea to which one it is.

39

Figure 2: A Random Access Machine

4.1 Is the definition of P model dependent?

When studying mechanically computable functions we had several defini-
tions which turned out to be equivalent. This fact convinced us that we had
found the right notion i.e. that we had defined a class of functions which
captured a property of the functions rather than a property of the model.
The same argument applies here. We have to investigate whether the de-
fined complexity classes are artifacts of the particulars of Turing machines
as a computational model or if they are genuine classes of functions which
are more or less independent of the model of computation. The reader who
is not worried about such questions is adviced to skip this section.

Turing machine seems incredibly inefficient and thus we will compare
it to a model of computation which is more or less a normal computer
(programmed in assembly language). This type of computer is called a
Random Access Machine (RAM) and a pictured is given i Figure 2. A RAM

40

has a finite control, and infinite number of registers and two accumulators.
Both the registers and the accumulators can hold arbitrarily large integers.
We will let r(i) be the content of register i and ac1 and ac2 the contents of
the accumulators. The finite control can read a program and has a read-only
input-tape and a write-only output tape. In one step a RAM can carry out
the following instructions.

1. Add, subtract, divide (integer division) or multiply the two numbers
in ac1 and ac2, the result ends up in ac1.

2. Make conditional and unconditional jumps. (Condition ac1 > 0 or
ac1 = 0).

3. Load something into an accumulator, e.g. ac1 = r(k) for constant k
or ac1 = r(ac1), similarly for ac2.

4. Store the content of an accumulator, e.g. r(k) = ac1 for constant k or
r(ac2) = ac1, similarly for ac2.

5. Read input ac1 = input(ac2).

6. Write an output.

7. Use constants in the program.

8. Halt

One might be tempted to let the time used by a RAM be the number
of operations it does (the unit-cost RAM). This turns out to give a quite
unrealistic measure of complexity and instead we will use the logarithmic
cost model.

Definition 4.7 The time to do a particular instruction on a RAM is 1 +
log(k + 1) where k is the least upper bound on the integers involved in the
instruction. The time for a computation on a RAM is the sum of the times
for the individual instructions.

This actually agrees quite well with our everyday computers. The size of
a computer word is bounded by a constant and operations on larger numbers
require us to access a number of memory cells which is proportional to
logarithm of the number used.

41

To define the amount of memory used by a RAM on a particular oper-
ation let us assume that the initial contents of all the registers are 0. Then
we have:

Definition 4.8 The space used by a RAM under a computation is the max-
imum of

log(ac1 + 1) + log(ac2 + 1) +
∑
r(i)�=0

log (i+ r(i))

during the computation.

Intuitively the RAM seems more powerful than a Turing machine. We
will not try to prove exactly this, but only to establish strong enough results
to show that the class P is well defined.

Theorem 4.9 If a Turing machine can compute a function in time T (n)
and space S(n), for T (n) ≥ n and S(n) ≥ log n then the same function can
be computed in time O(T 2(n)) and space O(S(n)) on a RAM.

Proof: (Outline) Assume for simplicity that the Turing machine just has
one work-tape and that it uses the alphabet {0, 1, B}. The RAM will sim-
ulate the computation of the Turing machine step by step. It will code the
content of the work-tape as an integer and store this integer in register 1,
the position of the head on the input-tape in accumulator 2, the position
of the head on the work-tape(s) in register 2 and the current state of the
Turing machine in register 3. To simulate a step of the Turing machine the
RAM gets the appropriate information from the work-tape by an integer di-
vision and then it follows the transition described by the next-step function.
The cost of the simulation of an individual step is the size of the integers
involved and this is bounded by O(S(n)). Since we have at most T (n) steps
and S(n) ≤ T (n) the bound for the running time follows. The bound for
the space used is obvious.

Observe that we need to store the entire contents of the work-tape in
one register to conserve space. If we instead stored the content of square i
in register i the total space used would be O(S(n) log S(n)). The running
time would be improved to O(T (n) log T (n)) but for the present purposes it
is more important to keep the space small.

Next let us see that in fact a Turing machine is not that much less powerful
than a RAM.

42

Theorem 4.10 If a function f can be computed by a RAM in time T (n)
and space S(n) then f can be computed in time O(T 2(n)) and space S(n)
on a Turing machine.

Proof: (Outline) As many other proofs this is not a very thrilling simula-
tion argument, which we usually tend to omit. However, since the result is
central in that it proves that P is invariant under change of model, we will
at least give a reasonable outline of the proof.

The way to proceed is of course to simulate the RAM step by step.
Assume for simplicity that we do the simulation on a Turing machine which
apart from its input-tape and output-tape has 4 work-tapes. Three of the
four work-tapes will correspond to ac1, ac2, the registers, respectively, while
the forth tape is used as a scratch pad. A schematic picture is given in
Figure 3 The register tape will contain pairs (i, r(i)) where the two numbers
are separated with a B. Two different pairs are separated by BB. If some
i does not appear on the register tape this means that r(i) = 0.

The RAM-program is now translated into a next-step function of the
Turing machine. Each line is translated into a set of states and transitions
between the states as indicated by Figure 4. Let us give a few examples how
to simulate some particular instructions. We will define the Turing machine
pictorially by having circles indicate states. Inside the circle we write the
tape(s) we are currently interested in, and the labeled arrows going out
of the circle indicate which states to proceed to where the label indicates
the current symbol(s). Rectangular boxes indicate subroutines, a special
subroutine is “Rew” which is rewinding the register tape, i.e. moving the
head to the beginning, the same operation also applies to other tapes.

1. If the instruction is an arithmetical step, we just replace it by a Turing
machine which computes the arithmetical step using the ac1 and ac2
tapes as inputs and the scratch pad tape as work-tape.

2. If the instruction is jump-instruction we just make the next-step func-
tion take the next state which is the first state of the set of states
corresponding to that line. (See Figure 5.)

3. If the jump is conditional on the content of ac1 being 0, then we just
search the ac1-tape for the symbol 1. If we do not find any 1 before we
find B the next step function directs us to the given line and otherwise
we proceed with the next line. (See Figure 6.)

43

Figure 3: A TM simulating a RAM

44

Figure 4: Basic picture

Figure 5: The jump instruction

45

Figure 6: Conditional jump

4. Let us just give an outline of how to load r(ac2) into ac1. Clearly,
what we want to do is to look for the content of ac2 as the first part of
any pair on the register tape. If we find that no such pair exists then
we should load 0 into ac1. A description of this is given in Figure 7.

5. Finally let us indicate how to store ac1 into register ac2. To do this
we scan the register-tape to find out the present value of r(ac2). If
r(ac2) = 0 previously this is easy. If ac1 �= 0 we store the pair (ac2, ac1)
at the end of the register-tape and otherwise we do nothing. If r(ac2) �=
0 we erase the old copy (ac2, r(ac2)) and then move the rest of the
content of the register-tape left to avoid empty space. After we have
moved the information we write (ac2, ac1) at the end (provided ac1 �=
0).

Let us analyze the efficiency of the simulation. The space used by the Turing
machine is easily seen to be bounded by

O(log (ac1 + 1) + log (ac2 + 1) +
∑
r(i)�=0

(log (i+ 1) + log (r(i) + 1) + 3))

and thus the simulation works in O(S(n)) space. To analyze the time needed
for the simulation we claim that you can do multiplication and integer divi-
sion of two m-digit numbers in time O(m2) on a Turing machine. This im-
plies that any arithmetical operation can be done in a factor O(S(n)) longer

46

Figure 7: Loading instruction

47

time on the Turing machine than on the RAM. The storing and retrieving
of information can also be done in time O(S(n)) and using S(n) ≤ T (n)
Theorem 4.10 follows.

Using Theorems 4.9 and 4.10 we see that P, L and PSPACE are the same
whether we use Turing machines or RAMs in the definitions. This turns out
to be true in general and this gives us a very important principle which we
can formalize as a complexity theoretic version of Church’s thesis.

Complexity theoretic version of Church’s thesis: The complexity
classes L, P and PSPACE remain the same under any reasonable computa-
tional model.

The above statement also remains true for all other complexity classes
that we will define throughout these notes and we will frequently implicitly
apply the above thesis. This works as follows. When designing algorithms
it is much easier to describe and analyze the algorithm if we use a high
level description. On the other hand when we argue about computation it
is much easier to work with Turing machines since their local behavior is so
easy to describe. By virtue of the above thesis we can take the easy road to
both things and still be correct.

4.2 Examples of members in the complexity classes.

We have defined L, P and PSPACE as families of sets. We will every now
and then abuse this notation and say that a function (not necessarily {0, 1}-
valued) lies in one of these complexity classes. This will just mean that the
function can be computed within the implied resource bounds.

Example 4.11 Given two n-digit numbers x and y written in binary, com-
pute their sum.

This can clearly be done in time O(n) as we all learned in first grade. It
is also quite easy to see that it can be done in logarithmic space. If we have
x =

∑n−1
i=0 xi2

i and y =
∑n−1
i=0 yi2

i then x + y is computed by the following
program:

carry= 0
For i = 0 to n− 1

bit = xi + yi + carry
carry = 0
If bit ≥ 2 then carry = 1, bit = bit− 2.

48

write bit
next i
write carry.

The only things that need to be remembered is the counter i and the
values of bit and carry. This can clearly be done in O(log n) space and thus
addition belongs to L.

Example 4.12 Given two n-digit numbers x and y written in binary, com-
pute their product.

This can again be done in P by first grade methods, and if we do it
as taught, it will take us O(n2) (this can be improved by more elaborate
methods). In fact we can also do it in L.

carry= 0
For i = 0 to 2n− 2

low = max(0, i− (n− 1))
high = min(n− 1, i)
For j = low to high, carry = carry + xj ∗ yi−j
write lsb(carry)
carry = carry/2

next i
write carry with least significant bit first

If one looks more closely at the algorithm one discovers that it is the
ordinary multiplication algorithm where one saves space by computing a
number only when it is needed. The only slightly nontrivial thing to check
in order to verify that the algorithm does not use more that O(log n) space
is to verify that carry always stays less than 2n. We leave this easy detail
to the reader.

One might be tempted to think that also division could be done in L.
However, it is not known whether this is the case. Another very easy problem
that is not known how to do in L: Given an integer in base 2, convert it to
base 3.

Example 4.13 Given two n-bit integers x and y compute their greatest
common divisor.

49

We will show that this problem is in P and in fact give two different algo-
rithms to show this. First the old and basic algorithm: Euclid’s algorithm.
Assume for simplicity that x > y.

a = x
b = y
While b �= 0 do

find q and r such that a = bq + r, 0 ≤ r < b
a = b
b = r

od
write a

The algorithm is correct since if d divides x and y then clearly d divides
all a and b. On the other hand if d divides any pair a and b then it also
divides x and y.

To analyze the algorithm we have to focus on two things, namely the
number of iterations and the cost of each iteration. First observe that for
each iteration the numbers get smaller and thus we will always be working
with numbers with at most n digits. The work in each iteration is essentially
a division and this can be done in O(n2) bit operations.

The fact that numbers get smaller at each iteration implies that there
are at most 2n iterations. This is not sufficient to get a polynomial time
running time and we need the following lemma.

Lemma 4.14 Let a and b have the values a0 and b0 at one point in time
in Euclid’s algorithm and let a2 and b2 be their values two iterations later,
then a2 ≤ a0/2.

Proof: Let a1 and b1 be the values of a and b after one iteration. Then if
b0 < a0/2 we have a2 < a1 = b0 < a0/2 and the conclusion of the lemma is
true. On the other hand if b0 ≥ a0/2 then we will have a2 = b1 = a0 − b0 ≤
a0/2 and thus we have proved the lemma.

The lemma implies that there are at most 2n iterations and thus the
total complexity is bounded by O(n3). If you are careful, however, it is pos-
sible to do better (without applying any fancy techniques) by the following
observation. If you use standard long division (with remainder) to find q
then the complexity is actually O(ns) where s is the number of bits in q.

50

Thus if q is small we can do each iteration significantly faster. On the other
hand if q is large then it is easy to see that the numbers decrease more
rapidly than given by the above lemma. If one analyzes this carefully we
actually get complexity O(n2).

Let us give another algorithm for the same problem. This algorithm is
called “Binary GCD”.

Let 2dxbe the highest power of 2 that divides x and define dy similarly.
Set a = x2−dx and b = y2−dy . If b < a interchange a and b.
While b > 1 do

Either a+ b or a− b is divisible by 4. Set r to the number that is
divisible by 4 and set a = max(b, r2−dr) and b = min(b, r2−dr)
where 2dr is the highest power of 2 that divides r.

od
write a2min(dx,dy)

The algorithm is correct by a similar argument as the previous algorithm.
To analyze the complexity of the algorithm we again have to study the
number of iterations and the cost of each iteration. Again it is clear that
the numbers decrease in size and thus we will never work with numbers with
more than n digits. Each iteration only consists of a few comparisons and
shifts if the numbers are coded in binary and thus it can be implemented in
time O(n). To analyze the number of iterations we have:

Lemma 4.15 Let a and b have the values a0 and b0 at one point in time in
the binary GCD algorithm and let a2 and b2 be their values two iterations
later, then a2 ≤ a0/2.

Proof: If a1 and b1 are the numbers after one iteration then b1 ≤ (a0+b0)/4
and a1 ≤ a0. Since b0 ≤ a0 this implies that a2 ≤ max(b1, (a1 + b1)/4) ≤
a0/2.

Thu again we can conclude that we have at most 2n iterations, and
hence the total work is bounded by O(n2). This implies that binary GCD
is a competitive algorithm in particular since the individual operations can
be implemented very efficiently when the binary representation of integers
is used.

Let us just remark that the best known greatest common divisor algo-
rithm for integers runs in time O(n(log n)2 log log n) and is based on the

51

Euclidean algorithm. It is unknown if integer greatest common divisor can
be solved in small space.

Example 4.16 Given a nonsingular integer matrix M with entries which
are n-bit numbers, solve Mx = b for some vector of n-bit numbers.

It might seem like this problem obviously is in P since Gaussian elimina-
tion is well known to be doable in O(n3) steps. However, there is something
to check. We need to verify that the numbers do not get too large during the
computation i.e. that the rational numbers that appear can be represented.
To analyze what happens to the numbers assume for notational simplicity
that the upper left i × i matrix is non-singular for any i and thus we will
be able to perform Gaussian elimination without pivoting. Let us investi-
gate what the matrix looks like after we have eliminated the i’th variable.
Suppose the original matrix looks like(

A B
C D

)

where A is the upper i×i matrix. After the i’th variable has been eliminated
the matrix will be(

A−1 0
−CA−1 I

)(
A B
C D

)
=

(
I A−1B
0 −CA−1B +D

)

where I is the i× i identity matrix. Thus using the following lemma we can
bound the rational numbers involved in the computation.

Lemma 4.17 If A is a nonsingular n×n integer matrix with entries bounded
in size by m then A−1 has rational entries with numerator and denominator
bounded by mnn

n
2 .

Proof: Any entry of A−1 is an (n − 1) × (n − 1) subdeterminant of A
divided by the determinant of A. Thus we just need to bound the size of
determinants of integer matrices. A determinant can be interpreted as the
volume of the parallelipiped spanned by the rows. This volume is bounded
by the product of the lengths of the row vectors3 which in its turn is bounded
by (m

√
n)n.

3This is not a formal proof and the inequality indicated in this sentence is known as
Hadamard’s inequality

52

It follows from the lemma that the rational numbers involved in Gaus-
sian elimination can be represented by O(n2) binary digits. Since Gaussian
elimination can be done in O(n3) operations and each operation can be
performed in time O(n4) (if we use classical arithmetic) then we get total
complexity O(n7).

Example 4.18 The determinant of an n× n matrix can be written as

∑
π∈Sn

sg(π)
n∏
i=1

xi,π(i)

where the sum is over all permutations of the numbers 1 through n and
sg(π) is the signum4 of the permutation. The determinant can be computed
by Gaussian elimination and thus by the previous example it is in P. The
permanent is a very related number which is defined as

∑
π∈Sn

n∏
i=1

xi,π(i).

Thus we have just removed the signum part of the definition. The definition
looks simpler but it removes the nice invariance under the row operations
of Gaussain elimination. There is no known polynomial time algorithm for
computing the permanent and there is good reason to believe that there is no
such algorithm (the problem is #P -complete, we will get to this complexity
class later). It is not hard to see that the problem is in PSPACE and we will
not give the most efficient algorithm but rather the easiest to understand.

per = 0
For 1 ≤ π(1), π(2), . . . π(n) ≤ n

If π(i) �= π(j) for i �= j, per = per +
∏n
i=1 xi,π(i)

Thus we just generate all n-tuples of numbers between 1 and n, check if
it is a permutation and, if it is, add the corresponding term to the sum. All
the space required is to store the variables π(i) and per. The space needed
for the former is bounded by (n log n) while the second is bounded by the
size of the answer and if we assume that all entries in the original matrix
are bounded by 2n the per is bounded by 2n

2
n! and thus can be stored in

space O(n2).
4If you do not know the signum function just forget this definition of the determinant

53

It is interesting to note that there is a polynomial time algorithm to
decide whether a permanent of a 0, 1 matrix is nonzero but that it seems
hard to compute it.

Example 4.19 Given a prime number p and a number a, find x (if one
exists) such that x2 ≡ a (mod p).

Let us first recall some basic facts from number theory. Assume that
we have an odd prime p (the case p = 2 being easy) then a can be written
as a square mod p iff a

p−1
2 ≡ 1 (mod p) (i.e. we have a solution iff this

condition holds). Remember also that, by Fermat’s little theorem, it is true
that xp−1 ≡ 1 (mod p) for any number not divisible by p.

Now if p ≡ 3 (mod 4) and if a
p−1
2 ≡ 1 (mod p) then if we set x = a

p+1
4

we have
x2 ≡ a p+1

2 ≡ aa p−1
2 ≡ a. (mod p)

Thus taking square roots when p ≡ 3 (mod 4) is just computing a power.
Let us investigate how much resources are needed to compute a

p+1
4 (mod

p). Assume that p and a are at most n digit numbers. Then computing
a

p+1
4 by successive multiplications would require on the order of 2n multi-

plications. It is more efficient to first compute a2i
(mod p) for 0 ≤ i ≤ n

in n squarings. Observe here that since we are only interested in the result
(mod p), we can reduce mod p after each squaring and thus we will never
need to work with numbers with more than 2n digits. Now we write p+1

4 in

binary and we compute a
p+1
4 by multiplying together the powers a2i

with
the i’s corresponding to 1’s in the binary expansion of p+1

4 . Hence, we get
O(n) multiplications of O(n) bit numbers and this can be done in total time
O(n3).

Thus we have proved that taking square-roots modulo primes p with
p ≡ 3 (mod 4) can be done in polynomial time. It is not known if this is
true in general for primes p ≡ 1 (mod 4) or when p is a composite number.
We will return to these questions later in these notes.

Example 4.20 Given a directed graph G with n nodes and two distin-
guished nodes s and t in G. Is it possible to find a directed path from s to
t?

This problem is in P by the following straightforward algorithm.

Set R ={s}.
Set Rnew to the set of nodes reachable from s in one step,
i.e. the set of v such that there is an edge (s, v).

54

While Rnew is not empty do
Take an element w in Rnew and move it into R. Also take
any nodes reachable from w in one step which do not belong
to either R or Rnew and put them into Rnew.

od
If t ∈ R say yes, otherwise say no.

We claim that when the algorithm ends all the nodes reachable from s
are in R. We leave the verification of this to the reader. It is important to
know that Rnew contains the set of nodes known to be reachable from s but
whose neighbors have not yet been put into R or Rnew.

Remark 4.21 Observe that in fact R is the set of nodes reachable from s
and thus we have really solved a more general problem.

To see that the problem is in P let us analyze the time needed for the
algorithm. Since we each time the loop is executed put one node into R and
we never remove anything from R the loop is only executed n times. Each
execution in the loop can be done in time n since we just have to investigate
the neighbors of w. Thus the complexity is bounded by O(n2).

Next we turn to the definition of non-deterministic computation. The
obvious goal in mind is to formally define NP .

55

5 Nondeterministic computation

The two most famous complexity classes are probably P and NP. We have
already defined P and to define NP we need the concept of a nondeterministic
Turing machine. The formal definition might make nondeterminism seem
like a paper-tiger which has nothing to do with reality, but it will soon be
clear that this is not the case.

5.1 Nondeterministic Turing machines

The heart of a normal, deterministic Turing machine is the next-step func-
tion, which tells the machine what to do in a given situation. A nondeter-
ministic Turing machine also has a next-step function, but it is multivalued.
By this we mean that in a given situation the machine might do several
different things. This implies that on a given input there are several possi-
ble computations and in particular, there might be several different possible
outputs. This calls for a definition.

Definition 5.1 A nondeterministic Turing machine can only compute func-
tions which takes the values 0 and 1. The machine takes the value 1 on (or
accepts) an input x iff there is some possible computation on input x which
gives output 1. If there is no computation that gives the output 1, the ma-
chine takes value 0 (or rejects the input).

Since we will only be working with {0, 1} functions we will think of
nondeterministic machines as recognizing sets i.e. the set of inputs for which
there is an accepting computation.

Example 5.2 Suppose we want to recognize composite numbers i.e. num-
bers which are not prime and hence can be written as the product of two
numbers both greater than or equal to 2. This can be done by a nondeter-
ministic machine as follows:

On input x, write y1 and y2 nondeterministically with |yi| ≤ |x| for
i = 1, 2. Writing down y1 is done by allowing the machine move left for
|x| steps while at each step either writing down 0,1 or an endmarker. The
machine constructs y2 in the same way. Now the machine gives output 1 iff
y1y2 = x and yi > 1 for i = 1, 2.

Let us see that the algorithm is correct. If x is composite then there is
some computation that outputs 1, namely if x = ab then when y1 = a and
y2 = b we will get the output 1. On the other hand if x is prime there is

56

no possible computation that gives output 1 since if y1y2 = x then by the
definition of prime one of the yi is 1.

Observe that when we are considering deterministic computation recog-
nizing primes and recognizing composite numbers are very similar, since one
just changes the output routine to reverse the meaning of 0 and 1. When it
comes to nondeterministic computation there is a tremendous difference. If,
for instance, you change the output of the machine recognizing composite
numbers defined above then you get a machine that accepts everything. It
is important to keep this non-symmetry in mind.

The definitions of space and time need to be slightly modified since there
is no unique computation given the input.

Definition 5.3 A nondeterministic Turing machine M runs in time T (n)
if for every input of length n, every computation of M halts within T (n)
steps.

Definition 5.4 A nondeterministic Turing machine M runs in space S(n)
if for every input of length n, every computation of M visits at most S(n)
squares on the work-tape.

Since non-deterministic Turing machines can always be made to have
output 1 or 0 the size of the answer will always be small. This implies that
we do not need an output-tape. Some proofs will be formally easier if we
assume that the output is written on the worktape and therefore we will
assume this.

With these basic definitions done we can proceed to define some com-
plexity classes.

Definition 5.5 Given a set A, we say that A ∈ NL iff there is a nondeter-
ministic Turing machine which accepts A and runs in space O(log n).

Definition 5.6 Given a set A, we say that A ∈ NP iff there is a nondeter-
ministic Turing machine which accepts A and runs in time O(nk) for some
constant k.

Definition 5.7 Given a set A, we say that A ∈ NPSPACE iff there is a
nondeterministic Turing machine which accepts A and runs in space O(nk)
for some constant k.

57

We have similar theorems to 4.4, 4.5 and 4.6.

Theorem 5.8 NL ⊂ NPSPACE.

Proof: The inclusion is obvious. It is at this point not clear that it is
strict. This will follow from results later on and we leave it for the time
being.

Theorem 5.9 NP ⊆ NPSPACE.

Proof: This follows since also nondeterministic Turing machines cannot
use more space than time.

Theorem 5.10 NL ⊆ NP .

Proof: The proof is quite close to the proof of the corresponding deter-
ministic statement but we need an extra observation. The time bound given
in Lemma 3.12 is no longer true for nondeterministic computation. The
reason for this is that even if a nondeterministic machine is in the same
configuration twice it need not loop forever. The reason is that it can make
different non-deterministic choices the second time around. However, it is
easy to see that if a nondeterministic machine has an accepting computation
then it has a nondeterministic computation which visits each configuration
at most once. This implies that we can impose the time-restriction given
by Lemma 3.12 without changing the set of inputs accepted. This proves
Theorem 5.10.

Let us now proceed to some examples of members in the newly defined
complexity classes.

Example 5.11 Composite numbers are in NP, since the nondeterministic
algorithm given previously is easily seen to run in time O(n2).

It might be tempting to guess that Composite numbers are in NL since
the essential part of the algorithm is a multiplication and we know from
before that multiplication can be done in L. This is not known however, and
the reason that the given algorithm does not work is that multiplication is
in L only when the input is on a separate input-tape where we can access
any part of the input when it is needed. In the present situation we have
to write down the two factors on the work-tape and there is no room to do
this.

58

Example 5.12 Traveling Sales Person (TSP): Given n cities and a symmet-
ric integer n× n matrix (mij)ni,j=1 where mij denotes the distance between
cities i and j, and an integer K. Is there a tour which visits all cities exactly
once and is of total length ≤ K? TSP is in NP as can be seen from the
following non-deterministic algorithm.

1. Nondeterministically write numbers bi, i = 1, 2 . . . , n each with at
most log n+ 1 digits.

2. If 1 ≤ bi ≤ n for all i and bi �= bj for i �= j then compute
∑n−1
i=1 mbi,bi+1

+
mbn,b1 . If this number is less than K output 1 and in all other cases
output 0.

Observe that the conditions 1 ≤ bi ≤ n and bi �= bj for i �= j imply that
the bi define a tour starting in b1 and tracing through bi for increasing i and
then returning to b1. If this tour is short enough the machine accepts the
output. It is easy to check that the algorithm runs in polynomial time and
thus we have proved that TSP ∈ NP .

Example 5.13 Boolean formula satisfiability: Given a Boolean formula,
consisting of Boolean variables xi, i = 1, 2 . . . n, ∧-gates (logical conjunc-
tion) ∨-gates (logical disjunction) and negation-gates, is there a setting of
the variables that satisfies the formula?

This problem is in NP, by the obvious procedure. Namely, nondeter-
ministically write down the value of every variable and then write 1 iff the
guessed assignment satisfies the formula. To check that this procedure runs
in polynomial time one has to observe that given a formula and an assign-
ment of all the variables then one can check whether the assignment satisfies
the formula in polynomial time. This is easy and we leave this as an exercise.

Let us return to the problem of graph-reachability (previously considered
in section 4.2:

Example 5.14 Directed graph reachability: Given a directed graph G and
two nodes s and t of G, is there a directed path from s to t?

We present an algorithm that uses only logarithmic space and hence we
need to be slightly careful about how the input is presented. We assume
that the graph is given as a list of the edges. Now we have the following
algorithm:
Suppose the graph has n nodes.

59

Set H= s
For i = 1, 2 . . . n

If H = t print 1 and halt.
If there is no edge out of H print 0 and halt.
Choose nondeterministically one of the edges leaving H and set H to
the endpoint of this edge.

Next i
Print 0.

This procedure uses only logarithmic space since all we need to remember
is the counter i and the value of H. The conditions given in the algorithm
are easily checked given the assumed encoding of G.

To verify that the algorithm is correct, first observe that by construction
H is always a node that can be reached from s. Thus, since the machine
output 1 only when H = t, we know that when the machine takes the value
1 then t is reachable from s. On the other hand suppose that t is reachable
from s. Then there is a path v1, v2 . . . vk where v1 = s, vk = t and there
is an edge from vi to vi+1 for any i. We can assume that k ≤ n since if
vi = vj for i < j then we can eliminate vi+1 through vj and still maintain a
path. Then there is a possibility that H = vi for every i and thus there is a
possibility that the machine outputs 1.

The argument implies that the algorithm recognizes exactly the graphs
that have a path from s to t and therefore directed graph reachability is in
NL.

We will not give any example of a language in NPSPACE and in the
next section it will be clear why.

Before we continue to establish some of the more formal properties of
NP, let us be informal for a while.

The class P is intuitively thought of as the class of functions which are
computable in practice, i.e. within moderate amounts of computation we
can solve reasonably large problems. That this is the case is not clear from
the definition and one could object that although n100 is polynomial, it grows
too quickly. In practice however, this anomaly does not seem to appear and
thus if a problem has a polynomial time solution then the exponent tends
to be small and the algorithm is usually efficient in practice.

In a similar way NP can be thought of as the class of problems where, if
you knew the solution, it could be verified efficiently. In an abstract mean-

60

ing “the solution” must here be interpreted as the set of nondeterministic
choices that makes the machine accept. As we have seen, in practice “the
solution” is much more concrete. Thus the nondeterministic choices have
in our examples corresponded to the factors, a short tour, and a satisfying
assignment, respectively.

The recursive sets corresponded to functions that could be computed,
while the recursively enumerable sets corresponded to statements that could
be verified. The latter statement follows from the fact that if A is r.e. and
x ∈ A then this can be verified since we just wait until x is listed. On the
other hand if x �∈ A this cannot be verified since we never know if we just
haven’t waited long enough to see it listed. In view of this one can say that
recursive and r.e. have the same relation as P and NP and thus it is not
surprising that we can prove some similar theorems.

Theorem 5.15 Given a set A, then A ∈ NP iff there is a language B ∈ P
and a constant k such that

x ∈ A⇔ ∃y,|y|≤|x|k(x, y) ∈ B.

Proof: Let us first prove that if there is such a B then A ∈ NP . In fact,
a nondeterministic algorithm for membership in A just consists of guessing
a y of the desired length and then accepting iff (x, y) ∈ B. If B can be
recognized in time O(nc) this procedure runs in time O(n(1+k)c) which is
polynomial.
To see the converse, we will need the concept of a computation tableau.

Definition 5.16 A computation tableau is a complete description of a com-
putation of a Turing machine. It consists of all configurations of the Turing
machine on a specific input (i.e one configuration for every time step) start-
ing with the input configuration and ending with the halting configuration.

The reason for the name is that we will think of it in the following way.
Assume that the Turing machine has only one tape. Then we can think of
its computation tableau as a two-dimensional array with time on one axis
and the tape squares on the other. The position (i, j) of this tableau thus
contains the symbol that is in the j’th square at time i. It also contains
information about whether the head is there and in such a case which state it
is in. A computation which starts with input x1, x2 . . . xn on the input-tape
and ends with only a 1 on the tape is given in Table 3.

61

x1, q0 x2 x3 x4 . . .

0 x2, q3 x3 x4 . . .

0 1 x3, q1 x4 . . .

. .

. .
1, qh B B B B

Table 3: A computation tableau

Now, we can return to the converse of Theorem 5.15. Suppose A is
recognized by a one-tape Turing machine M in nondeterministic time nc.
Define B to be the set of pairs (x, y) such that y describes an nc × nc
computation tableau of M on input x which ends in an accepting state.
Then B satisfies the condition with respect to A of the theorem with k = 2c.
We claim that B is in P. To see this observe that to check whether a pair
(x, y) is in B we basically have to check three things.

1. That the computation described by y starts with x on the input tape.

2. That the computation is legal for M .

3. That the computation accepts.

The first and the last conditions are easy to check since they just talk
about the contents of particular squares. Also to check 2 is straightforward
since we have to check that the only square that changed value between
two timesteps is the square where the head was located, and also that the
transition by the head was a possible transition given the next-step function
of M . This finishes the proof.

Remark 5.17 One might be tempted to think that the relation given between
NP and P in Theorem 5.15 would be true also for NL and L. As the interested
reader can convince himself, this is probably not the case as even if we restrict
B to belong to L then the set of all A definable in this way is still all of NP.

62

Thus we have given the theorem about NP and P corresponding to The-
orem 2.19. Of the other theorems in Section 2.7, it is not known whether
the analogue of 2.17 is true. (The general belief is that it is not.) There is a
nice reduction theory and also a notion of complete sets and we will return
to these questions in Chapter 7.

63

6 Relations among complexity classes

Up to this point we have defined six complexity classes (L,P,PSPACE,
NL,NP, and NPSPACE) and we have observed some relations. In this
section we will establish some more relations, some obvious and some not
obvious. Let us first observe that the option of non-determinism will never
hurt and thus any deterministic complexity class is contained in the corre-
sponding nondeterministic complexity class. This gives us three immediate
theorems.

Theorem 6.1 L ⊆ NL.

Theorem 6.2 P ⊆ NP .

Theorem 6.3 PSPACE ⊆ NPSPACE.

In the next subsection we will prove the first nontrivial complexity result.
For notational convenience let TIME(T (n)) denote the class of languages
that can be recognized in deterministic time T (n) and let NTIME(T (n)) be
the class of languages that can be recognized in the same nondeterministic
time. Similarly we define SPACE(S(n)) and NSPACE(S(n)).

6.1 Nondeterministic space vs. deterministic time

The aim is to establish the following theorem.

Theorem 6.4 Suppose S(n) > log n and that S(n) is space constructible,
then NSPACE(S(n)) ⊆ TIME(2O(S(n))).

Proof: Let A be a language that can be recognized by a nondeterministic
Turing machine N which uses space at most S(n) on inputs of length n.
We have to design a deterministic Turing machine that runs in time 2O(S(n))

which recognizes A.
Assume for simplicity that N has only one worktape, a three letter alpha-

bet, and Q states. Consider the set of configurations of N . Remember that
a configuration consists of the state of N , the positions of all its heads and
the contents of the worktape. By the argument in the proof of Lemma 3.12
there are at most |x|QS(|x|)3S(|x|) possible configurations that N may visit
on input x. Let Gx,N be the following directed graph:

64

The nodes of Gx,N are the configurations of N and there is an edge from
configuration C1 to configuration C2 iff it is possible to go from C1 to C2 in
one step on input x.
Gx,N has one node Cst which corresponds to the initial configuration

and one or more configurations where N halts with output 1. We now claim
that the machine takes value 1 on a given input exactly when there is a path
from Cst to any of the configurations that end with output 1. This is fairly
obvious and the verification is left to the reader. By the above claim Gx,N
has at most 2O(S(|x|)) nodes and using the fact that S is space constructible
we see that Gx,N can be constructed in 2O(S(|x|)) time. Now it follows from
the example in Section 4.2 that in time 2O(S(|x|)) it is checkable whether any
configuration that outputs 1 can be reached from the initial configuration.
Since this is equivalent to N accepting x we have proved Theorem 6.4

We have the following corollary.

Corollary 6.5 NL ⊆ P .

Proof: Just insert S(n) = O(log n) in Theorem 6.4.

6.2 Nondeterministic time vs. deterministic space

This section has only one basic theorem.

Theorem 6.6 NP ⊆ PSPACE.

Proof: Remember the characterization of NP given in Theorem 5.15, i.e.
given A ∈ NP there is a B ∈ P and a k such that

x ∈ A⇔ ∃y, |y| ≤ |x|k(x, y) ∈ B.

This gives the following algorithm to determine whether x ∈ A

found = 0
For y = 0, 1 . . . 2|x|k do

If (x, y) ∈ B then found = 1
od
Write found

65

The algorithm is correct since found will be 1 exactly when there is a
short y such that (x, y) ∈ B. To see that the algorithm runs in polynomial
space observe that all we need to do is to keep track of y and to do the
computation to check whether (x, y) ∈ B. Since this latter computation is
polynomial time, we can do it in polynomial space and once we have checked
a given y we can erase the computation and use the same space for the next
y.

6.3 Deterministic space vs. nondeterministic space

Nondeterministic computation seems very powerful, and it seems for the
moment that complexity theory supports this intuition at least in the case
when we are focusing on time as the main resource. If, on the other hand,
we focus on space it turns out that nondeterminism only helps marginally.
This fact is usually referred to as Savitch’s theorem and was first proved by
W.J. Savitch in 1970.

Theorem 6.7 If S(n) is space-constructible and S(n) ≥ log n, then

NSPACE(S(n)) ⊆ SPACE(O(S2(n)))

.

Proof: Assume that A is accepted by the nondeterministic machine N in
space S(n). We will again work with the configurations of N and in fact if
you look closely, we solve the same graph problem as we did in the proof
of Theorem 6.4. This time however we will be concerned with saving space
and thus we will never write down the graph explicitly.

Assume for notational simplicity that N has a unique configuration
where it halts with output 1. Let us call this configuration Cacc. Let C1

and C2 be any two configurations of N and let k be an integer. Then we
will be interested in the predicate GET (C1, C2, k, x) which we will interpret
“On input x it is possible to get from configuration C1 to configuration C2

in time ≤ 2k and without being in a configuration which uses more than
S(|x|) space.” (If we think about the graph in the proof of Theorem 6.4 this
can be interpreted as “There is a path of length at most 2k from node C1

to node C2”.)
Let Cst denote the start configuration of N and recall the argument in

the proof of Theorem 5.10 that if a machine has an accepting computation

66

then there is an accepting computation which visits each configuration at
most once and, in particular, the running time is bounded by the number of
configurations. This implies that there is a constant c such that N accepts
an input x iff GET (Cst, Cacc, cS(n), x) is true. Thus all we have to do is
to evaluate this predicate in small space and to achieve this, the following
observation will be crucial.

GET (C1, C2, k, x) =
∨

(GET (C1, C, k − 1, x) ∧GET (C,C2, k − 1, x))

The ∨ is here taken over all possible configurations C of N which uses
space less than S(|x|). The reason for the above relation is that if there
exists a computational path from C1 to C2 of length at most 2k which
never uses more than S(|x|) space then there is a midpoint on this path and
the configuration at this midpoint can be used as C. Conversely if there
is a C that fulfills the left hand side of the above equation, then the two
computations from C1 to C and from C to C2 can be concatenated to a
computation from C1 to C2.

The above equation gives the following recursive algorithm to evaluate
the predicate GET .

GET (C1, C2, k, x)
If k = 0 then

Check whether the next-step function of N allows a transition from
C1 to C2 on input x in one step and set GET accordingly.

else
For all configurations C which uses space at most S(n):

Evaluate GET (C1, C, k − 1, x) and GET (C,C2, k − 1, x).
If for some C both are true, set GET to true and otherwise to false.

endif

By the above argument x ∈ A iff GET (C1, C2, cS(|x|), x) and thus to
prove the theorem we need only calculate the amount of space needed to
evaluate GET .

We prove by induction that GET (C1, C2, k, x) can be evaluated in space
D(k + 1)S(|x|) for some constant D. This is clearly to true for k = 0 since
all that need to be done is to check if one of the constantly many possible
next steps that N can do from C1 will take it into C2.

To do the induction step let us specify more closely how the above pro-
cedure works. We loop over all possible C and to remember which C we are

67

currently working on requires space dS(n) for some constant d. For each C
we do two evaluations of GET with the parameter k − 1. These two evalu-
ations are done sequentially and thus we can first do one of the evaluations,
remember the result and then do the other evaluation in the same space.
By the induction hypothesis this implies that the computation for a fixed C
can be done in space DkS(n) + 1. Provided that D > d the induction step
is complete and thus we have completed the proof of Theorem 6.7.

We have two obvious corollaries of the above theorem.

Corollary 6.8 NPSPACE = PSPACE.

This explains that NPSPACE is not a very famous complexity class. We
introduced it for symmetry purposes and now that we have proved that we
do not need it, we will forget it.

Corollary 6.9 NL ⊂ PSPACE.

Proof: By Theorem 6.7 everything in NL can be done in space O(log2 n)
and thus we get a strict inclusion by Theorem 3.14.

Observe that Corollary 6.9 finishes the proof of Theorem 5.8 as promised
before.

By now we have gathered some information about the relations between
the complexity classes we have defined. Let us sum up the information in a
theorem.

Theorem 6.10 L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. The inclusion of NL in
PSPACE is strict.

It is a sad fact for complexity theory that Theorem 6.10 reflects our total
knowledge of the relation between the given complexity-classes.

68

7 Complete problems

Even though Theorem 6.10 gives the present state of knowledge about the
defined complexity classes, there are some important things to be said. The
common belief today is that all the given inclusions are strict, but unfor-
tunately we have not yet developed the machinery to prove this. One step
on the way is to identify the hardest problems within each complexity class.
This serves two purposes. Firstly they will serve as candidates that can be
used to prove strict inclusions. Secondly, proving a problem complete will
give a good hint that it can probably not be placed in a lower complex-
ity class and thus is a good way to classify a problem. We will start by
considering a very famous class of problems; the NP-complete problem.

7.1 NP-complete problems

To identify the hardest problem we need first define the concept of “not
harder than”. There are a couple of different ways to do this but we will
only consider one.

Definition 7.1 Let A and B be two sets. Then A ≤p B (read as “A is
polynomial time reducible to B”) iff there is a polynomial time computable
function f such that x ∈ A⇔ f(x) ∈ B.

Clearly this definition is very close to the Definition 2.21. The only
difference is that we require the function f to be computable in polynomial
time.

We can now proceed to develop a reduction theory similar to the one
described in the end of Section 2.7. Instead of talking about recursive and
recursively enumerable sets we will talk about P and NP. Many proofs and
theorems are similar.

Theorem 7.2 If A ≤p B and B ∈ P , then A ∈ P .

Proof: Suppose the function f in the definition of ≤p can be computed
in time O(nc) and that B can be recognized in time O(nk). Then to check
whether a given input x belongs to A just compute f(x) and then check
whether f(x) ∈ B. To compute f(x) is done in time O(|x|c) and from this
also follows that |f(x)| ≤ O(|x|c) which in its turn implies that f(x) ∈ B
can be checked in time O(|x|ck). Thus the procedure works in polynomial
time and we can conclude that A ∈ P .

69

The definition of NP-complete is now very natural having seen the defi-
nition of r.e.-complete before.

Definition 7.3 A set A is NP-complete iff

1. A ∈ NP
2. If B ∈ NP then B ≤p A.

By dropping the first condition we get another known concept.

Definition 7.4 A set A is NP-hard iff for all B ∈ NP , B ≤p A.

Before we continue to prove some problems to be NP-complete let us
prove a simple theorem.

Theorem 7.5 If A is NP-complete then

P = NP ⇔ A ∈ P

.

Proof: Clearly if NP = P then A ∈ P since A by the definition of NP-
completeness belongs to NP.

To see the converse assume that A ∈ P and take any B ∈ NP . Then
by property 2 of being NP-complete, B ≤p A and hence by Theorem 7.2
B ∈ P . But since B was an arbitrary language in NP we can conclude that
NP = P .

With this motivation we are ready to study our first NP-complete prob-
lem. Let SAT be the set of satisfiable Boolean formulas (as introduced in
the example in section 5.1).

Theorem 7.6 (Cook, 1971) SAT is NP-complete.

Proof: We have already established that SAT ∈ NP (see the example
in section 5.1) and thus we need to establish that B ∈ NP implies that
B ≤p SAT .

Assume that B is recognized by a non-deterministic Turing machine
N which has one tape, Q states, runs in time nc and uses the alphabet
{0, 1, B}. Remember that the computation tableau is a complete description
of a computation. We will now construct a Boolean formula such that if it is

70

satisfiable then its satisfying assignment will describe a computation tableau
of an accepting computation of N on input x.

The formula has two types of variables:

yijk, 1 ≤ i, j ≤ nc, k ∈ {0, 1, B} and
zijl, 1 ≤ i, j ≤ nc, 1 ≤ l ≤ Q.

The intuitive meaning of the variable will be that yijk = 1 iff the symbol
k appears in square j at time i and will take the value 0 otherwise while
zijl = 1 iff the head is in square j at time i and the machine at this time is
in state ql. Let us denote the length of x by n.

Clearly the y and z variables code a computation completely and thus
all that needs to be done is to make a Boolean formula which is true iff the
y and z variables code an accepting computation of N on input x. There
are three conditions to take care of.

1. The computation starts with x

2. It is a valid computation.

3. The computation accepts.

Of these three conditions, 1 and 3 are very easy to handle. The condition
1 is equivalent to the following conditions:

• For 1 ≤ j ≤ n we have y1jk = 1 iff k = xj .

• For n+ 1 ≤ j ≤ nc we have y1jk = 1 iff k = B.

• z1,j,l = 0 except when j = l = 1 (assuming that q1 is the start-state).

The condition 3 is equivalent to ync11 = 1 and znc1l = 1 i.e. at time nc we
have written a 1 in square 1 and the head is located in square 1 and we have
halted (assuming that ql is the halting state).

To see how to translate condition 2 into a formula we will need some
more information.

Definition 7.7 A computational tableau C is locally correct if for every i
and j there is some correct computation which have the same contents as C
in squares (i′, j′) for i ≤ i′ ≤ i+ 1 and j ≤ j′ ≤ j + 2.

71

That computation is a local phenomena is now formalized as follows:

Lemma 7.8 A computational tableau describes a legal computation iff it is
locally correct.

We leave the easy verification to the reader.
Armed with this lemma we can now express condition 2 in a suitable

way. To determine whether the variables yijk and zijl describe as legal com-
putation we only have to check all the local correctness conditions. Whether
a given local area is correct is described as a condition on 6Q+ 18 variables
and since any condition on K variables can be expressed as a formula of size
2K we can express each local correctness condition in constant size. The
conjunction of all these correctness formulas now takes care of condition 2.
The size of the formula is O(n2c).

We now claim that the conjunction of the formulas taking care of the
conditions 1-3 is satisfiable iff x ∈ B. This is fairly obvious since there is
a satisfying assignment iff there is an accepting computation which uses at
most space nc and time nc of N on input x, which by the definition of N
is equivalent to x ∈ B. To conclude the proof of the theorem we need just
observe that to construct the formula is clearly polynomial time.

Let us make a couple of observations about the above proof. Firstly
the final formula is the conjunction of a number of subformula where each
subformula is of constant size. Without increasing the size of the entire
formula by more than a constant we write each of the subformulas in con-
junctive normal form (i.e. as a conjunction of disjunctions). This puts the
entire formula on conjunctive normal form. This implies that satisfiability
of formulas on conjunctive normal form is NP-complete. Let us call this
problem CNF-SAT and we have the following theorem.

Theorem 7.9 CNF-SAT is NP-complete.

The second observation is that the given proof is almost identical to
the proof of Theorem 5.15. If one thinks about this, Theorem 5.15 can
be used to give another NP-complete problem, namely the existence of a
computational tableau with certain conditions. However, we do not feel
that this is a natural problem and hence we will not make that argument.
There are also striking similarities with the proof of Theorem 2.26. It is just
a question of coding a computation in a suitable way.

72

Having obtained one NP-complete problem it turns out to be easy to
construct more NP-complete problems. The main tool for this is given
below.

Theorem 7.10 If A is NP-complete and B satisfies B ∈ NP , A ≤p B,
then B is NP-complete

Proof: We have only to check that for any C in NP it is true that C ≤p
B. Since A is NP-complete we know that C ≤p A and hence there is a
polynomial-time computable function f such that

x ∈ C ⇔ f(x) ∈ A.

By the hypothesis of the theorem there is a polynomial time computable g
such that

y ∈ A⇔ g(y) ∈ B.
Now it clearly follows that

x ∈ C ⇔ g(f(x)) ∈ B

and since the composition of two polynomial-time computable functions is
polynomial-time computable we have proved C ≤p B and thus the proof of
the theorem is complete.

To put the proof in other words: Polynomial-time reductions are tran-
sitive i.e. if we can reduce C to A and A to B then we reduce C to B by
composing the reductions.

Clearly Theorem 7.10 is much more useful for proving problems NP-
complete than the original definition. The reason is that to use Theorem 7.10
we only have to make one reduction while to use the definition we have to
make a reduction from any problem in NP.

Let 3-SAT be the problem of checking whether a restricted Boolean
formula given on conjunctive normal form is satisfiable. The restriction is
that there are exactly 3 literals (i.e. variables or negated variables) in each
disjunction. Such a formula is called a 3-CNF formula and an example is:

(x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x4)

This formula is satisfiable as can be seen from the assignment x1 = 1, x2 =
1, x3 = 1 and x4 = 0. We have

73

Theorem 7.11 3-SAT is NP-complete.

Proof: We will use Theorem 7.10 and since 3-SAT is clearly in NP all
that we need to do is to find a polynomial-time reduction from CNF-SAT
to 3-SAT.

Thus we need to given a CNF-SAT formula φ construct in polynomial
time a 3-SAT formula f(φ) such that φ is satisfiable iff f(φ) is satisfiable.
Suppose φ =

∧m
i=1 Ci where Ci are disjunctions containing an arbitrary

number of literals. We will call Ci a clause and let |Ci| denote the number
of literals in Ci. We will replace each clause by one or more clauses each
containing exactly 3 variables. We have the following cases.

1. |Ci| = 1.

2. |Ci| = 2.

3. |Ci| = 3.

4. |Ci| > 3.

Let us take care of the cases one by one. Let xi, i = 1, 2 . . . n be the
variables that appear in φ and let yij denote new variables.
(1.) Suppose Ci = xj , then we replace it by

(xj ∨ yi1 ∨ yi2) ∧ (xj ∨ ȳi1 ∨ yi2) ∧ (xj ∨ yi1 ∨ ȳi2) ∧ (xj ∨ ȳi1 ∨ ȳi2)

.
(2.) Suppose Ci = (xj ∨ xk) then we replace it by

(xj ∨ xk ∨ yi1) ∧ (xj ∨ xk ∨ ȳi1)

(3.) We keep Ci as it is.
(4.) Suppose Ci =

∨k
j=1 uj for some literals uj we then replace Ci by

(u1 ∨ u2 ∨ yi1) ∧ (
k−4∧
j=1

(ȳij ∨ uj+2 ∨ yi(j+1))) ∧ (ȳi(k−3) ∨ uk−1 ∨ uk)

The formula we obtain by these substitutions is clearly a 3-CNF formula and
it is also obvious that given the original formula it can be constructed in
polynomial time. Thus all we need to check is that φ is satisfiable precisely
when f(φ) is satisfiable.

74

First assume that φ is satisfiable. We now must find a satisfying assign-
ment for f(φ). We will give the same values to the xi and must find values
for the yij to satisfy the formula. The clauses constructed according to rules
1-3 are already satisfied and thus will cause no problem. Look at the clauses
constructed under rule 4. Since the corresponding clause Ci in φ is satisfied,
one of the uj is true and suppose this is uj0. Now set yij = 1 for j ≤ j0 − 2
and yij = 0 for j > j0 − 2 then it is easy to verify that this assignment
satisfies f(φ).

To prove the converse, suppose that f(φ) is satisfiable and let xi = αi
be the assignment to the x variables in this satisfying assignment. We claim
that this part of the assignment will satisfy φ. For clauses that fall under
the rules 1-3 this is not too hard to see. Let us consider case 1. If Ci = xj
and αj = 0 then, no matter what the values of yi1 and yi2 are, at least one
of the clauses is not satisfied.

Now consider the case 4. If Ci was not satisfied then all the literals uj
would be false, but this implies that

yi1 ∧ (
k−4∧
j=1

(ȳij ∨ yi(j+1))) ∧ ȳi(k−3)

would be satisfied, but this is clearly not possible. Thus the reduction is
correct and the proof is complete.

Proving problems NP-complete is not the main purpose of these notes
but let us at least give one more NP-completeness proof. Let 3-dimensional
matching (3DM) be the following problem:

Given a set of triplets (xi, yi, zi), i = 1, 2 . . . m where xi ∈ X, yi ∈ Y and
zi ∈ Z where X,Y and Z are sets of cardinality q. Is there a subset S of q
of the triplets such that each element in X,Y and Z appear in exactly one
of the triplets in S?

Theorem 7.12 3DM is NP-complete.

Proof: 3DM is clearly in NP since a nondeterministic machine can just
nondeterministically pick q of the triplets and then check if each element
appears exactly once. To prove 3DM NP-complete we will reduce 3-SAT to
it. Thus given a 3-CNF formula φ we must construct an instance f(φ) of
3DM such that φ is satisfiable iff f(φ) contains a matching.

Suppose φ has n variables and m clauses. We will construct an instance
of 3DM with three types of triplets, “variable triplets”, “clause triplets”

75

Figure 8: The variable triplets

and “garbage collecting triplets”. The elements of the sets X, Y and Z will
be defined as we go along. Let us start by defining the variable triplets.
Suppose variable xi appears (with or without negation) in mi clauses then
we will associate with it the following 2mi triplets.

T ti = {(ūi[j], ai[j], bi[j]) : 1 ≤ j ≤ mi}
T fi = {(ui[j], ai[j + 1], bi[j]) : 1 ≤ j < mi}

⋃
(ui[mi], ai[1], bi[mi])

The elements ai[j] and bi[j] will not appear in any other triplets. As
can be seen from Figure 8 this implies that any matching M must contain
either all triplets from T fi or T ti for any i. We will let the choice of which of
the two sets to pick correspond to whether the variable xi is true or false.
Each clause Ci will have two special values and three triplets. Suppose
Ci = ui1 ∨ui2 ∨ui3 and it is the jk’th time the variable corresponding to the

76

literal uik appears. Then we include the triplets

(uik [jk], s[i], t[i]), k = 1, 2, 3.

Observe that the uik should here be interpreted as literals and thus corre-
sponds to either ul or ūl, i.e. these are the same elements as in the variable
triplets. The elements s[i] and t[i] will not appear in any other triplets and
this implies that in any matching precisely one of the triplets correspond-
ing to each clauses will be included. Observe that we can include a triplet
precisely when one of the corresponding literals is true.

We have done the essential part of the construction and all that remains
is specify the garbage collecting triplets which will match up the xi[j] and
x̄i[j] that have not been used. This is done by the following triplets

(xi[j], g1[k], g2[k]), 1 ≤ i ≤ n, 1 ≤ j ≤ mi, 1 ≤ k ≤ 2m

(x̄i[j], g1[k], g2[k]), 1 ≤ i ≤ n, 1 ≤ j ≤ mi, 1 ≤ k ≤ 2m

This enables us to cover any 2m literal-elements which have not been matched
by previous triplets.

It is clear from the above description that the set of triplets can contain
a matching only if the formula is satisfiable. Suppose on the other hand
that the formula is satisfiable. Then make the choice of which T sets to pick
based on the satisfying assignment. Then for each clause pick a variable
that satisfies it and the corresponding clause triplet. This will cover m of
the 3m literal-elements. The last 2m elements can be covered together with
the g elements by the garbage collecting triplets.

Thus there is a matching iff there is a satisfying assignment and since
the reduction is straightforward the only thing needed to check that it is
polynomial time is to check that we do not have to construct too many
triplets. However it is easy to check that there are 6m+ 3m+ 6m2 triplets.
This concludes the proof.

There are hundreds of known NP-complete problems and many appear
in the listing in the final part of the excellent book by Garey and Johnson.
It turns out that most problems in NP that are not known to be in P are
NP-complete. One notable exception is factoring, another one is graph-
isomorphism. Let us however move on and consider problems complete for
other classes.

77

7.2 PSPACE-complete problems

The theory of PSPACE-complete problems is very similar to that of NP-
complete problems. The concept of reduction is the same and the basic
properties are the same. Of course the problems are different.

Definition 7.13 A set A is PSPACE-complete iff

1. A ∈ PSPACE.
2. If B ∈ PSPACE then B ≤p A

We have an immediate equivalent of Theorem 7.5.

Theorem 7.14 If A is PSPACE-complete then

P = PSPACE ⇔ A ∈ P.

Proof: If you substitute PSPACE for NP in the proof of Theorem 7.5 you
get a proof of Theorem 7.14.

By a similar argument we get:

Theorem 7.15 If A is PSPACE-complete then

NP = PSPACE ⇔ A ∈ NP.

One last definition for completeness before we go to business.

Definition 7.16 A set A is PSPACE-hard if for any B ∈ PSPACE, B ≤p
A.

Now let us encounter our first PSPACE-complete problem. When deal-
ing with NP-complete problems we came across the satisfiability of Boolean
formulas. Now we will consider quantified Boolean formulas which looks
like:

∀x1∃x2 . . . Qxnφ(x)

where each x1 can take the value 0 or 1 and φ is a normal quantifier free
formula and Q is either ∃ or ∀ depending on whether n is even or odd. Let
TQBF be the set of True Quantified Boolean Formulas. We have:

78

Theorem 7.17 TQBF is PSPACE-complete.

Proof: Let us first check that TQBF can be recognized in polynomial
space. We claim that if the formula has n variables and the size of the
description of φ is bounded by S then to check whether:

∀x1∃x2 . . . Qxnφ(x)

is true can be done in space O((n + 1)S). We prove this by induction and
first observe that it is certainly true for n = 0. To the induction step we use
the observation that the given formula is true iff both

∃x2 . . . Qxnφ(x)|x1=0

and
∃x2 . . . Qxnφ(x)|x1=1

are true. These two formulas can be evaluated by induction in space O(nS)
and since we can evaluate one and then evaluate the other in the same space
while only remembering the value of the first evaluation and which formula
to evaluate the claim follows. Of course if the first quantifier is ∃ we just
need to check that one of the values is true. From this the claim follows and
thus TQBF ∈ PSPACE.

Remark 7.18 By being more careful it is not to hard to see that the eval-
uation actually can be done in space O(n+ S).

Next we need to take care of the slightly more difficult part of proving
that if B ∈ PSPACE then B ≤p TQBF . Suppose that B is recognized by
Turing machine MB which never uses more space than |x|c on input x for a
given constant c.

We will again use the predicate GET (C1, C2, k, x) which means that on
input x, MB will get from configuration C1 to configuration C2 in at most
2k steps and never use more space than |x|c. As before we have

GET (C1, C2, k, x) =
∨
C

(GET (C1, C, k − 1, x) ∧GET (C,C2, k − 1, x)) .

With the present formalism it is more convenient to think of the ∨ as an
existential quantifier and we get

GET (C1, C2, k, x) = ∃C (GET (C1, C, k − 1, x) ∧GET (C,C2, k − 1, x)) .

79

Now we could write the two GETs to the right in the same way but this
would be mean trouble since we would then get a formula of exponential
size. However there is a way around this by replacing the ∧ by a universal
quantifier obtaining.

GET (C1, C2, k, x) = ∃C∀(A,B)∈{(C1,C),(C,C2)}GET (A,B, k − 1, x).

Now we only get one copy of GET to expand further and if we continue
recursively we get 2k quantifiers and a final formula GET (X,Y, 0, x). All
that remains to do is to check that it is sufficient to quantify over Boolean
variables, rather than the more complicated objects we are currently quanti-
fying over, and that the final application of GET can be written as a Boolean
formula.

Both these points are easy and let us just give a rough outline. It is
straightforward to encode a configuration as a set of Boolean variables. The
∀ quantification is just a binary choice and thus can be represented by a
Boolean variable which will take the value 0 if we make the first choice and
the 1 if we make the other. Finally, to check whether we can get from one
configuration to another in one step is just a simple formula where we list
all possible transitions of the Turing machine. We leave the details to the
interested reader.

Now since x ∈ B iff GET (Cst, Cacc, d|x|c, x) is true for the appropri-
ate constant d and since we know how to write the latter condition as a
quantified Boolean formula we have completed the reduction.

In fact if one writes down the final formula carefully one can write it in
CNF, i.e. if we restrict the formula φ in TQBF to be a CNF-formula we still
obtain a PSPACE-complete problem. We call this problem TQBF-CNF.

Theorem 7.19 TQBF-CNF is PSPACE-complete.

To get other PSPACE-complete problems we first state an obvious the-
orem.

Theorem 7.20 If A is PSPACE-complete and B satisfies B ∈ PSPACE,
A ≤p B, then B is PSPACE-complete.

PSPACE-problems are not as abundant as NP-complete problems and do
not come up in as varying contexts. The main source of PSPACE- complete
problems outside logic is games. It is a only slight exaggeration to say that
to determine who is the winner in most games is PSPACE-complete.

80

The reason that games are this hard is that already quantified Boolean
formulas can be viewed as a game between two players, “Exists” and “Forall”
in the following way. Given a formula “Exists” chooses the values of all
variables which correspond to existential quantifiers and “Forall” chooses
the values of all variables which correspond to universal quantifiers. “Exists”
wins the game iff the final total assignment satisfies the formula. It is not
hard to see that the formula is true iff “Exists” wins the game when both
players play optimally.

Of course the PSPACE-completeness cannot apply to any usual game like
chess, since chess is of a given constant size and hence not very interesting
from our point of view. But games that can be generalized to arbitrary size
are often PSPACE-complete (or hard). Thus for instance to determine who
is the winner in a given position of generalized checkers or generalized go
is PSPACE-hard. We will not get into those games but instead consider a
more childish game.

“Geography” is a two-person game where one person starts by giving the
name of a geographical place and then the two people alternatingly name
geographic places subject to the two conditions that no place is named twice
and that each name starts with the same letter that the previous name ended
by. The first person not being able to name a place with these two conditions
loses.
To get a computational problem out of this game let us generalize.

“Generalized Geography” (GG) is a graph game where two people alter-
natingly choose nodes in a directed graph. Each node must be a successor of
the previous node and no node can be chosen twice. The first person having
no choice loses the game. Initially the game starts with a given node.

The computational problem is now: Given a graph, which of the two
players has a winning strategy?

Let us first observe that clearly this is a generalization of the geography
game where the nodes corresponds to places and there is an edge from A
to B if A ends with the same letter B starts with. (On the other hand it
is a slightly cheating generalization since the skill in the normal game is to
know as many geographic names as possible.)

Theorem 7.21 Generalized geography is PSPACE-complete.

Proof: It is not hard to verify by normal procedures that GG is in PSPACE
and thus by Theorem 7.20 we need only to prove that TQBF-CNF can be
reduced to GG. We will call the players in the game ∃ and ∀. Given the

81

s x
1

x
2

c1

c 2

c l

Figure 9: Generalized geography graph

formula

∃x1∀x2∃x3[

c1︷ ︸︸ ︷
(x1 ∨ x̄2 ∨ x3)∧ · · ·

cl︷︸︸︷
()]

we construct a graph given in Figure 9. There is a diamond for each variable
of the formula, with the last diamond pointing to nodes representing all the
clauses of the formula and each clause node pointing to nodes representing
the literals in the clause. Finally these nodes are hooked back to the top
or the bottom of the diamond for the corresponding variable according to
whether the literal is positive or negative. The games starts at the node
named S and the ∃ and ∀ labels in the diagram show whose turn it is to
move at each stage.

We can think of ∃’s and ∀’s choices of how to move through the diamonds
as setting the variables (true if the high road is taken and false if the low
road is taken). Then ∀ gets to pick any clause that he claims to be false, and
∃ must pick a literal in that clause which he will claim is true. If ∃’s claim is
valid, ∀ will not be able to move without reusing a node, while if the claim is
not true, ∀ will be able to move and then ∃ will be stuck. Thus we see that
∃ has a winning strategy iff the formula is true. Since the reduction clearly
is polynomial time we have proved that GG is PSPACE-complete.

7.3 P-complete problems

The question P = NP? is of real practical importance since it is a question
whether many natural problems can be solved efficiently. The question
whether P is equal to L is not of the same practical importance, (although

82

it has a nice connection with parallel computation we have not seen yet) but
from a theoretical point of view it is of course of major importance.

Up to this point we have allowed polynomial time for free when we have
compared problems. This is clearly not possible when we are considering
the question P = L? and thus we need a finer reduction concept. The
modification is very slight. We just require the reduction-function to be
computable in logarithmic space.

Definition 7.22 Let A and B be two sets. Then A ≤L B (read as “A is
logarithmic space reducible to B”) iff there is a function f , computable in
logarithmic space, such that x ∈ A⇔ f(x) ∈ B.

Using this we can now define P-completeness.

Definition 7.23 A set A is P-complete iff

1. A ∈ P .
2. If B ∈ P then B ≤L A

We get the usual theorem.

Theorem 7.24 If A is P-complete then

P = L⇔ A ∈ L.

The proof is identical to the other proofs. One small lemma is needed,
namely that the composition of two functions in L is in L. We leave this as
an exercise. We are now ready to encounter our first P-complete problem.
Define a Boolean circuit to be a directed acyclic graph where each node is
labeled by either ∧, ∨ or ¬ and the number of incoming edges is at least two
in the first two cases and one in the last. The graph contains sources which
are labelled by input variables xi and one sink which is called the output
node. Given values of the inputs to the circuit one can evaluate the circuit
in the natural way. An example is given in Figure 10. In this ciruit all edges
are directed upwards. Let CVAL be the following problem: Given a circuit
and values of the inputs of the circuit. What is the output of the circuit?
We have:

Theorem 7.25 CVAL is P-complete.

83

x
1

x
2

x
3

V

V

V

V

Figure 10: A circuit

Proof: First observe that CVAL belongs to P since it is straightforward
to evaluate a circuit once the inputs are given.

Now take any B ∈ P . We need to reduce B to CVAL. Assume that B is
recognized by a Turing Machine MB that runs in time at most nc for inputs
of length n. We will again use the concept of a computation tableau. Since
we are considering deterministic computation there is a unique computation
tableau given the input. The content of each square of the tableau is easily
coded by a constant number of Boolean values. We construct a circuit
which successively computes these descriptions. The output of the circuit
will correspond to the output of the machine, i.e. be the content of the first
square at the final timestep.

The content of a given square of the tableau only depends on the contents
of the square itself and its two neighboring squares at the previous time step.
This means that we can build a constant piece of circuitry that computes
the Boolean variables corresponding to the square (i, j) in the computation
tableau from the variables corresponding to (i − 1, j − 1), (i − 1, j), and
(i−1, j+1). Thus to construct a circuit that given the correct input simulates
the computation tableau of MB we just have to copy this piece of circuitry
everywhere. To print the description of this circuit on the output tape all
we need to remember is the identities of the nodes of the circuits. This can
be done in O(log n) space. Thus in logrithmic space we can construct a
circuit and an input to this circuit such that the circuit outputs one iff MB
outputs 1 on input x. Thus we have a correct reduction and the proof is
complete.

84

Several other P-complete problems can be constructed by making loga-
rithmic space reduction from CVAL. We will however not present any more
P-complete problems in this section.

7.4 NL-complete problems

The final question we will consider is the NL = L? question. Again we have
complete problems under L-reductions.

Definition 7.26 A set A is NL-complete iff

1. A ∈ NL.
2. If B ∈ NL then B ≤L A

As before we ge:

Theorem 7.27 If A is NL-complete then

NL = L⇔ A ∈ L.

We have already encountered the standard NL-complete problem, namely
graph-reachability (GR) i.e. given a directed graph G and two nodes s and
t of G, is it possible to find a directed path from s to t.

Theorem 7.28 Graph-reachability is NL-complete.

Proof: We have more or less already proved the theorem. The fact that
GR ∈ NL was established in Section 5.1.

That the problem is NL-complete was implicitly used in the proof of
Theorem 6.4. Let us recall this proof. We started with an arbitrary nonde-
terministic machine M and an input x to M . We then constructed a graph
(of configurations of M) with two special nodes s and t (corresponding to
the start configuration and the accepting configuration, respectively) where
x was accepted by M iff we could reach t from s. We then observed that
graph-reachability could be done in polynomial time and hence NL ⊆ P .
The first part of this proof is clearly the desired reduction. All we need do
is to prove that the reduction can be done in logarithmic space. This is not
hard and we leave this to the reader.

85

8 Constructing more complexity-classes

Let us just briefly mention some more complexity-classes which are very
related to the given classes. Before we have pointed out that P is symmetric
with respect to complementation i.e. if a set A belongs to P then so does its
complement Ā. We have also pointed out that this is not true for NP . Thus
it is natural to talk about the set of languages whose complement belongs
to NP .

Definition 8.1 A set A belongs to co-NP iff its complement Ā belongs to
NP .

It is in general believed that co-NP is not equal to NP . In general for
any complexity-class C that is not closed under taking complements, we can
define a corresponding complexity-class co-C. The only other such class we
have encountered is NL.

Definition 8.2 A set A belongs to co-NL iff its complement Ā belongs to
NL.

It was generally believed that co-NL is not equal to NL. Thus it came
as a surprise when the following theorem was proved independently by Im-
merman and Szelepcsényi in 1988.

Theorem 8.3 If S(n) is space constructible, S(n) ≥ log n and suppose A
can be recognized in nondeterministic space S(n), then the complement of A
can be recognized in nondeterministic space O(S(n)).

We get the following immediate corollary:

Corollary 8.4 NL=co-NL.

Remark 8.5 Although this theorem was a surprise, one already knew that
nondeterminism was not that helpful with regard to space. In particular by
Savitch’s theorem (Theorem 6.7) we know that whatever can be done in non-
deterministic space S(n) can be done in deterministic space O(S2(n)). On
the other hand the smallest deterministic time-class that is known to include
all things that can be done in nondeterministic time T (n) is essentially 2T (n).
Thus in spite of the given collapse it is still believed that NP �= co-NP .

86

Proof: For notational convenience we will only prove the corollary. The
general case will follow from just substituting S(n) for log n. We will prove
that co-NL ⊆ NL. By symmetry this will imply the equality of the two
classes.

Since graph-reachability is complete for NL, its complement is complete
for co-NL. To prove that co-NL ⊆ NL we need only prove that graph-non-
reachability is in NL. In particular we need only to describe a nondetermin-
istic algorithm which works in logarithmic space and given a graph G and
two vertices s and t accepts if there is no path from s to t. The idea behind
the algorithm is to compute the number of nodes reachable from s. Once
we know this number we can verify that t is not reachable by just guessing
(and checking) all reachable vertices. Since we cannot guess them all indi-
vidually, we need to guess them in increasing order. This way we need only
remember the number of vertices seen this far and the last one seen.

The number of reachable vertices is computed iteratively. In stage k we
compute the number of vertices which are reachable with at most k edges.
This is done by at each stage nondeterministically generating all vertices
that can be reached in k − 1 steps. Since we know their number, we know
when we have generated all, and thus we can without error decide if a given
vertex is reachable in k steps. The complete algorithm now works as follows:

Nk = 1
for k = 1 to n do

newNk=0
for l = 1 to n do
check = 0
for m = 1 to n do

Nondeterministically try to generate a path from s to
vm of length at most k − 1.
If this is successful then
check = check + 1
If vm is connected to vl (or equal to vl) then

set newNk = newNk + 1
goto next l

endif
endif

next m
if check �= Nk reject and stop

next l

87

Nk = newNk
next k
check = 0
for m = 1 to n do

Nondeterminstically try to generate a path from s to
vm of length at most n− 1. If this is successful then
check = check + 1
If vm is t reject and stop

endif
next m
if check = Nk accept otherwise reject

We need to prove that it is correct and that it only uses logarithmic
space. Let us start with the latter part. The variables used by the program
is k, l, m, Nk, newNk and check. It is easy to see that each of them is an
nonnegative integer which is at most n and thus we can store these values
in space O(log n). On top of this we need to nondeterministically guess a
path of at most a certain length at certain parts of the program. This can
be done in logarithmic space by the example in section 5.1 augmented with
a simple counter.

Now let us consider correctness. We claim that, unless the algorithm has
already halted and rejected, the counter Nk will at stage k give the number
of vertices reachable by a path of length at most k from s. We prove this
by induction and the base case k = 0 is trivial since only s can be reached
with 0 edges and Nk is initially 1. For the induction step observe that since
the algorithm does not halt and by the induction hypothesis, for each l the
algorithm generates all vm which can be reached in at most k−1 steps. Thus
it is easy to see that the algorithm decides correctly whether vl is reachable
in at most k steps and thus the new value of Nk will be correct and the
induction step is complete.

Finally, for the final loop observe that if in the end check = Nk then
we have generated all vertices that are reachable from s with at most n− 1
steps (and hence reachable at all) and if t was not one of them we accept
correctly. The argument is complete and we have proved Corollary 8.4.

88

9 Probabilistic computation

From a practical point of view it is sufficient if an algorithm is fast most of
the time. On could even relax conditions even further and just ask that the
algorithm is correct most of the time.

A key point when reasoning about such algorithms is to make precise
what is meant by “most of the time” i.e. we need to introduce some proba-
bilistic assumptions. There are two basic ways to do this:

1. To consider a random input, i.e. to take a probability distribution over
the inputs and ask that the algorithm performs well for most inputs.

2. To allow the algorithm to make random choices, and require that the
algorithm is fast (correct) for every input.

Of course one could also combine the two ways of introducing randomness.
Both approaches give many interesting results, but here we will only

study the second approach.

Definition 9.1 A probabilistic Turing machine is a normal deterministic
Turing machine equipped with a special coinflipping state. When the machine
enters this state it receives a bit which is 0 with probability 1/2 and 1 with
probability 1/2.

As with nondeterministic Turing machines, a probabilistic Turing ma-
chine can do many different computations on a given input. Thus for in-
stance, the output is not uniquely determined, but rather is given by a
probability distribution. Also the running time is a random variable and we
will say that a probabilistic Turing machine runs in time S if it always halts
in time S(n) on every input of length n. Another interesting running time
characteristic is the expected running time.
We can now define a new complexity class.

Definition 9.2 A set A belongs to BPP iff there is a polynomial time prob-
abilistic Turing machine M such that

x ∈ A⇒ Pr[M(x) = 1] ≥ 2/3
x �∈ A⇒ Pr[M(x) = 1] ≤ 1/3

BPP is an abbreviation for Bounded Probabilistic Polynomial time.

89

Thus the machine M gives at least a reasonable guess of whether an
input x belongs to A (We will later see that this guess can be improved).
To get the ideas behind these definitions, let us next give an example of a
language in BPP not known to be in P .

Example 9.3 Checking polynomial identities: Given two polynomials P1

and P2 in several variables represented in some convenient way (e.g. as
determinants, products or something similar). Do P1 and P2 represent the
same polynomial? We require that the representation is such that if we
are given values of the variables then we can evaluate the polynomials in
polynomial time. A typical example would be to investigate whether the
equality

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
x1 x2 x3 · · · xn
x2

1 x2
2 x2

3 · · · x2
n

...
...

...
. . .

...
xn−1

1 xn−1
2 xn−1

3 · · · xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣
=
∏
i>j

(xi − xj)

is a true identity.

The obvious approach to this problem is to expand the polynomials
into a sum of monomials and then compare the expansions term by term.
This procedure will in general be quite inefficient since there might be ex-
ponentially many monomials (as in the example given). Our probabilistic
algorithm will evaluate the two polynomials at randomly chosen points. If
the polynomials disagree on one of these points they are different and we
will prove that if they agree on all points then they are probably the same
polynomial. The algorithm will depend on two extra parameters, d and k.
The first parameter is a known upper bound for the degrees of the polyno-
mials in question (in our example we could take d = n(n−1)

2) and the second
is related to the error probability.

Input P1 and P2

For i = 1, 2 to k
Pick random integer values independently for x1 through xn in the range
[1, 2nd]. If P1(x) �= P2(x) conclude that P1 �= P2 (answer 0) and stop.

Next i.
Conclude that P1 = P2 (answer 1).

90

Clearly iff we answer 0 we are always correct and to see that the algorithm
is useful we have to prove that most of the time we are correct even when
we answer 1. The key lemma is the following.

Lemma 9.4 Given a nonzero polynomial, P , in n variables and of degree
≤ d. The set

Z = {x | 1 ≤ xi ≤ R, 1 ≤ i ≤ n ∧ P (x) = 0}
has cardinality at most dnRn−1.

Proof: We prove the lemma by induction over n. For n = 1 the lemma
follows from the fact that a polynomial of degree d has at most d zeroes.

For the induction step, let us consider the polynomials Qj in the vari-
ables x1 . . . xn−1 obtained by substituting j for the variable xn. Qj is a
polynomial of degree ≤ d in n − 1 variables and thus we could use the in-
duction hypothesis if we knew that Qj was nonzero. We claim that there
are at most d different j such that Qj is identically zero. To see this take
any monomial in P which appears with a nonzero coefficient (assume for
the sake of the argument that it is x1x2xn). Now look at the coefficient of
x1x2 in Qj. It is the value at j of a nonzero-polynomial of degree ≤ d− 2.
Thus there are at most d − 2 values of j such that this coefficient is 0 and
in general at most d values of j such that Qj is identically zero.

The set Z splits into the union of sets obtained by fixing the last coordi-
nate to any value in the range 1 to R. When the corresponding polynomial
is nonzero, then by the induction hypothesis the cardinality of the set is
bounded by (n − 1)dRn−2 and when the polynomial is zero the cardinality
is Rn−1. Since there are at most R sets of the first kind and d of the second
we get the total estimate

R(n− 1)dRn−2 + dRn−1 = ndRn−1

and the induction is complete.

Using this lemma we can analyze the algorithm. If P1 and P2 represent
the same polynomial then we will always answer 1 and we always get the
correct answer. When P1 and P2 do not represent the same polynomial call
an x such that P1(x) = P2(x) an unlucky x. Thus the algorithms gives the
correct answer unless we happen to pick k unlucky x’s. By applying the
above lemma to P1 − P2 we see that there are at most (2dn)n/2 unlucky x
and thus the probability that we pick one unlucky x is bounded by 1

2 . Since

91

the k x’s are independent the probability of them all being unlucky is at
most 2−k. Thus if k is reasonably large we get the correct answer with high
probability.

All that remains to see that the problem lies in BPP is to observe that
the algorithm is polynomial time, but this is obvious since the essential step
of the algorithm is to evaluate the polynomials and this is polynomial time
by assumption.

In the example we saw that if we were willing to run the algorithm longer
(i.e. try more random points) then we could make the probability of error
arbitrarily small. It is not hard to see that this is true in general.

Theorem 9.5 A set A belongs to BPP iff there is a polynomial time prob-
abilistic Turing machine M such that

x ∈ A⇒ Pr [M(x) = 1] ≥ 1− 2−|x|−2

x �∈ A⇒ Pr [M(x) = 1] ≤ 2−|x|−2

Proof: Clearly the above conditions are stronger than our original defini-
tion and thus if A satisfies the above condition then it belongs to BPP.

We need to prove the converse i.e. that if A ∈ BPP we can find a
machine M which satisfies the above condition. We know by the definition
of BPP that there is a machine M ′ such that

x ∈ A⇒ Pr[M ′(x) = 1] ≥ 2/3
x �∈ A⇒ Pr[M ′(x) = 1] ≤ 1/3.

Now let M be defined by running M ′, 2(|x| + 3)/ log(9/8) = C times with
independent random choices and outputting 1 iff M ′ outputs 1 at least C/2
times. We need to verify the claim that this M satisfies the condition in the
theorem.

Assume that x ∈ A and that M ′ outputs 1 with probability p on input
x (we know that p ≥ 2/3). Then the probability that M does not output 1
is bounded by

C/2∑
i=0

(
C

i

)
pi(1− p)C−i.

The ratio of two consecutive terms in this sum is at least p
1−p ≥ 2/3

1/3 ≥ 2 and

thus if the last term is T then the sum is bounded by
∑C/2
i=0 2i−C/2T ≤ 2T .

This last term is bounded by

2C(2/3)C/2(1/3)C/2 ≤ (8/9)C/2 ≤ 2−|x|−3

92

and thus the first condition of the theorem follows. The second condition is
proved in a similar way.

In our example we proved more than needed to establish that the problem
in question was in BPP. In particular we proved that if the input was in the
language the answer was always correct. With this additional restriction we
get a new complexity class.

Definition 9.6 A set A belongs to R iff there is a polynomial time proba-
bilistic Turing machine M such that

x ∈ A⇒ Pr [M(x) = 1] ≥ 2/3
x �∈ A⇒ Pr [M(x) = 1] = 0.

Remark 9.7 I believe that R is short for Random polynomial time. Hence
this class is sometimes also called RP.

While BPP is closed under complement, this is not obvious (or known)
for R and thus we also have a third probabilistic complexity class, co-R, the
set of languages whose complement lies in R. Observe that both R and co-R
are subsets of BPP. Our example “Polynomial identities” is a member of
co-R.

There are not many known examples of problems not known to be in P
that lie in BPP. The main other example is to recognize primes. We will
not discuss that algorithm here. However, by quite elaborate methods it is
possible to prove that primes belongs to R

⋂
co-R and for this class we can

make a very strong statement.

Theorem 9.8 A set A belongs to R
⋂
co-R iff there is probabilistic machine

M which runs in expected polynomial time and always decides A correctly.

Proof: By assumption there is a machine M1 that outputs 1 with proba-
bility at least 2/3 when the input x is in A and with probability 0 when x
is not in A (since A ∈ R). Similarly since A ∈ co-R there is a machine M2

that outputs 1 with probability at least 2/3 when x is not in A and never
when x in A. Both M1 and M2 run in polynomial time. Now on input x
alternate in running M1 and M2 until one of them answers 1. When this
happens we know that x ∈ A if the 1-answer was given by M1 and we know
that x �∈ A if it was given by M2. Each time we run both machines we have
probability 2/3 of getting a decisive answer and hence it follows that the
procedure is expected polynomial time.

93

9.1 Relations to other complexity classes

Let us relate the newly defined complexity classes to our old classes. Clearly
any of the defined classes contains P since we can always ignore our possi-
bility to use randomness. We have some non-obvious relations.

Theorem 9.9 R ⊆ NP .

Proof: We know by the definition of R that if A ∈ R then there is a
machine M such that when x ∈ A then with probability ≥ 2/3 M accepts
x and when x �∈ A there are no accepting computation. But this implies
that if we replace the probabilistic choices by non-deterministic choices M
accepts x precisely when x ∈ A.

The above theorem immediately yields:

Theorem 9.10 co-R ⊆ co-NP .

Our next theorem is also not very surprising.

Theorem 9.11 Suppose A ∈ BPP and the machine M that recognizes A
runs in time T (n) and uses at most p(n) coins, then A can be recognized by
a deterministic machine that runs in time O(2p(n)T (n)) and space O(T (n)+
p(n)).

Proof: Just run M for all possible 2p(n) set of coinsflips and calculate the
probability that M accepts. A straightforward implementation gives the
given resource bounds.

We have an immediate corollary:

Corollary 9.12 BPP ⊆ PSPACE.

Apart from these theorems, nothing is known about the relation between
our probabilistic classes and our old classes. There is not a great consensus
what the true relations are, but many people think it is possible that P =
BPP .

94

10 Pseudorandom number generators

In the last section we used random numbers. Without discussing the matter,
we assumed that we had access to an unlimited number of perfectly random
coins. In practice this might not be the case. One could indeed question
whether there are any random phenomena in nature, and thus whether ran-
domness in computation at all makes sense. This is a valid question, but
it is mostly philosophical in nature and we will not discuss it. Instead we
will take the optimistic attitude that there is randomness, but there is a
problem getting enough random numbers into the computer. For the sake
of this section we will assume that we only need random bits, where each
bit is 0 and 1 with probability 1/2. This is not a severe restriction since
random bits can be turned into random numbers in many ways.

The common solution to the problem of not having enough truly random
numbers is to have a what is generally called a pseudorandom number gen-
erator (we will in the future call them pseudorandom bit generators since we
will be generating bits). This is a function which takes a short truly random
string and produces a longer “random looking” string. How the short truly
random string (which is called the seed) is produced is clearly a problem
(it is generally supplied by the user), but we will not concern us with this
problem, just assume that somehow we can get a few random bits into the
computer.

The main question we will deal with in this section is how to define
what we want from a pseudorandom generator and how to construct such
a generator. One obvious property is that it should be easy to run and
produce something useful, i.e. it should be computable in polynomial time
and the output should be longer than the input. Something that has only
these two properties is a bit generator.

Definition 10.1 A bit generator is a polynomial time computable function
that take a binary string as input and on an input of length n produces an
output of length p(n) where p is a polynomial such that p(n) > n for all n.
For technical reasons we assume that p(n) is strictly increasing with n.

Note that the definition allows for the output to be of only length n +
1 and this does not seem to be much of a generator. We will see later
(Theorem 10.8) that this is not a real problem.

The more interesting aspect of pseudorandom bit generators is to try to
formalize the “random looking” requirement of the output. Traditionally,

95

this was interpreted as that the output bits passed a small set of standard
statistical tests. This is the germ of what today is believed to be the correct
definition.

Definition 10.2 A statistical test is a function from binary strings to {0, 1}.
Intuitively the output 1 can be interpreted as the string passes the test and
the output 0 as failing.

Note, however that not even all strings produced truly at random will
pass a statistical test.

Definition 10.3 (First attempt) A bit generator passes a statistical test S
if the probability that S outputs 1 on a random output of the generator is
equal to the probability that S outputs 1 on a truly random string.

Here a random output of the generator is defined as the output on a
truly random seed. The tempting definition of pseudorandom generator is
now:

Definition 10.4 (First attempt) A bit generator is pseudorandom if it passes
all statistical tests.

A bit generator that passes all statistical tests produces a very random
looking output. However the definition is too restrictive and there is no such
generator. Take any bit generator G and consider the following statistical
test:

SG(x) =

{
1 if x can be output by G
0 otherwise

First observe that if G stretches strings of length n to strings of length p(n)
in time T (n) then SG can be implemented on strings of length p(n) to run
in time 2nT (n) since we just run G on all possible strings of length n and
check if one of them equals x.

When we run SG on the output of G then the result will always be 1. On
the other hand when we feed SG a truly random string then the probability
that we get output 1 is at most 1/2. This follows since there is one output
for each seed which implies that there are at most 2n possible outputs of
G of length p(n) (here we use that p is strictly increasing), and since there
are 2p(n) possible strings and p(n) ≥ n + 1 at most half of the strings are
possible outputs of G.

96

In practice, if n is large, it is not feasible to compute SG as described
above, since the exponential time needed to try all the seeds is usually too
much. Thus somehow this test is “cheating” and we change the definition
to take care of this.

Definition 10.5 (Final attempt) A bit generator is pseudorandom if it
passes all statistical tests that run in probabilistic polynomial time.

Remark 10.6 From the development up to this point polynomial time is
the natural requirement on efficient statistical tests. The choice to allow
statistical tests to be probabilistic is not clear, but for many reasons (we will
not go into them here) it is the better choice. Allowing randomness makes
the definition stronger since anything that passes all probabilistic polynomial
time statistical tests also pass all deterministic polynomial time statistical
tests.

We have still not overcome all problems with the definitions as can be
seen from following miniature version of SG.

Test sG

On input x of length p(n) guess n2 random seeds of length n
and run G on these seeds and output 1 if one of the outputs seen
from G is equal to x. Otherwise output 0.

Since G is assumed to be polynomial time, sG can be implemented in
polynomial time. Furthermore, if x is a string that could have been gen-
erated by G then there is some small but positive probability that sg will
output 1 while if x cannot be output by G then this probability is 0. By
the analysis of SG this implies that the probability that sG outputs 1 on a
random output of G is different from the probability that it outputs 1 on a
random input. As we have defined passing statistical tests this means that
G fails the test sG. This is counterintuitive since for large n the test sG is
very weak. We change the definition to take care of this anomaly.

Definition 10.7 (Final attempt) Let S be a statistical test and let G be a
bit generator. Let an be the probability that S outputs 1 on a random output
of G of length n and let bn be the probability that it outputs 1 on a truly
random input of length n. G passes the statistical test S if for any k there is
a Nk such that for all n > Nk it is true that |an−bn| < n−k. The probability
is taken over the random output of G and the random choices of S.

97

In other words the difference of the behavior of the test on the outputs
of the generator and random strings goes to 0 faster than the inverse of any
polynomial.

Let us first prove that once you have a pseudorandom generator which
extends the seed slightly, then we get an arbitrary extension.

Theorem 10.8 If there is a pseudorandom bit generator G, then for any
strictly increasing polynomial p there is a pseudorandom bit generator G′

that extends from n bits to p(n) bits.

Proof: The only problem is that G might not extend the seed sufficiently.
By definition G maps n bits to more than n bits. We will assume that
G outputs n + 1 bits since if it outputs more bits we can just ignore them.
Note that G remains a pseudorandom bit generator (Prove this!) Now define
G′ to be G iterated p(n) − n times, i.e. on an input of length n, we first
compute G to get a string of length n+ 1, then compute G on this string to
get a string of length n+ 2 etc. until we have a string of length p(n). This
generator produces a string of the wanted length and it is easy to see that it
works in polynomial time. We prove that it is pseudorandom by converting
a hypothetical statistical test S which distinguishes the output of G′ from
random strings to a test which distinguishes the output of G from random
strings.

Let an be the probability that S outputs 1 on random outputs from G
of length p(n) and let bn be the corresponding probability when the input is
truly random. By assumption for some k and infinitely many (for notational
convenience we assume this is true for all) n we have |an − bn| ≥ n−k.
Consider the following probability distribution Ri, 0 ≤ i ≤ p(n) − n on
strings of length p(n). Start with a truly random string of length n+ i and
iterate G p(n)− i− n times. Note that R0 are random outputs of G′ while
Rp(n)−n are truly random strings. Let qi be the probability that S outputs
1 on distribution Ri. Since q0 = an and qp(n)−n = bn and |an − bn| ≥ n−k
there is some i such that |qi − qi+1| ≥ 1

nkp(n)
. Let us fix this i.

Now consider the following statistical test on strings of length n+ i+ 1:
Given a string x iterate G p(n) − n − i − 1 times and run S. If the initial
string was random we have produced an element according to Ri+1 and the
probability of getting output 1 is qi+1. On the other hand if the initial
string was the output of G on a random string of length n + i, then we
have produced a string according to Ri and the probability of getting a 1
is qi. This implies that we have found a way of distinguishing the output

98

for G from random strings and hence we have reached a contradiction since
G was supposed to be pseudorandom. Note that the test obviously runs in
polynomial time.

This should finish the proof, but the very careful reader will see that there
are some minor problems. The proposed test uses two auxiliary parameters
p(n) and i. The value p(n) causes no problems since it is the value of a
fixed polynomial. However it is not clear how to find i. We sketch how to
get around this problem: Let c be a constant. On a given input of length n
consider the tests given by different values of i. For each test evaluate the
test by picking nc random inputs according to both distributions. Let i0
be the value that gives the biggest difference between the two distributions.
Now run the test with i = i0 on the given input. It is a tedious (and not that
easy) exercise to check that for some c this “universal” test will distinguish
the random strings from outputs of G.

Let us next investigate the existence of pseudorandom bit generators.

Theorem 10.9 If NP ⊆ BPP then there are no pseudorandom generators.

Proof: Just observe that the test SG is in NP . Since this test distin-
guishes the output of G from random bits it should not run in probabilistic
polynomial time.

In particular if P = NP there are no pseudorandom generators and thus
proving the existence of such generators would prove P �= NP , which we
cannot do for the moment. Thus the best we could hope for is to prove that
if P �= NP then there are pseudorandom generators. Also this is probably
too much to hope for. The reason is that P vs NP is a question of the worst
case behavior of algorithms while the existence of pseudorandom generators
is an average case question. This forces us to base the construction of
pseudorandom generators on even stronger assumptions.

Definition 10.10 A function f is a one-way function if it is computable in
polynomial time and for any probabilistic polynomial time algorithm A the
following holds. Choose a random input x of length n and compute y = f(x).
If A is given y as input, then the probability that it outputs a z such that
f(z) = y goes to 0 faster than the inverse of any polynomial.

Remark 10.11 Note that we cannot ask A to actually find the initial x,
since in such a case the constant function would be one-way.

99

We have:

Theorem 10.12 If there is a pseudorandom bit generator then there is a
one-way function.

Proof: We claim that the function given by the generator (i.e. from
the seed to the output) is one-way. By Theorem 10.8 we can assume the
generator expands n bits to 2n bits. Assume that the function given by
this generator (let us by abuse of notation call the generator as well as the
function it computes by G) is not one-way, in other words that there is a k
and an A such that A finds an inverse image of a given function value with
probability at least n−k (for infinitely many n). Then the following test, S,
will distinguish outputs of G from random bits.

On input x run A. Suppose A outputs y, then if G(y) = x output
1 otherwise output 0.

If x is a truly random string of length 2n then the probability that the
test S outputs 1 is bounded by the probability that x can be output from
G. Since there are 22n possible strings and at most 2n outputs from G this
probability is bounded by 2−n. On the other hand if x is the output of
G then the probability of output 1 is exactly the success probability of A
which by assumption is at least n−k (for infinitely many n). Thus this test
distinguishes the output from G from random strings contradicting that
G is pseudorandom (the test is polynomial time since both A and G are
polynomial time). This proves that G is a one-way function.

It was a long standing open question whether the converse of Theo-
rem 10.12 would also be true i.e. if starting from any one-way function it
would be possible to construct a pseudorandom bit generator. In 1990 it was
proved by H̊astad, Impagliazzo, Levin and Luby that this is indeed the case,
but their proof is much too complicated for the present set of notes. Instead
we prove the following theorem which is due to Yao (the present proof is due
to Goldreich and Levin). Let a one-way lengthpreserving permutation be a
one-way function which for each n is a 1-1 mapping on strings of length n.

Theorem 10.13 If there is a one-way lengthpreserving permutation then
there is a pseudorandom bit generator.

100

Proof: Let f be the one-way lengthpreserving permutation. Let x and r
be random strings of length n and let (x, y) be the inner product modulo 2
of the strings x and y (i.e. it is the parity of

∑n
i=1 xiyi). Then we claim that

the function g(x, r) = f(x), r, (r, x) is a pseudorandom bit generator. It is
a bit generator since it expands 2n bits to 2n + 1 bits and is polynomial
time computable since f is polynomial time computable. The hard part is
to prove that it is pseudorandom. The following lemma of Goldreich and
Levin will be crucial.

Lemma 10.14 Suppose we have a probabilistic polynomial time algorithm
A that on input f(x), r computes (x, r) with a probability greater than 1

2 +
1
Q(n) where Q is a polynomial. (Here the probability is taken over a random
choice of x and r and the random choices of A). Then there is a probabilistic
polynomial time algorithm B that inverts f with probability of success at least

1
2Q(n) .

In other words, if f is a one-way function then (x, r) looks random to
any probabilistic polynomial time machine which only has the information
f(x), r.

Let us first see how Theorem 10.13 follows from Lemma 10.14. Suppose
g is not pseudorandom and that S is a statistical test which outputs 1 with
probability an on random bits and bn on random outputs of g. Suppose
without loss of generality that an ≥ bn + n−k. Now consider the following
algorithm for predicting (x, r).

On input f(x), r run S let b0 = S(f(x), r, 0) and b1 = S(f(x), r, 1). Now if
b0 = b1 output a random bit and otherwise output i such that bi = 1.

Let p(x, r, i) be the probability that S outputs 1 on (f(x), r, i). Then

an = 2−2n−1
∑
x,r,i

p(x, r, i)

and
bn = 2−2n

∑
x,r

p(x, r, (r, x)).

Consider the above algorithm on input f(x), r. Let (r, x) be the complement
of (r, x), then the probability that it outputs the correct value for f(x), r is

p(x, r, (r, x))(1 − p(x, r, (r, x))+

101

1
2

(
p(x, r, (r, x))p(x, r, (r, x)) + (1− p(x, r, (r, x)))(1 − p(x, r, (r, x)))

)
which equals 1

2(1 + p(x, r, (r, x)) − p(x, r, (r, x))). Hence the total prob-
ability of it being correct is 1

2(1 + an − bn) and now Theorem 10.13 follows
from Lemma 10.14.

Next let us prove Lemma 10.14.

Proof: (Lemma 10.14) We give a proof due to Rackoff.
First observe that for at least a fraction 1

2Q(n) of the x’s, A predicts
(r, x) with probability (only over r) at least 1

2 + 1
2Q(n) . We will describe a

procedure that will be successful with high probability for each such x and
this is clearly sufficient.

We compute each bit of x individually. Let ei be the unit-vector in the
i’th dimension. We can ask A about f(x), ei, but there is no reason it will
be correct for these inputs. We need to ask about many points, and we will
use a small random subspace shifted by a ei. The set of r’s asked will be
pairwise independent but we can guess the answers to the entire subspace
by guessing the answers on the basis vectors. Let k be a parameter and ⊕
be exclusive-or then the algorithm on input y now works as follows:

Pick k random vectors r1, r2, . . . rk of length n.
For each value of k bits b1, b2 . . . bk do

For i = 1 to n do
count = 0
For all non-empty subsets S of {1, 2 . . . k} do

Ask A about y, ei ⊕j∈S rj, suppose answer is b.
Compute b′ = b⊕j∈S bj and set count = count+ 1− 2b′.

Next S
Set xi = 0 if count > 0 and 1 otherwise.

Next i.
If f(x) = y output x, stop

od
Report ’failure’.

Just to avoid confusion observe that count is the number of 0-guesses
minus the number of 1-guesses and hence we are doing a majority decision.
If A runs in time T (n) and f in time T1(n) then the algorithm runs in time
22knT (n)+T1(n) and thus the algorithm is polynomial time if k is O(log n).

102

We need to analyze the probability that we find the correct x. We claim that
this happens with good probability when bi = (ri, x). Let riS be ei ⊕j∈S rj
and let biS be b ⊕j∈S bj . If A gives the correct answer (i.e. (x, riS)) to y, riS
then xi = biS . This implies that we are in pretty good shape since we know
that A gives a majority of correct answers and riS are fairly random.

Lemma 10.15 For S1 �= S2 r
i
S1

and riS2
are independent and uniformly

distributed on {0, 1}n.

Proof: Suppose j ∈ S1 but j �∈ S2 (if there is no such j we can inter-
change S1 and S2). Now it is easy to see that rS2 is uniformly distributed
(its definition is an exclusive-or of several things at least one which is uni-
formly random) and that for any fixed value of rS2 the existence of rj in the
exclusive-or defining rS1 makes sure it still uniformly distributed.

Now it follows by Lemma 10.15 that the biS are pairwise independent.
Suppose for notational convenience that xi = 0 then we know that check is
a random variable with expected value at least 2k−1

Q(n) and variance at most
2k − 1. Now remember, Tchebychev’s inequality:

Theorem 10.16 Let X be a random variable with expected value µ and
variance v then the probability that |X − µ| ≥ λ is bounded by v

λ2 .

Using this with λ = 2k−1
Q(n) and v = 2k−1 we see that xi takes the incorrect

value with probability at most Q(n)2

2k−1
. Now if 2k − 1 ≥ 10nQ(n)2 then the

probability that xi does not take the correct value is bounded by 1
10n . Thus

the probability that some xi is incorrect is bounded by 1/10. This concludes
the proof of Lemma 10.14.

Remark 10.17 We have now given a generator that extends the input by
one bit and we know by Theorem 10.8 that we can get a generator which
extends the output arbitrarily. We can take this to be the following very
natural generator: Pick x and r randomly and let bi = (f i(x), r) where f i is
f iterated i times, for i = 1, 2, . . . p(n).

Now that we have studied good generators it is natural to ask what
happens if we use these generators to produce the random bits needed by a
probabilistic algorithm. Suppose we have a probabilistic machine M which
recognizes a BPP -language B and let G be a pseudorandom generator.

103

Suppose M uses p(n) random bits and that for some small constant ε, G
extends nε bits to p(n) bits. The latter can be assumed by Theorem 10.8.
Now consider the following statistical test SM,x of a random string r of
length p(n):

Given x run M on input x with random coins r. Answer with
the output of M .

We know that when x ∈ B and r is random then the probability that this
test outputs 1 is at least 2/3 while otherwise it is at most 1/3. Since G by
assumption passes all statistical tests it is tempting to think that the same
is true for outputs of G. This would imply that we would get a theorem
similar to Theorem 9.11 saying that B could be recognized in time close to
2n

ε
since we would only have to try all seeds of G rather than all sets of

p(n) coins.
The reason this is not true is that the test has a parameter x which might

be hard to find (the parameter M is not a problem since it is of constant
size). All is not lost since we could change the statistical test to choose x
randomly and then study the behavior of M . Then we could prove that we
had a deterministic algorithm that ran in time close to 2n

ε
and was correct

for most inputs. However since we have not studied the concept of being
correct for most inputs we will not pursue this approach. Instead we have:

Definition 10.18 A non-uniform statistical test is a probabilistic polyno-
mial time algorithm that on inputs of length n gets an advice an which is of
polynomial length.

Remark 10.19 Note that the advice is the same for all strings of length n.
The interested reader might want to prove that the given definition corre-
sponds to polynomial size circuits without any uniformity constraints.

Definition 10.20 A pseudorandom generator is non-uniformly strong if it
passes all non-uniform statistical tests.

This definition is stronger than the previous definition since we are al-
lowing stronger statistical tests. We will not do so here, but it turns out
that the existence of such generators is equivalent to the existence of one-
way functions where we allow the inverting function to have an advice. In
general all proofs for the uniform case translates to the non-uniform case.
In particular Theorem 10.8 remains true. We now finish the discussion with
a theorem of Yao.

104

Theorem 10.21 If there is a pseudorandom generator which is non-uniformly
strong then

BPP ⊆
⋂
ε>0

DTIME(2n
ε
).

Proof: The proof is as outlined above. Suppose B ∈ BPP and that it is
recognized by M which uses p(n) coins and runs in time T1(n) (both these
bounds are some polynomials). Let δ < ε and let G be a non-uniformly
strong generator which extends nδ bits to p(n) bits and runs in time T2(n)
(which also is a polynomial). Now let x be an arbitrary input of length n
and consider the above test SM,x. This test uses the advice x but since G
is non-uniformly strong, it passes this test. This implies that if we replace
the coins by a random output of G then we still have essentially the same
probability of acceptance. We now just try all the 2n

δ
possible seeds for G

and take a majority decision. This can be done in time

2n
δ
(T1(n) + T2(n))

and this is O(2n
ε
). Since both B and ε were arbitrary we have proved the

theorem.

Thus we have proved that if there are one-way functions in the non-
uniform setting then BPP can be simulated in time which is significantly
cheaper than exponential time. If one is willing to make stronger assump-
tions then one can make stronger conclusions. In particular if there is a
polynomial time computable function such that inverting this function (in
the non-uniform setting, with non-negligible success ration) on inputs of
length n requires time 2cn for some small n then BPP = P .

105

11 Parallel computation

The price of processors have dropped remarkably in the last decade and it is
now feasible to make computers that have a large number of processors. The
most famous multi-processor computer might be the Connection Machine
which has 216 = 65536 processors.

The concept of having many processors working in parallel leads to many
interesting theoretical problems. One could phrase the main question as a
variant of a traditional mathproblem. Suppose one computer can compute
a given function in one million seconds, how long would it take a million
computers to compute the same function?

The answer to this question is not known, but it seems like the answer
could be anywhere from one second to a million seconds depending on the
function. It is an important theoretical problem to identify the computa-
tional tasks that can be parallelized in an efficient manner. In this section
we will just give the first definitions and show some basic properties.

When many processors cooperate to solve a problem it is of crucial im-
portance how they communicate. In fact it seems like that in practice this
is the overshadowing problem to make large scale parallel computation effi-
cient. It is hard to get this fairly practical consideration into the theoretical
models in a suitable manner and this complication will usually get lost. We
choose here to study the circuit model of computation and as we will see,
communication between processors will be ignored. We do not want to ar-
gue that the model does not reflect reality, we only want to point out that
there is one important aspect missing.

11.1 The circuit model of computation

We have previously briefly discussed the concept of a Boolean circuit. It is
a directed acyclic graph with three type of nodes: Input nodes, operation
nodes and output nodes. The input nodes are labeled by variable names xi
and the operation nodes are labeled by logical operators. The inputs to a
node v is the set of nodes w for which (w, v) is an edge.

We will here only allow the operators ∧, ∨ and ¬. The circuit computes
a function {0, 1}n �→ {0, 1} in the natural way. (Substitute the value of the
i’th coordinate for xi and then evaluate the nodes by letting each operation
node take the value which corresponds to the corresponding operator applied
to the inputs of that node.) We will be interested in two parameters of the
circuit; its size and depth. The size of a circuit Cn will be denoted by

106

|Cn| and is equal to the number of nodes it contains while the depth will
be denoted by d(Cn) and is the longest directed path from the input to the
output. If there is a processor at each node of the circuit then the number of
processors is equal to the size of the circuit and the time needed to evaluate
the circuit is equal to the depth of the circuit. Thus if we are interested
in fast parallel computation it is interesting to construct small circuits with
small depth.

The functions we have been considering so far take inputs that are of
arbitrary length while a circuit can only take inputs of a given length. The
way to resolve this is to let a function be computed by a sequence of circuits
(Cn)∞n=1 where Cn computes f on inputs of length n. We will then be
interested in the growthrate of the size and depth of Cn as a function of n.
In particular we will say that a sequence of circuits is of polynomial size if
the growthrate of |Cn| is not more than polynomial in n. Let us now state
a theorem that was implicitly proved in Section 7.3.

Theorem 11.1 If B ∈ P then B can be recognized by polynomial size cir-
cuits.

Proof: (Outline) In the proof of Theorem 7.25 we saw that given a Tur-
ing machine M and an input x we could construct a circuit such that the
output of the circuits was equal to the output of M on input x. The circuit
constructed the computation tableau of M row by row. If one looks closely
at that proof, one discovers that the structure of the circuit only depends
on M while x enters as the input of the circuit. In particular, given a lan-
guage B ∈ P we take the corresponding Turing machine MB and given n
we can now construct a circuit Cn which will give the same output as MB
on all inputs of length n. The size of this circuit will only be a constant
greater than the size of the computation tableau of MB on inputs of length
n. If MB runs in time O(nc) then this size will be O(n2c) and thus we have
constructed circuits for B of polynomial size.

Remark 11.2 By more efficient constructions it is possible to to give a bet-
ter simulation of Turing machines and decrease the size of the above circuit
to O(nc log n).

One immediate question is whether the converse of the above theorem is
true, i.e. that if a function can be computed by polynomial size circuits then
is it in fact true that the function lies in P? With the current definitions

107

this is not true. The reason for this is that we have not put any conditions
on how to obtain the circuits Cn. To see the problem consider the following
language:

B = {x|M|x| halts on blank input}
As we have seen earlier this language is not even recursive. However it has
very small circuits since for each length n, either all strings of length n are
in B or no string of that length is a member of B. Thus Cn could just be a
trivial circuit which either always outputs 0 or 1 depending on whether Mn
halts on blank input. How to decide which one to choose is non-recursive
but is of no concern in the old definition and the following definition is called
for.

Definition 11.3 A sequence of circuits (Cn)∞n=1 is P (L)-uniform iff there
is a Turing machineM , which works in polynomial time (logarithmic space),
that on input 1n prints a description of Cn on its output tape.

Using this definition we get:

Theorem 11.4 B can be computed by polynomial size P -uniform circuits
iff B ∈ P .

Proof: (Outline) First just observe that the circuits described in the above
proof are P -uniform. They are in fact L-uniform by the proof of Theorem
7.25. This proves one of the implications in the theorem.

To see the reverse implication, suppose that B is recognized by polyno-
mial size P -uniform circuits. Then on input x a Turing machine can first
construct the circuit C|x| and then compute its value on input x. The first
part is polynomial time by the definition of P -uniform and the second part
is easily seen to be polynomial time.

11.2 NC

We can now define our main complexity class of parallel computation.

Definition 11.5 A set B is in NCk iff it can be recognized by a family
of L-uniform circuits (Cn)∞n=1 where Cn is of polynomial size and d(Cn) ≤
O((log n)k). Furthermore NC =

⋃∞
k=1NC

k.

108

Remark 11.6 The name NC is short for Nick’s Class. This is named after
Nick Pippenger who was one of the first researchers to study this class.

Remark 11.7 Normally one requires even stricter uniformity constraints
for NC1 than L-uniformity. For reasons that go beyond the scope of these
notes, this gives a better definition. However to make life easier we will stick
with the above definition.

We can now make an obvious observation.

Theorem 11.8 NC ⊆ P.

Proof: This follows immediately from the definition of NC and Theorem
11.4.

From a theoretical standpoint NC is considered as the subset of P which
admits ultrafast parallel algorithms (time O((log n)k)). Some of the algo-
rithms we present will also be efficient in practice and some will not. When
we describe how to construct circuits, we will be quite informal and talk in
terms of processors doing simple operations. Formally this should of course
be replaced by nodes in circuits, but somehow processors seem to go better
with the intuition.

Example 11.9 Given two n-bit numbers, compute their sum. This might
look straightforward since we can have one processor which takes care of each
digit. This will be the basic idea, but we have to do something intelligent
with the carries, since if we treat them without thinking, we will need circuits
of linear depth. You see the reason for this if you try to add the binary
numbers 01111111 and 00000001. The critical point is to discover quickly if
you have a carry coming from your right. The process to do this is called
Carry-look-ahead.

We use one processor for each digit of the two numbers. This processor
checks whether that position Generates, Propagates or Stops a carry and
marks the position G, P and S accordingly. We can combine this informa-
tion in a binary tree to see how longer blocks will behave with respect to
carries. For instance a block of length two will generate a carry if it looks
like GG, GP , GS or PG, it will propagate a carry if it looks like PP and it
will stop a carry if it looks like PS, SG, SP or SS. Continuing in this way
we can quickly compute whether certain intervals propagate or stop a carry.
How to do this might best be seen by an example. Suppose the numbers
are 01111011 and 01001010. We get the representation SGPPGSGP and

109

0
0

1
1

1
0

1 1 0 1 1
0 1 0 1 0

S G P P G S G P

S P G G

GS

S

Figure 11: Carry look ahead tree, going up

0
0

1
1

1
0

1 1 0 1 1
0 1 0 1 0

S G P P G S G P

S P G G

GS

S

Figure 12: Carry look ahead tree, going down

we build a binary tree (see Figure 11) to find out how longer blocks behave.
Now to see if we have a carry in a given position we just have to figure out if
all suffices of the string SGPPGSGP generates a carry. It is quite easy to
see how this is done. One way to phrase it formally is the following: Suppose
you want to know if there is a carry in a given position, start at that position
and walk down the tree. Whenever you go right write down what you see
coming in from the left to that same node. Finally evaluate the string you
get. For instance if you start in position 6 in the given tree, you get the
string PG which evaluates to G and thus there is a carry in position 6. One
can also view this last step as sending the appropriate values down the tree
as indicated in Figure 12. By actually building this tree in the circuit we
see that we get a circuit of depth O(log n) which computes all the carries
and since once we know the carries the rest is simple we can conclude that
addition belongs to NC1.

Example 11.10 Given two n-bit numbers, we want to multiply the num-
bers. It is not hard to see that this can be reduced to adding together n,
n-digit numbers (just do the ordinary multiplication algorithm we learned

110

in first grade). Now by the previous example we can add these numbers
pairwise in depth O(log n) to obtain n

2 numbers whose sum we want to com-
pute. Adding the numbers pairwise for log n rounds gives us the answer.
This gives a circuit of polynomial size and depth O((log n)2). In fact mul-
tiplication and addition of n numbers can both be done in depth O(log n).
We leave this as an exercise.

Example 11.11 Given two n× n matrices, multiply them. Let us suppose
the entries are m bit integers. Suppose the given matrices are A = (aij) and
B = (bij). Then we want to compute

∑n
j=1 aijbjk for all i and k. We have

the following algorithm:

1. Compute all the products aijbjk for all i, j and k.

2. Compute the sums
∑n
j=1 aijbjk for all i and k.

If we have O(m2n3) processors we can do the first operation in depth
O(logm) (by the exercise extending the multiplication example) while the
second can be done with O(n3m) processors in depth O(log nm) (using the
same exercise). Thus the entire computation uses a polynomial number of
processors and O(log nm) depth.

The problems that seems to be hardest to give a parallel solution to
are problems where the natural sequential algorithms are iterative in na-
ture. Examples of such problems are computing integer GCDs, solving lin-
ear equations and computing the depth-first search tree of a graph. Of these
the linear equation problem can be solved in NC, and finding a depth-first
search tree is known to be in RNC (Random NC, i.e. circuits of small depth
where you allow random inputs and only require that you have a good prob-
ability of finding a depth-first search tree), while for integer GCDs there is
not known to be any circuits of sublinear depth. Just to give an example
of something nontrivial, let us give as a last example an algorithm to com-
pute the determinant of a matrix which runs in O((log n)2) time and uses a
polynomial number of processors. We have to assume some facts from linear
algebra.

Example 11.12 Given a matrix M , compute its determinant. Let us recall
some facts. If λi denote the eigenvalues of M , then it is well known that∏n
i=1 λi = det(M). The trace of a matrix M (denoted by Tr(M)) is the

sum of its diagonal elements, i.e. Tr(M) =
∑n
i=1mii, and it is well known

that Tr(M) =
∑n
i=1 λi. Let sk = Tr(Mk) which equals

∑n
i=1 λ

k
i since the

111

eigenvalues of Mk are λki . The sk are easy to compute in parallel since
we have already shown how to compute matrix-products and Mk can be
computed by O(log k) matrix-products done in sequence. The characteristic
polynomial of M is det(λI −M) = λn +

∑n
i=1 λ

n−ici = c(λ). It is standard
that cn = det(−M) and c(λ) =

∏n
i=1(λ − λi). From this it follows that

ci =
∑
S:|S|=i(−1)i

∏
j∈S λj where S is a subset of {1, 2, . . . , n} and |S| is its

cardinality. Using this one can prove that

1 0 0 0 . . . 0
s1 2 0 0 . . . 0
s2 s1 3 0 . . . 0
s3 s2 s1 4 . . . 0
...

...
...

...
. . . 0

sn−1 sn−2 sn−3 sn−4 . . . n

c1
c2
c3
c4
...
cn

= −

s1
s2
s3
s4
...
sn

Thus all that remains is to prove that we can solve Ax = b where A is a
lower-triangular matrix. If we multiply each row by a suitable number we
can assume that all the entries on the diagonal of A is unity. Then A can be
written as I−B where B is strictly lower-triangular. Now it is easy to check
that A−1 =

∑n
i=0B

i and thus by some additional matrix-multiplications we
can compute the inverse of A and hence we can solve for the ci and find
cn = det(−M). The number of processors is quite bad but still polynomial,
and the depth is O((log n)2).

Once we can compute determinants we can do almost all operations in
linear algebra. The drawback in practice is that we get fairly large circuits.

11.3 Parallel time vs sequential space

A couple of the examples of problems that we could do in NC also appeared
as problems doable in small space. This is no coincidence and in fact se-
quential space and parallel time are quite related as soon as one does not
put any other restrictions on the computation.

Theorem 11.13 Suppose S(n) ≥ log n for all n. If B can be recognized in
space O(S(n)), then it can be done by circuits of depth O(S2(n)).

Proof: Suppose B is recognized by MB which runs in space O(S(n)). We
will use one processor pC for each possible configuration C of MB . There

112

are 2O(S(n)) configurations and thus we will use many processors, but this is
of no concern for us for the moment.

At stage i of the algorithm pC finds out which configuration C would
change to in 2i computation steps. This is easy for i = 0 and in general it
is done as follows. After step i − 1, pC already knows what configuration
C ′, C transforms to in 2i−1 steps. On the other hand pC′ knows which
configuration C ′ transforms to in 2i−1 steps and this is the desired answer.

Since MB runs in time 2O(S(n)), in O(S(n)) stages the processor corre-
sponding to the initial configuration will know the result of the computation.
Thus the critical parameter is what depth is required to do one stage.

A single stage can be done by having a binary tree of depth O(S(n))
which connects each processor to each other processor and selects the pro-
cessor corresponding to the current information. We leave the details to the
reader.

To sum up: We have O(S(n)) stages where each stage can be done in
depth O(S(n)). This gives total depth O(S2(n)) and thus we have proved
the theorem.

Corollary 11.14 L ⊆ NC2

Proof: By Theorem 11.13 we know L can be done by circuits of depth
(log n)2. By inspection of the proof we conclude that the circuits are of
polynomial size.

There is also a close to converse result to Theorem 11.13. Let S-uniform
denote a family of circuits that can be constructed by a Turing machine that
runs in space S.

Theorem 11.15 Suppose S(n) ≥ log n for all n, then if B can be recognized
by S-uniform circuits of depth O(S(n)), then B can be recognized in space
S(n).

Proof: The idea of the proof is to do a depth first search of the circuit for
B.

By duplicating nodes we can assume that the circuit is actually a tree.
(One has to check that this does not change the condition of S-uniformity,
but it does not) We evaluate the circuit by a depth first search manner. At
each point in time we maintain a path in the circuit from the output to an
input which has the following properties. Whenever the path goes to the

113

V

V

V

0

1

V

1 x
1

V

Figure 13: The path at one point in time

V

V

V

0

1

V

0 V

x
2

Figure 14: The path at next point in time

left, we require nothing extra while when it turns right we require that we
have marked the value of the left input to that node. Also we keep track
of what kind of operation we have at each node of the path. We start with
the path always going to the left and it is now easy to see that if we always
move to the next input to the right it is easy to update the tree. This might
best be seen by an example. Suppose our path at one point is given by
Figure 13. The active path are the shaded nodes. Assuming that x1 = 0
then at the next time-step a possible path is given by Figure 14. The path
is of length O(S(n)) and thus can be represented in this space. To update
the path we need to be able to find out what the circuit looks like locally,
but this can be done in space O(S(n)) by the uniformity condition. Thus,

114

we have completed the proof.

Using S(n) = log n we get the following immediate corollary:

Corollary 11.16 NC1 ⊆ L.

With this close connection between L and NC the following theorem is
not surprising:

Theorem 11.17 If A is P-complete then

P = NC ⇔ A ∈ NC.

Proof: The proof is more or less the same as the proof of other theorems
of this type, but let us give it anyway. If P = NC then clearly A ∈ NC.
On the other hand if A ∈ NC then we have to construct NC-circuits for any
function in P. Given any B ∈ P we know by the definition of P-complete
that there is function f computable in L such that

x ∈ B ⇔ f(x) ∈ A.

However we know by Corollary 11.14 that f can be computed also in NC2.
Combining this circuit with the NC-circuit for A becomes an NC-circuit for
B.

As a final comment let us note that for one of the most famous problems
that seem hard to do in parallel, namely integer GCDs, it is not known that
this problem is P-complete.

115

12 Relativized computation

As a tool in understanding computation, one particular way in augmenting
the power of a computation has been studied extensively. For definiteness
assume that we use the Turing machine model of computation. Let A be a
fixed set and give the machine an extra tape, called the query tape. On this
tape the machine can write a string x and then enter a special state called
the query state. In one time-step the query tape now changes content. The
new value will be 1 if x ∈ A and 0 otherwise. Thus the machine is allowed to
ask questions about the set A and very inexpensively obtain correct answers.

The set A, which is called the oracle set should be thought of as a difficult
set, since otherwise the machine could have answered the questions itself at
only a slightly higher cost. The computation is said to take place relative
to the oracle A (and hence the title relativized computation). A Turing
machine M with an oracle A is usually denoted MA to avoid confusion.

Now it is natural to define PA as the set of languages that can be rec-
ognized in polynomial time by Turing machines with oracle A. In a similar
way all the other complexity classes can be defined. One word of caution.
We will count the part of the query tape used as part of the work-tape
of the machine and hence this should be bounded when we are looking at
space bounded classes. This definition is not standard when dealing with L
and NL, but we will not consider those classes here. Instead we will only
consider

PA, NPA, BPPA and PSPACEA.

The reason this concept is interesting is that almost all proofs that are
known remain true if we allow all machines involved in the proof have access
to the same oracle. In particular this is the case for all proofs given in these
notes upto this point. Let us state some theorems that follow (the reader is
encouraged to go back and check the proofs).

Theorem 12.1 For all oracles A,

PA ⊆ NPA ⊆ PSPACEA.
Theorem 12.2 For all oracles A,

PA ⊆ BPPA ⊆ PSPACEA.
The idea is that if P ⊂ NP (i.e. that the inclusion would be strict) has

an “easy” proof then PA ⊂ NPA would be true for all oracles A. However
this is not the case:

116

Theorem 12.3 If A is a PSPACE-complete set then

PA = NPA = BPPA = PSPACEA = PSPACE.

Proof: It is sufficient to prove that PSPACE ⊆ PA and that PSPACEA ⊆
PSPACE.

For the first part let B be anything in PSPACE. Since A is PSPACE-
complete we have B ≤p A i.e. there is a polynomial time computable func-
tion f such that x ∈ B ⇔ f(x) ∈ A. But this makes B easy to recognize
for a machine with oracle A. On input x it just computes f(x), writes this
on the oracle tape, reads the answer from the oracle and outputs this as its
own answer. Thus B ∈ PA and we conclude that PSPACE ⊆ PA.

For the second part, suppose we are given a machine MA that recognizes
some language in PSPACEA. We have to convert this into an ordinary
PSPACE-machine which recognizes the same language. Essentially we have
to get rid of A. But since A is in PSPACE this is not too difficult. Build a
subroutine S which takes an input x and outputs 1 if x ∈ A and 0 otherwise.
This subroutine can be made to run in polynomial space. Now modify MA,
such that instead of entering the query-state it runs S. By definition the
result is the same, and it is easy to see that this modified machine also runs
in polynomial space.

Theorem 12.3 rules out the possibility of an easy proof that P �= NP .
This might raise in a more serious way (at least it seems) the possibility
that P = NP . However, oracles will not support this:

Theorem 12.4 There is an oracle B such that PB �= NPB.

Proof: The oracle B will not be as natural as the oracle A given above and
we will construct it piece by piece. Together with B we will also define a
language L(B) which for all B will be in NPB , but we will cleverly construct
B such that it is not in PB .

Definition 12.5 Let L(B) be a language which only contains strings which
solely consists of 1’s (such a language is called a unary language). The string
of n 1’s is in L(B) if and only if there is at least one string x of length n
such that x ∈ B.

First observe that for any oracle B, L(B) is in NPB . Formally L(B) is
recognized by the following algorithm.

117

1. If there is a ’0’ in the input reject and stop.

2. Nondeterministically write down a query to the oracle of the same
length as the input. If the oracles answers 1 accept otherwise reject.

To verify that this algorithm is correct is left to the reader.
Next we will have to define B such that L(B) is not in PB. Let MB

i

be an enumeration of all oracle machines that run in polynomial time. This
is a slightly subtle point since whether an oracle Turing machine runs in
polynomial time depends on the oracle and we have not yet decided what
the oracle should be. This is no real problem and we get around it as follows:
Assume that MB

i is an enumeration of all Turing machines which has the
property that each machine appears an infinite number of times . EquipMB

i

with a stop-watch such that if it has not halted in i|x|i steps on input x, it
automatically halts and outputs 1. Now all sets recognized by a polynomial
time machine is recognized by some MB

i (we need to repeat each machine
infinitely many times since we do not know for which i it is true that it runs
in time ini. We will now go through an infinite number of stages. In stage
i we determine a little bit more of the oracle B to make sure that MB

i does
not recognize L(B). Let a string be undetermined if we have not yet decided
whether it will be in B.

n0 = 1
for i = 1 to ∞ do

make ni the smallest number bigger than ni−1 such that 2ni > inii
and such that no string of length ni has been determined.
Run MB

i on input 1ni . Whenever the machine asks about an
undetermined string, fix that string not to be in B
If MB

i accepts the input then
Make sure that no string of length ni is in the oracle set.

else
Put one undetermined string of length ni in the oracle set.

endif
next i
fix all undetermined strings not to be in B.

For the constructed B, MB
i will not accept L(B) since it will make

an error on 1ni . Hence we need only check that the construction is not
contradictory. The only nonobvious point is that when needed there exists

118

an undetermined string of length ni However, since MB
i on input 1ni only

runs for time inii and hence it can only ask this many questions. Thus only
this many new strings can be determined during stage i and since there were
no determined string of length ni when stage i started and 2ni > inii there
is an undetermined string that can be put into B.

It turns out that also all the other questions can be relativized in the
possible way. Let us next take NP versus PSPACE.

Theorem 12.6 There is an oracle C such that NPC �= PSPACEC .
Proof: This proof will very much follow the same line as the last proof.
Let us start by defining the language.

Definition 12.7 Let L⊕(C) be a unary language such that 1n ∈ L⊕(C) iff
there is an odd number of strings of length n in C.

First observe that for any oracle C, L⊕(C) is in PSPACEC . The algo-
rithm just asks all questions of length n and keeps a counter to compute the
parity of the number of strings in the oracle. We will now construct C such
to make sure L⊕(C) is not in NPC .

Using the same argument as in the last proof there is an enumeration
NC1 , NC2 , . . . of all polynomial time nondeterministic oracle machines where
NCi runs in time at most ini. We now construct C in stages:

n0 = 1
for i = 1 to ∞ do

Make ni the smallest number bigger than ni−1 such that 2ni > inii
and such that no string of length ni has been determined.
Consider NCi on input 1ni . If there is some setting of
undetermined strings to make NCi accept then

Make such a setting, by fixing at most inii strings, fix the
remaining strings of length ni to make sure that an even number
of strings of length ni are in C.

else
Fix strings to make sure that an odd number of strings of length
ni are in C.

endif
Fix all undetermined strings not to be in C.
next i

119

Again by construction for this oracle L⊕(C) is not in NPC . The con-
struction can be seen to be correct by more or less the same reasoning as
the last construction. Please observe that if NCi accepts an input then it is
sufficient to fix the answers of the questions on one accepting computation
path and hence it is sufficient to fix inii strings in the first case.

Next we have:

Theorem 12.8 There is an oracle D such that BPPD �⊆ NPD.
Proof: We proceed as usual.

Definition 12.9 Let Lmaj(D) be a unary language such that 1n ∈ Lmaj(D)
if a majority of the strings of length n is in D.

This language is not always in BPPD. However, if we make sure that
for each n, at least 60% or at most 40% of the strings is in the oracle set,
then a simple sampling algorithm will work. This extra condition means
that we have to be slightly careful in the oracle construction, but there is
no real problem. We again give an algorithm to determine the oracle:

n0 = 1
for i = 1 to ∞ do

Make ni the smallest number bigger than ni−1 such that
2ni > 10 · inii and such that no string of length ni has been determined.
Fix all undetermined strings of length less than ni not to be in D.
Consider NDi on input 1ni . If there is some setting of
undetermined strings to make NCi accept then

Make such a setting, by fixing at most inii strings and fix the
remaining strings of length ni not to be in D.

else
Put all undetermined strings of length ni into D.

endif
next i

The verification that this construction is correct is similar to the previous
verifications. The reason to put all undetermined strings of length at most
ni out of the oracle is to make sure that for n’s which are not chosen to
be one of the ni’s it is also true that the number of strings of length n in
the oracle is not close to half of all strings of length n. The condition that
2ni ≥ 10 · inii make sure that this is true for all n with ni ≤ n < ni+1.

120

Our last oracle construction will be:

Theorem 12.10 There is an oracle E such that NPE �⊆ BPPE.

Proof: We will use the same language as we used in the proof that there
was an oracle B such that NPB �= PB . Remember that L(E) is a unary
language such that 1n ∈ L(E) iff there is some string of length n in E.
We now construct E to make sure it is not in BPPE. This time let ME

i

be an enumeration of probabilistic Turing machines. Here there is a slight
problem that ME

i might not define a correct machine in that the probability
of acceptance is not bounded away from 1/2 for some inputs. However, this
is only to our advantage since this means this machine will not accept any
BPP -language, and we do not have to worry that it might accept L(E). We
now construct E in stages as follows:

n0 = 1
for i = 1 to ∞ do

Make ni the smallest number bigger than ni−1 such that
2ni > 10 · inii and such that no string of length ni has been
determined.
Run ME

i on input 1ni . Whenever the machine asks about a string
which is not determined, pretend that this string is not in E. Let p
be the probability that MB

i accepts under these conditions.
If p ≥ 1/2 then

Fix all strings ME
i could possibly ask about not to be in E. Also

fix all other strings of length ni not to be in E.
else

Find one string of length ni such that the probability that this
string is asked by ME

i is at most 1/10 and put this into E. Fix all
other strings ME

i might possibly look at not to be in E
endif

next i
fix all undetermined strings not to be in E.

Here there are some details to check. If p ≥ 1/2 then this is actually
the correct probability of acceptance since we eventually fix all the strings
not to appear in E. In this case 1ni �∈ L(E) while the probability that ME

i

accepts 1ni is at least 1/2 and thusME
i does not recognize L(E) in the BPP

sense. On the other hand if p < 1/2 then the final oracle does not agree with

121

the simulation. However since the probability of finding out the difference
is bounded by 1/10, the acceptance probability remains below 0.6. Since in
this case, 1ni ∈ L(E), also in this case ME

i fails to recognize L(E).
We need also check that there is a suitable string which is asked with

probability at most 1/10. Since the running time of ME
i on input 1ni is

bounded by inii it does not ask more than this number of questions. If
PR(x) is the probability that string x is asked then∑

|x|=ni

PR(x) ≤ inii

and since 2ni > 10 · inii there is some x with PR(x) < 1/10. The proof is
complete.

We have now established that all the unknown inclusion properties of
our main complexity classes can be relativized in different directions. The
only information this gives is that the true inclusions can not be proved
with methods that relativize. In principle, methods that do not look very
detailed at the computation will relativize. In particular when you treat the
computation as a black box which just takes an input and then produces an
output (after a certain number of steps). Thus, the main lesson to learn from
this section is that to establish the true relations of our main complexity
classes, we have to look in a very detailed way at computation.

There are a few results in complexity theory which do not relativize.
One of them (IP=PSPACE) is given in Chapter 13.

122

13 Interactive proofs

One motivation for NP is to capture the notion of “efficient provability”.
If A ∈ NP and x ∈ A then there is a short proof of this fact (the non-
deterministic choices of the algorithm which recognizes A) which can be
verified efficiently. By the definition of NP all proofs are correct and an all
powerful prover can always convince a polynomial time bounded verifier of a
correct NP-statement. As we did with regards to ordinary computation we
can introduce randomness and decrease the requirements. A proof will be a
discussion (interaction) between an all powerful prover and a probabilistic
polynomial time verifier. Before we make a formal definition let us give an
example.

Example 13.1 Given two graphs G1 and G2 both on n vertices. G1 and
G2 are said to be isomorphic iff there is a permutation π of the vertices such
that (i, j) is an edge in G1 iff (π(i), π(j)) is an edge in G2. In other words
there is a relabeling of the vertices to make the two graphs identical. This
problem is in NP since one can just guess the permutation. On the other
hand it is not known to be in P (or co-NP) nor known to be NP-complete.
Now consider the following protocol for proving that two graphs are not
isomorphic.

For m = 1 to k:
The verifier chooses a random i (1 or 2) and sends a graph H which is
a random permutation of Gi to the prover.
The prover responds j.
The verifier rejects and halts if i �= j

next m
The verifier accepts.

In other words the prover tries to guess which graph the verifier started
with and the verifier accepts if he always guesses correctly. Now suppose
that G1 and G2 are not isomorphic. Then H is isomorphic only to Gi and
the all powerful prover can tell the value of i and always answer correctly.
On the other hand if G1 and G2 are isomorphic then, independent of the
value of i, the graph H is a random graph isomorphic to both G1 and G2.
Thus there is no way the prover can distinguish the two cases and thus if
he tries to answer he will each time fail with probability 1/2. Thus the
probability that he can incorrectly make the verifier accept is 2−k which is

123

very small if k is large. Thus, for all practical purposes if k = 100 and the
prover always answer correctly the graph will be non-isomorphic.

A discussion (or interaction) of the type described in the example will
be called an interactive proof. Let us formalize the properties wanted.

Definition 13.2 A language A admits an interactive proof iff there is an
interaction between a probabilistic polynomial time verifier V and an all
powerful prover P such that:

1. (Completeness) If x ∈ A then the probability (over V ’s random choices)
that V accepts is at least 2/3.

2. (Soundness) If x �∈ A then no matter what the prover does the proba-
bility (over V ’s random choices) that V accepts is at most 1/3.

Definition 13.3 The complexity class IP is the set of languages that admit
an interactive proof.

The number of exchanges of messages might depend on the length of the
input, but since we want the entire process to be polynomial time, we limit
this to be a polynomial number in the length of the input.

Interactive proofs were defined by Goldwasser, Micali and Rackoff in
1985. A different definition that was later proved to give the same class of
languages was given independently by Babai around the same time. Inter-
active proofs attracted a lot of attention in the end of the 1980’s and we will
only touch on the highlights of this theory. Let us first state an equivalent
of Theorem 9.5.

Theorem 13.4 If A ∈ IP then there is an interaction between a probabilis-
tic polynomial time verifier V and an all powerful prover P such that:

1. If x ∈ A then the probability (over V ’s random choices) that V accepts
is at least 1− 2−|x|.

2. If x �∈ A then no matter what the prover does the probability (over V ’s
random choices) that V accepts is at most 2−|x|.

Proof: (Outline) The proof is very similar to the proof of Theorem 9.5.
We just run many protocols in many times and make a majority decision in
the end. We leave the details to the reader.

124

A far less obvious fact is that one can in fact obtain perfect completeness
(i.e.when x ∈ A then the probability that V accepts is 1). Proving this would
take us too far and we omit this theorem.

The first couple of years, one of the main drawbacks of the theory of
interactive proofs was the small number of languages that were not in NP
that admitted interactive proofs. This was dramatically changed in Decem-
ber 1989 when work of Nisan, Fortnow, Karloff, Lund and finally Shamir
led to the following remarkable theorem:

Theorem 13.5 IP = PSPACE.

Proof: (Outline) The fact that IP ⊆ PSPACE was established quite early
in the theory of interactive proofs. A formal proof is slightly cumbersome
(but not really hard) and hence let us only give an outline. Suppose A ∈ IP
and the interaction that recognizes A contains k pairs of messages. We
denote the ith prover message by pi and the ith verifier by vi and assume that
the prover sends the first message in each round. Now let α be any partial
conversation consisting of the first s messages for some s and let Pr(x, α) be
the probability that V accepts given that the initial conversation is α and
that P plays optimally in the future and that V follows his protocol. Our
goal is to compute Pr(x, e) where e is the empty string, since this number
is at least 2/3 when x ∈ A and less then 1/3 otherwise. Now if the last
message in α is by the verifier then

Pr(x, α) = E ((x, αvi))

where E is expected value over the verifier message vi. On the other hand
if the next message is by the prover then

Pr(x, α) = max ((x, αpi))

where the maximum is taken over all messages pi. Finally when α is a full
conversation then Pr(x, α) is 1 iff the verifier would have accepted after the
conversation α and 0 otherwise. By assumption this can be computed in
polynomial time. Using these equations it is easy to give an algorithm that
proceeds in a depth first search fashion and evaluates Pr(x, e) in polynomial
space.

This inclusion was no surprise since PSPACE is a big complexity class.
It was the reverse computation that was the big surprise.

125

To prove that PSPACE ⊆ IP we need “only” give an interactive
proof which recognizes TQBF which was proved PSPACE-complete in The-
orem 7.17. We only give an outline of the argument.

In fact we will use that determining the truth of the special type of
quantified Boolean formulas constructed in the proof of Theorem 7.17 is
PSPACE-complete. Let us recall part of this proof. We wanted to con-
struct a formula GET (C1, C2, k) that said that the Turing machine could
get from configuration C1 to configuration C2 in 2k steps. This formula was
constructed recursively using:

GET (C1, C2, k, x) = ∃C∀(A,B)∈{(C1,C),(C,C2)}GET (A,B, k − 1, x).

Now encode the ∀ quantifier as a Boolean variable x1 and rewrite the formula
to the following.

GET (C1, C2, k, x) = ∃C∀x1∃(A,B)

(x1 → ((A = C1)∧(B = C)))∧(x̄1 → ((A = C)∧(B = C2)))∧GET (A,B, k−1, x).

Now assume that each configuration consists of n Boolean variables and that
initially k = n. In reality they are both polynomial in n but this is of no
importance. It is not difficult to write (x1 ⇒ ((A = C1)∧(B = C)))∧(x̄1 ⇒
((A = C) ∧ (B = C2))) as a CNF-formula with n clauses and each clause
is of polynomial size. Furthermore note that each variable describing C1

and C2 does not appear in GET (A,B, k − 1). When we iterate the above
construction it will be true that no variable in any quantifier will used inside
more than 3 other quantifiers. Let us also note that GET (Y,Z, 0) can be
done by a CNF-formula with O(n) clauses of constant size. To summarize
the discussion the formula has the following properties.

• It has 3n quantifiers which appear in blocks of the form ∃∀∃ where the
∃ quantifiers quantify over n variables and 2n variables respectively
and the ∀ quantify over one variable.

• Each variable is used only inside at most one block of following quan-
tifiers.

• All formulas between quantifiers and after the last quantifier are CNF-
formulas with O(n) clauses of constant size.

Now take this formula and replace all ∃ by
∑

and ∀ by
∏

. Here the
sums and products extends over all variables that was originally in the scope

126

of the quantifier. Also replace ∧ by × and ∨ by +. Finally for a variable
replace x̄ by 1 − x. Using this replacement the formula is now turned into
an expression which evaluates to an integer. It is not difficult to see that
this integer is 0 iff the original formula was false (prove this by induction).
We will show how the prover can convince the verifier with high probability
that this integer I is not 0.

First observe that I is bounded by 2O(n2n). This is true since the value
of the final CNF-formula is at most cn and each

∑
only multiplies the value

by 2n while each
∏

only squares the value (remember that there is only one
variable in each

∏
). The following lemma follows from the prime number

theorem (the reader is asked to take it on faith).

Lemma 13.6 For c < 1 and x > Xc, the product of all primes less than x
is ≥ ecx where e is the base of the natural logarithm ≈ 2.718.

This lemma implies that there is some prime p, n4 ≤ p ≤ O(2n) such
that I �≡ 0 modulo p. To see this observe that if I > 0 and it is divisible
by a set of primes then it is at least the product of the primes. The prover
starts by giving this p together with I (mod p) (which is not 0).

Remark 13.7 In fact if one is more careful one can make I = 1 when the
formula is true. This implies that one can use a small prime. This will
make the proof slightly more efficient, but this is of no major concern for
the moment.

Now consider the outermost quantified variable. Let us call it x1 and
suppose it is part of an ∃ quantifier (i.e. now we are summing over its two
values). Keep this variable free and evaluate the entire expression mod p
with its sums and products. Naturally the result is a polynomial P (x1)
and by the conditions of the formula it is of degree O(n). Here we need
both that intermediate pieces of the formula are simple CNF-formula and
that the usage of each variable is very limited. The prover now gives this
formal polynomial (mod (p)) to V . This can be done since there are O(n)
coefficients each which can be specified with O(n) bits. The verifier verifies
that P (0) + P (1) ≡ I (mod p), and responds with a random integer n1

where n1 is chosen randomly among 1, 2 . . . p− 1. The task for the prover is
now to prove that P (n1) is the value of the algebraic when n1 is substituted
for x1. The resulting algebraic expression has one quantified variable less
and we can now attack the next variable. Once all the variables have been

127

eliminated the verifier can himself evaluate the remaining polynomial and if
it equals the value claimed by the prover he accepts and otherwise rejects.

Let us sketch why this protocol is correct. When the formula is true
there is really no complications since the prover all the time is claiming
correct statements and thus the verifier will accept with probability 1. Note
that there is really no difference between the ∀-variables and the ∃-variables,
we only need the assumption on the structure of the formula to make the
degree of the polynomial P small.

Suppose on the other hand that the formula is false. In particular I = 0
and the first value claimed by the prover for I (mod p) is incorrect and
hence also the first polynomial P is not correct (since it takes an incorrect
value for either 0 or 1). Suppose the true polynomial is Q. Let us say that
n1 is lucky for the prover if P (n1) ≡ Q(n1) (mod p). If the prover is lucky
once then he starts claiming correct statements and thus he will be able to
convince the verifier. On the other hand if he is never lucky then he will be
forced to continue lying and the verifier will expose him in the end. Since
P − Q is a nonzero polynomial of degree O(n) it has at most O(n) zeroes.
This implies that the probability that the prover is lucky at a single point is
O(n/p) ≤ O(n−3). Since there are only O(n2) variables, the probability that
he is ever lucky is O(n−1). Thus with probability 1 − O(n−1) the verifier
will reject and the protocol is correct.

To give a little bit perspective of this proof, let us give an example to
show how it works.

Example 13.8 For simplicity let us work with a formula on normal TQBF-
CNF form and in particular, consider

∃x1∀x2∃x3∀x4(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄4).

This formulas is true since if we put x1 = 0 and x3 = 1 both clauses are
satisfied. It does not matter what happens with the other variables. The
formula is turned into the following arithmetical expression:

1∑
x1=0

1∏
x2=0

1∑
x3=0

1∏
x4=0

(x1 + x2 + x3)(2− x1 − x4)

This is just an integer (in fact 20). A proof would go like the following.

128

1. The prover chooses the prime 7 (in reality it should be larger, but
we are only trying to illustrate the procedure). He claims that the
expression is 6 modulo 7 and in fact that

1∏
x2=0

1∑
x3=0

1∏
x4=0

(x1 + x2 + x3)(2− x1 − x4)

as a function of x1 is

P1(x1) = (2x2
1 + 2x1 + 1)(2x2

1 + 6x1 + 5)(1 − x1)2(2− x1)2.

(Normally the prover represents these polynomials in a dense repre-
sentation, but this is more convenient for hand calculation).

2. The verifier checks that P1(0) + P1(1) ≡ 6 modulo 7 (in the future we
reduce everything modulo 7 without saying). Indeed P1(0) = 20 ≡ 6
while P1(1) = 0. He now chooses random value for x1 (in our case
x1 = 3) and wants to be convinced that

1∏
x2=0

1∑
x3=0

1∏
x4=0

(3 + x2 + x3)(6 − x4) = P (3) = 25× 41× 4× 1 ≡ 5.

3. The prover now claims that

1∑
x3=0

1∏
x4=0

(3 + x2 + x3)(6 − x4)

as a function of x2 is P2(x2) = 1 + 4x2
2.

4. The verifier checks that P2(0)P2(1) ≡ 5 and randomly chooses x2 = 5
and asks to be convinced that

1∑
x3=0

1∏
x4=0

(1 + x3)(6 − x4) ≡ P2(5) ≡ 3

5. The prover claims that

1∏
x4=0

(1 + x3)(6 − x4)

as a a function of x3 is P3(x3) = 2 + 4x3 + 2x2
3.

129

6. The verifier checks that P3(0) +P3(1) ≡ 3 and then randomly chooses
x3 = 2 and wants to be convinced that

1∏
x4=0

3(6− x4) ≡ P3(2) ≡ 4.

This he can to by himself and he accepts the input since 18 × 15 is
indeed 4 modulo 7.

As mentioned before, the above proof does not relativize (the IP ⊂
PSPACE does relativize, but not the second part). It is not difficult to
construct an oracle A such that IPA ⊂ PSPACEA. The reason that the
proof does not relativize is that if we allow oracle questions then the condi-
tion “C1 is the configuration that follows C2” cannot be described by a low
degree polynomial.

This proof which does not relativize gives some hope to attack the NP
vs P question. However it is still true that no strict inclusion that does not
relativize has been proved for any complexity class that includes NC1.

130

