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DD2446 Complexity Theory: Problem Set 2

Due: October 4, 2013, at 23:59. Submit your solutions as a PDF file by e-mail to jakobn
at kth dot se with the subject line Problem set 2: (your name). Name the PDF file
PS2_(YourName).pdf (with your name coded in ASCII without national characters), and
also state your name and e-mail address at the top of the first page. Solutions should be
written in IXTEX or some other math-aware typesetting system. Please try to be precise and
to the point in your solutions and refrain from vague statements. Write so that a fellow
student of yours can read, understand, and verify your solutions. In addition to what is
stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed—and indeed,
encouraged—but you should write down your own solution individually and understand all
aspects of it fully. You should also acknowledge any collaboration. State at the beginning of
the problem set if you have been collaborating with someone and if so with whom.
Reference material: Some of the problems are “classic” and hence it might be easy to find
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures on
in the lecture notes, or which can be found in chapters of Arora-Barak covered in the course,
should be fair game, though, unless you are specifically asked to show something that we
claimed without proof in class. It is hard to pin down 100% formal rules on what all this
means—when in doubt, ask the lecturer.

About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. A total score of 60 points is the threshold
for grade E, 90 points for grade D, 120 points for grade C, 150 points for grade B, and
180 points for grade A on this problem set. Any corrections or clarifications will be given
at piazza.com/kth.se/fal12013/dd2446/ and any revised versions will be posted on the
course webpage www.csc.kth.se/utbildning/kth/kurser/DD2446/kplx13/,

(10 p) We say that a language L C {0,1}* is sparse if there is a polynomial p such that it holds
for every n € N that }L N {0, 1}”! < p(n). Show that if L is sparse, then L € P/poly.

(20 p) Let us say that a function f : {0,1}* — {0,1}* is write-once logspace computable if f
can be computed by a Turing machine M that uses O(logn) space on its work tapes and whose
output tape is write-once. By a write-once tape we mean a tape where at every time step M
can either keep its head at the same position on the tape or write a symbol to it and move one
location to the right, but M can never read from the tape or move left. The used cells on the
write-once tape are not counted towards the space bound on M.

Prove that f is write-once logspace computable if and only if it is implicitly logspace com-
putable as defined in class.

(30 p) Show that the language ¥;SAT is XP-complete (under the polynomial-time reductions

studied in class).
Hint: Use the NP-completeness of CNFSAT.
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(30 p) We proved in class that the language PATH = {(G,s,t}‘ﬂpath from s to t in G} is
NL-complete. We also proved that NL = coNL, and, in particular, that it holds for the com-
plement language PATH = {(G,s',¢')| =T path from s’ to ¢’ in G’} that PATH € NL.

But this means that there must exist an implicitly logspace computable function that takes
a directed graph G’ and two vertices s',t' € V(G’) and outputs a directed graph G and two
vertices s,t € V(G) such that there is some path from s to t in G if and only if there is no path
from s’ to ¢’ in G’. Describe such a function and how to compute it.

You do not need to decribe every nut and bolt in the construction of G from G’, but your
description should contain enough details so that you could code it up in principle in your
favourite high-level programming language (using well-defined subroutines that we also know
can be coded up in principle).

(30 p) When we proved in class that PARITY ¢ ACY, we started with a bounded-depth polynomial-
size circuit C that supposedly computed the parity of its input bits, and then preprocessed it to
get an equivalent circuit C” with the following properties:

1. All gates in C” have fan-out 1 (i.e., it is what is known as a formula, with a DAG structure
that is a tree).

2. All NOT (—) gates are at the input level of C’ (i.e., they only apply to variables).

3. The AND (A) and OR (V) gates alternate, so that at each level of C” all gates are either
AND or OR.

4. The bottom level has AND gates of some small, bounded fan-in (we picked fan-in 1 in class
but noted that any small enough fan-in was fine).

Show how this preprocessing can be done without increasing the circuit depth by more than a
constant and the size more than polynomially (so that C” is also a bounded-depth polynomial-
size circuit computing the parity of its input bits). If C' is a circuit of size S and depth d, what
size and depth do you get for C'?

(70 p) The purpose of this problem is to investigate some of the conditions in Héstad’s switching
lemma, in particular, the requirement of bounded fan-in (i.e., that the restrictions operate on
k-CNF and k-DNF formulas).

6a (25 p) Let f: {0,1}" — {0,1} be some Boolean function. Prove that if all (minimal)
maxterms of f have size at most s, then f can be represented as an s-CNF formula.

Does the other direction hold as well? That is, is it true that if f can be represented as an
s-CNF formula then all (minimal) maxterms of f have size at most s?

6b (25 p) Prove that any CNF formula that computes parity of n bits must have size expo-
nential in n. For full credit, prove an exact, tight bound. (And for concreteness, define the
size of a CNF formula as the number of literals in it, counted with repetitions).

Page 2 (of 3)

DD2446 Complexity Theory e Autumn 2013, period 1
Jakob Nordstrém



7

6c (20 p) Argue that in view of Problem [6b] we actually do not need the added requirement
of bounded fan-in in the final step of the proof of PARITY ¢ AC?, i.e., after (d — 2) rounds
of restrictions have been applied on C’ so that the circuit has collapsed to a CNF formula.
In our proof in class, we crucially used in this step that the formula obtained was a k’-CNF
formula for some constant k’. (Let us note in passing that there is a lower bound on DNF
formulas analogous to that in Problem [6b]in case the circuit collapses to a DNF formula,
but there is no need to prove this or even consider the DNF case to get a full score.)

This raises the question whether we could in fact drop the restriction on fan-in in the
bottom layer completely at all (d — 2) stages of the proof if we just did a little bit of extra
work. Explain how to modify the proof of PARITY ¢ AC® to work also if there is no bound
on the bottom-level fan-in of C” (if this can be done), or point out where in the proof we
run into trouble (if it cannot be done).

(40 p) Let R; denote the set of all restrictions of subsets of exactly ¢ out of n variables, where
n is supposed to be large and ¢t > n/2. When proving Héstad’s switching lemma in class, we
argued that the set B C R; of bad restrictions for which the conclusion of the lemma does not
hold is very small compared to all of R;, and hence it is very unlikely that a randomly chosen
restriction will be bad (which is exactly what the lemma claims).

More formally, we constructed (although by this time we were going pretty fast) a one-to-one
mapping from B to Rys x {0,1}¢ for some £ = O(slog k) (where s and k are the parameters in
the switching lemma), and claimed this showed that the probability to get a bad restriction is

Bl _ [Rusx (0.1} o)
R | Ry

The purpose of this problem is to fill in the details in these calculations and show that one gets
a failure probability for the restriction as small as the one claimed in Hastad’s switching lemma
exactly as stated in the textbook Arora-Barak.

That is, just trusting that the one-to-one map m : B — Ry, s x {0,1}* constructed in class
was correct, show that the qoutient |Ryys X {0, 1}5} /| R¢| is small enough to give the probability
bound in the switching lemma as stated in the textbook.

Hint: Show that for ¢ > n/2 it holds that

()= ()

by first proving

()=

(and try to find a nice combinatorial proof for this latter equality). You can use the well-known
inequalities

(1) =() =< (7
without proof.

(50 p) Show that P # SPACE(n¥) for any fixed k € N*.
Hint: Use padding. Also, just to avoid confusion, note that P C J,cn+ SPACE(nk) = PSPACE,
but the point here is that we are fixing k.
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