
DD2446 Complexity Theory: Problem Set 3

Due: Monday October 21, 2013, at 23:59. Submit your solutions as a PDF �le by e-mail
to jakobn at kth dot se with the subject line Problem set 3: 〈your name〉. Name the
PDF �le PS3_〈YourName〉.pdf (with your name coded in ASCII without national characters),
and also state your name and e-mail address at the top of the �rst page. Solutions should
be written in LATEX or some other math-aware typesetting system. Please try to be precise
and to the point in your solutions and refrain from vague statements. Write so that a fellow

student of yours can read, understand, and verify your solutions. In addition to what is
stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solution individually and understand all
aspects of it fully. You should also acknowledge any collaboration. State at the beginning of
the problem set if you have been collaborating with someone and if so with whom.
Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes, or which can be found in chapters of Arora-Barak covered in the course,
should be fair game, though, unless you are speci�cally asked to show something that we
claimed without proof in class. It is hard to pin down 100% formal rules on what all this
means�when in doubt, ask the lecturer.
About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. A total score of around 50 points should
be enough for grade E, 80 points for grade D, 110 points for grade C, 140 points for grade B,
and 170 points for grade A on this problem set. Any corrections or clari�cations will be
given at piazza.com/kth.se/fall2013/dd2446/ and any revised versions will be posted on
the course webpage www.csc.kth.se/utbildning/kth/kurser/DD2446/kplx13/.

1 (10 p) Show that if one-way functions exist, then P 6= NP.

2 (20 p) Show that ZPP = RP ∩ coRP.

3 (20 p) In our lecture on property testing, we studied the 2n-dimensional vector space of functions
f : {±1}n → R with inner product 〈f, g〉 = 1

2n

∑
x∈{±1}n f(x)g(x). In class, we claimed without

too much of a proof that the set of functions {χα}α⊆[n] de�ned by χα(x) =
∏

i∈α xi form an
orthonormal basis for this vector space, namely the Fourier basis that we then used to analyze
the linearity test.

Fill in the details to establish this claim! That is, show that

〈χα, χβ〉 =

{
1 if α = β,

0 otherwise.

Hint: Consider the symmetric di�erence γ = α4β = (α ∪ β) \ (α ∩ β) and prove that it holds
that

∑
x∈{±1}n χγ(x) = 0 if γ 6= ∅.
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4 (20 p) In our lecture on proof complexity, we de�ned a resolution refutation π : F `⊥ of an
unsatis�able CNF formula F to be a sequence of clauses π = (C1, C2, . . . , CL) such that each Ci

is either a clause in F (an axiom) or is derived from two clauses Cj , Ck ∈ π, j < k < i, by the
resolution rule

C ∨ x D ∨ x
C ∨D ,

and such that the �nal clause CL is the empty clause containing no literals, denoted ⊥. The
length of the refutation π is L.

When proving results about resolution, it is often convenient to also allow a clause Ci ∈ π to
be derived from some Cj , j < i, by the relaxation rule

C
C ∨D ,

where one deduces the strictly weaker clause C ∨D from C. Show that adding this rule does not
really change the proof system. Formally, prove that if π : F `⊥ is a resolution refutation of an
unsatis�able CNF formula F using also the relaxation rule, then there is a standard resolution
refutation π′ : F `⊥ in at most the same length without any applications of relaxation.
Hint: Use induction over the sequence of clauses π = (C1, C2, . . . , CL) in the relaxed resolution
refutation.

5 (30 p) For a language L ⊆ {0, 1}∗, let Lk = {x ∈ L; |x| ≤ k} denote all strings in L of length at
most k. We say that L is downward self-reducible if there is a polynomial-time algorithm A that
given x and oracle access to L|x|−1 decides correctly whether x ∈ L or not. Prove that if L is
downward self-reducible, then L ∈ PSPACE.

6 (40 p) In our lecture on proof complexity, we de�ned the CNF encoding of the (negation of the)
pigeonhole principle PHPm

n for any number of pigeons m and pigeonholes n, but then focused on
m = n+1 when proving the exp(Ω(n)) lower bound on resolution refutation length for PHPn+1

n .
What would happen with this lower bound proof if we considered more than n+ 1 pigeons,

say m = n + 2, m = 2n, m = n2, or even m = 2n pigeons? Would the proof still work, and
would we still get a lower bound on the form exp(Ω(n))? Describe how to adapt the proof to
work for larger m; determine for how large m you can make it work; and/or explain when or
why the approach we used in class fails.
Hint: In order to solve this problem, it is not necessary to give a full answer to the question
of how the hardness of the formula PHPm

n depends on m�it is fully su�cient to analyze the
concrete lower bound approach that we employed in class and try to understand how far this
technique can (or cannot) be pushed. You do not need to prove all claims you make beyond
reasonable doubt�in particular, it is not necessary to prove any claims that we left unproven in
class�but it should be possible to see how to plausibly �ll in any gaps in your arguments.
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7 (50 p) Let multiprover interactive protocols be de�ned as the interactive protocols in Section 8.1
in Arora-Barak, except that there are several provers and that the veri�er's message in each round
depends on previous messages from all provers (and on the veri�er's private randomness). The
messages sent by each prover only depends on the communication with the veri�er, however, just
as before. Let MIP[N ] denote the set of languages that can be decided by N -multiprover interac-
tive protocols in a polynomial number of rounds (in analogy with IP = MIP[1] in De�nition 8.6
in Arora-Barak).

Prove that, as claimed in class, only two provers are needed to realize the full power of
multiprover interactive protocols. That is, prove that MIP[2] = MIP[poly], where MIP[poly]-
protocols have a number of provers scaling polynomially with the size of the input.

8 (40 p) When proving a lower bound on resolution refutation length, we studied a prosecutor-
defendant game and proved a lower bound on the size of a prosecutor strategy for PHPn+1

n in this
game. It is not hard to see that the same game can be played on any unsatis�able CNF formula F
(which the defendant claims to be satis�able), where the prosecutor asks about assignments
to variables x ∈ Vars(F ), or forgets such assignments, and the �explicit contradictions� the
prosecutor is trying to force are partial assignments falsifying some axiom clause C ∈ F . The
same reasoning we used in class shows that any resolution refutation of F in length L yields a
strategy for the prosecutor of size O(L) (i.e., with O(L) rules in the instruction book).

In this problem we are interested in the other direction. Suppose that the prosecutor has a
strategy for some formula F that requires consideration only of L cases in order to secure the
conviction of the defendant. Can such a strategy be converted to a refutation of F in length O(L)?
Describe how to convert a prosecutor strategy to a resolution refutation in essentially the same
size, or explain why it seems hard to do the transformation in this other direction.

9 (60 p) The goal of this exercise is to give a complete proof that PSPACE ⊆ IP, strengthening the
result coNP ⊆ IP that was proven in class.

Given a quanti�ed Boolean formula (QBF) ψ = ∀x1∃x2∀x3 · · · ∃xn φ(x1, . . . , xn), we can
use arithmetization as in our proof of coNP ⊆ IP to construct a polynomial Pφ such that ψ is
true if and only if

∏
b1∈{0,1}

∑
b2∈{0,1}

∏
b3∈{0,1} · · ·

∑
bn∈{0,1} Pφ(b1, . . . , bn) 6= 0. However, the

SumCheck protocol we used to decide the #SatD problem for CNF formulas no longer works,
since each multiplication corresponding to a ∀-quanti�er can double the degree of the polynomial.

9a (20 p) Suppose that ψ is a QBF formula (not necessarily in prenex normal form as described
in De�nition 4.10 and discussed further below in Arora-Barak) satisfying the following
property: if x1, . . . , xn are the variables of ψ sorted in order of �rst appearance, then for
every variable xi there is at most a single universal quanti�er involving xj for any j > i
appearing before the last occurrence of xi in ψ. Show that in this case, when we run
the SumCheck protocol with the modi�cation that we check s(0) · s(1) = K for product
operations (i.e., ∀-quanti�ers), the prover only needs to send polynomials of degree O(n)
since the degree blow-up is at most an additive term 2.

9b (20 p) Assuming that any QBF formula ψ can be rewritten to satisfy the property in
Problem 9a, use this to show that Tqbf ∈ IP and hence PSPACE ⊆ IP.

9c (20 p) Show that any QBF formula ψ of sizem can be transformed into a logically equivalent
formula ψ′ of size O(m2) that satis�es the property in Problem 9a.

Hint: Introduce a new variable yi for any occurrence of xi we need to get rid of and encode
that xi and yi take the same truth value.
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