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Quote of the Day

You should call it entropy, for two reasons. In the first place your

uncertainty function has been used in statistical mechanics under

that name, so it already has a name. In the second place, and

more important, nobody knows what entropy really is, so in a

debate you will always have the advantage.

– von Neumann to Shannon, 1949
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Perfect Secrecy (1/3)

When is a cipher perfectly secure?
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Perfect Secrecy (1/3)

When is a cipher perfectly secure?

How should we formalize this?
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Perfect Secrecy (2/3)

Definition. A cryptosystem has perfect secrecy if guessing the
plaintext is as hard to do given the ciphertext as it is without it.
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Perfect Secrecy (2/3)

Definition. A cryptosystem has perfect secrecy if guessing the
plaintext is as hard to do given the ciphertext as it is without it.

Definition. A cryptosystem has perfect secrecy if

Pr [M = m |C = c ] = Pr [M = m]

for every m ∈M and c ∈ C, where M and C are random variables
taking values over M and C.
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Perfect Secrecy (3/3)

Game Based Definition. Expb
A, where A is a strategy:

1. k←R K

2. (m0,m1)← A

3. c = Ek(mb)

4. d ← A(c), with d ∈ {0, 1}

5. Output d .

Definition. A cryptosystem has perfect secrecy if for every
computationally unbounded strategy A,

Pr
[

Exp0
A = 1

]

= Pr
[

Exp1
A = 1

]

.
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One-Time Pad

One-Time Pad (OTP).

◮ Key. Random tuple k = (b0, . . . , bn−1) ∈ Z
n
2.

◮ Encrypt. Plaintext m = (m0, . . . ,mn−1) ∈ Z
n
2 gives

ciphertext c = (c0, . . . , cn−1), where ci = mi ⊕ bi .

◮ Decrypt. Ciphertext c = (c0, . . . , cn−1) ∈ Z
n
2 gives plaintext

m = (m0, . . . ,mn−1), where mi = ci ⊕ bi .
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Bayes’ Theorem

Theorem. If A and B are events and Pr[B ] > 0, then

Pr [A |B ] =
Pr [A] Pr [B |A ]

Pr [B ]

Terminology:

Pr [A] – prior probability of A

Pr [B ] – prior probability of B

Pr [A |B ] – posterior probability of A given B

Pr [B |A ] – posterior probability of B given A
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One-Time Pad Has Perfect Secrecy

◮ Probabilistic Argument. Bayes implies that:

Pr [M = m |C = c ] =
Pr [M = m] Pr [C = c |M = m ]

Pr [C = c]

= Pr [M = m]
2−n

2−n

= Pr [M = m] .

◮ Simulation Argument. The ciphertext is uniformly and
independently distributed from the plaintext. We can
simulate it on our own!
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Bad News

◮ “The key must be as long as the plaintext”:

◮ |K| ≥ |C|, since every ciphertext must have been created using
some key.

◮ |C| ≥ |M|, since every plaintext must be encrypted in an
invertable way.

Theorem. “For every cipher with perfect secrecy, the key
requires at least as much space to represent as the plaintext.”

◮ Dangerous in practice to rely on no reuse.
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Information Theory

◮ Information theory is a mathematical theory of
communication.

◮ Typical questions studied are how to compress, transmit, and
store information.

◮ Information theory is also useful to argue about some
cryptographic schemes and protocols.
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Classical Information Theory

◮ Memoryless Source Over Finite Alphabet. A source
produces symbols from an alphabet Σ = {a1, . . . , an}. Each
generated symbol is identically and independently distributed.

◮ Binary Channel. A binary channel can (only) send bits.

◮ Coder/Decoder. Our goal is to come up with a scheme to:

1. convert a symbol a from the alphabet Σ into a sequence
(b1, . . . , bl) of bits,

2. send the bits over the channel, and
3. decode the sequence into a again at the receiving end.
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Classical Information Theory

Enc Channel Decm m

Alice Bob
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Optimization Goal

We want to minimize the expected number of bits/symbol we
send over the binary channel, i.e., if X is a random variable over Σ
and l(x) is the length of the codeword of x then we wish to
minimize

E [l(X )] =
∑

x∈Σ

PX (x) l(x) .
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Examples:

◮ X takes values in Σ = {a, b, c , d} with uniform distribution.
How would you encode this?
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Examples:

◮ X takes values in Σ = {a, b, c , d} with uniform distribution.
How would you encode this?

It seems we need l(x) = log |Σ|. This gives the Hartley measure.
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Examples:

◮ X takes values in Σ = {a, b, c , d} with uniform distribution.
How would you encode this?

◮ X takes values in Σ = {a, b, c}, with PX (a) = 1
2 , PX (b) = 1

4 ,
and PX (c) = 1

4 . How would you encode this?

It seems we need l(x) = log |Σ|. This gives the Hartley measure.
hmmm...
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Examples:

◮ X takes values in Σ = {a, b, c , d} with uniform distribution.
How would you encode this?

◮ X takes values in Σ = {a, b, c}, with PX (a) = 1
2 , PX (b) = 1

4 ,
and PX (c) = 1

4 . How would you encode this?

It seems we need l(x) = log 1
PX (x) .
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Entropy

Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in X . Then
the entropy of X is

H(X ) = −
∑

x∈X

PX (x) log PX (x) .

Examples and intuition are nice, but what we need is a theorem
that states that this is exactly the right expected length of an
optimal code.
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Jensen’s Inequality

Definition. A function f : X → (a, b) is concave if

λ · f (x) + (1− λ)f (y) ≤ f (λ · x + (1− λ)y) ,

for every x , y ∈ (a, b) and 0 ≤ λ ≤ 1.
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Jensen’s Inequality

Definition. A function f : X → (a, b) is concave if

λ · f (x) + (1− λ)f (y) ≤ f (λ · x + (1− λ)y) ,

for every x , y ∈ (a, b) and 0 ≤ λ ≤ 1.

Theorem. Suppose f is continuous and strictly concave on (a, b),
and X is a discrete random variable. Then

E [f (X )] ≤ f (E [X ]) ,

with equality iff X is constant.

DD2448 Foundations of Cryptography Januari 22, 2010



Perfect Secrecy Information Theory Spurious Keys and Unicity Distance

Jensen’s Inequality

Definition. A function f : X → (a, b) is concave if

λ · f (x) + (1− λ)f (y) ≤ f (λ · x + (1− λ)y) ,

for every x , y ∈ (a, b) and 0 ≤ λ ≤ 1.

Theorem. Suppose f is continuous and strictly concave on (a, b),
and X is a discrete random variable. Then

E [f (X )] ≤ f (E [X ]) ,

with equality iff X is constant.

Proof Sketch. Induction on number of points.

DD2448 Foundations of Cryptography Januari 22, 2010



Perfect Secrecy Information Theory Spurious Keys and Unicity Distance

Kraft’s Inequality

Theorem. There exists a prefix-free code E with codeword lengths
lx , for x ∈ Σ if and only if

∑

x∈Σ

2−lx ≤ 1 .

Proof Sketch. ⇒ Given a prefix-free code, we consider the
corresponding binary tree with codewords at the leaves. We may
“fold” it by replacing two neighboring leaves E(x) and E(y) by
(xy) with length lx − 1. Repeat.

⇐ Given lengths lx1 ≤ lx2 ≤ . . . ≤ lxn we start with the complete
binary tree of depth lxn and prune it.
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Binary Source Coding Theorem (1/2)

Theorem. Let E be an optimal code and let l(x) be the length of
the codeword of x . Then

H(X ) ≤ E [l(X )] < H(X ) + 1 .
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Binary Source Coding Theorem (1/2)

Theorem. Let E be an optimal code and let l(x) be the length of
the codeword of x . Then

H(X ) ≤ E [l(X )] < H(X ) + 1 .

Proof of Upper Bound.
Define lx = ⌈− log PX (x)⌉. Then we have

∑

x∈Σ

2−lx ≤
∑

x∈Σ

2log PX (x) =
∑

x∈Σ

PX (x) = 1

Kraft’s inequality implies that there is a code with codeword
lengths lx . Then note that
∑

x∈Σ PX (x) ⌈− log PX (x)⌉ < H(X ) + 1.
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Binary Source Coding Theorem (2/2)

Proof of Lower Bound.

E [l(X )] =
∑

x

PX (x) l(x)

= −
∑

x

PX (x) log 2−l(x)

≥ −
∑

x

PX (x) log PX (x)

= H(X )
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Binary Source Coding Theorem (2/2)

Proof of Lower Bound.

E [l(X )] =
∑

x

PX (x) l(x)

= −
∑

x

PX (x) log 2−l(x)

≥ −
∑

x

PX (x) log PX (x)

= H(X )

∑

x PX (x) log 2−l(x)

PX (x) ≤ log
∑

x PX (x) 2−l(x)

PX (x) ≤ log
(
∑

x 2−l(x)
)

≤ 0
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Huffman’s Code (1/2)

Input: {(a1, p1), . . . , (an, pn)}.
Output: 0/1-labeled rooted tree.
Huffman({(a1, p1), . . . , (an, pn)})
(1) S ← {(a1, p1, a1), . . . , (an, pn, an)}
(2) while |S | ≥ 2
(3) Find (bi , pi , ti), (bj , pj , tj) ∈ S with mini-

mal pi and pj .
(4) S ← S \ {(bi , pi , ti ), (bj , pj , tj )}
(5) S ← S ∪ {

(

aiaj , pi + pj ,Node(ti , tj )
)

}
(6) return S
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Huffman’s Code (2/2)

Theorem. Huffman’s code is optimal.

Proof Sketch.
There exists an optimal code where the two least likely symbols are
neighbors.
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Conditional Entropy

Definition. Let (X ,Y ) be a random variable taking values in
X × Y. We define conditional entropy

H(X |y) = −
∑

x

PX |Y (x |y ) log PX |Y (x |y ) and

H(X |Y ) =
∑

y

PY (y)H(X |y)

Note that H(X |y) is simply the ordinary entropy function of a
random variable with probability function PX |Y ( · |y ).
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Properties of Entropy

Let X be a random variable taking values in X .

Upper Bound. H(X ) = E [− log PX (X )] ≤ log |X |.

Chain Rule and Conditioning.

H(X ,Y ) = −
∑

x ,y

PX ,Y (x , y) log PX ,Y (x , y)

= −
∑

x ,y

PX ,Y (x , y)
(

log PY (y) + log PX |Y (x |y )
)

= −
∑

y

PY (y) log PY (y)−
∑

y

PX ,Y (x , y) log PX |Y (x |y )

= H(Y ) + H(X |Y ) ≤ H(Y ) + H(X )
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Spurious Keys

We consider how many ciphertexts a computationally unbounded
ciphertext-only attacker needs to see to determine the secret key.

Definition.

◮ K(c) = {k ∈ K | ∃m ∈M : Ek(m) = c} is the set of keys
consistent with the ciphertext c .

◮ S(c , k) = K(c) − k is the set of spurious keys, where k is
the correct key.

◮ sn = E
[

|S(C , k)|
]

= E[K(C )] − 1 is the average number of
spurious keys, over a random choice of ciphertext.
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What Does a Ciphertext Tell Us About the Key?

Theorem.

H(C ) + H(K |C ) = H(C ) + H(K |C ) + H(P |C ,K )

= H(C ,K ,P)

= H(K ) + H(P |K ) + H(C |K ,P)

= H(K ) + H(P)
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Entropy of Natural Language

Definition.

◮ Pn is a random n× |M|-letter substring of English text.

◮ The entropy of English is HL = limn→∞
1
n
H(Pn) ≈ 1.25.

◮ The relative redundancy of English is RL = 1− HL

log |M| .
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Number of Spurious Keys

Lemma. H(K |Cn) ≈ H(K )− nRL log |M|

Proof.

H(K |Cn) = H(K ) + H(Pn)− H(Cn)

& H(K ) + nHL − n log |C|

= H(K ) + n(1− RL) log |M| − n log |C| .
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Number of Spurious Keys

Lemma. H(K |Cn) ≈ H(K )− nRL log |M|

Lemma. H(K |Cn) ≤ log(sn + 1)

Proof.

H(K |Cn) =
∑

cn

PCn
(cn) H(K |cn)

≤ E
[

log |K(Cn)|
]

≤ log E
[

|K(Cn)|
]

= log(sn + 1)
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Number of Spurious Keys

Lemma. H(K |Cn) ≈ H(K )− nRL log |M|

Lemma. H(K |Cn) ≤ log(sn + 1)

Corollary. log(sn + 1) ≥ H(K )− nRL log |M| or restated:

sn &
2H(K)

|M|nRL

DD2448 Foundations of Cryptography Januari 22, 2010



Perfect Secrecy Information Theory Spurious Keys and Unicity Distance

Unicity Distance

Definition. The unicity distance is defined as
min{n ∈ N | sn ≤ 0}, i.e. the smallest number of ciphertext blocks
needed until we expect the key to be uniquely defined.
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