AES, Feistel Networks, and Luby-Rackoff(1/2)

Douglas Wikström KTH Stockholm dog@csc.kth.se

January 28

DD2448 Foundations of Cryptography

January 28, 2010

AES

• Feistel Networks

• Luby-Rackoff(1/2)

Quote of the Day

I believe that the Courtois-Pieprzyk work is flawed. They overcount the number of linearly independent equations. The result is that they do not in fact have enough linear equations to solve the system, and the method does not break Rijndael. – Coppersmith, 2002

(about the XSL-attack of Courtois and Pieprzyk)

Advanced Encryption Standard (AES)

- Chosen in worldwide public competition 1998-2000. Probably no back-doors. Increased confidence!
- Winning proposal named "Rijndael", by Rijmen and Daemen

- No attacks better than bruteforce (the XSL attack of Courtier and Pieprzyk is considered flawed), but...
- ... algebraics of AES make some people uneasy.

AES

- 1. Initialization. xor plaintext with round key.
- 2. Normal Rounds. (9, 11, or 13)
 - 2.1 Substitution: SubBytes
 - 2.2 Permutation: ShiftRows
 - 2.3 Linear Map: MixColumns
 - 2.4 xor With Round Key: AddRoundKey

3. Last Round.

- 3.1 SubBytes
- 3.2 ShiftRows
- 3.3 AddRoundKey

Similar to SPN

- SubBytes is field inversion in \mathbb{F}_8 plus affine map in \mathbb{F}_2^8 .
- ShiftRows is a cyclic shift of bytes with offset: 0, 1, 2, and 3.
- MixColumns is an invertible linear map with good diffusion.

Similar to SPN

- ▶ SubBytes is field inversion in \mathbb{F}_8 plus affine map in \mathbb{F}_2^8 .
- ShiftRows is a cyclic shift of bytes with offset: 0, 1, 2, and 3.
- MixColumns is an invertible linear map with good diffusion.

Something like a mix between substitution, permutation, affine version of Hill cipher. In each round!

Feistel Networks

- Identical rounds are iterated, but with different round keys.
- The input to the *i*th round is divided in a left and right part, denoted Lⁱ⁻¹ and Rⁱ⁻¹.
- f is a function for which it is somewhat hard to find pre-images, but f typically not neccessarily invertible!

• One round is defined by:

$$L^{i} = R^{i-1}$$
$$R^{i} = L^{i-1} \oplus f(R^{i-1}, K^{i})$$

where K^i is the *i*th round key.

left

L^{i-1} R^{i-1} right			
	L^{i-1}	R^{i-1}	right

left

Inverse Feistel Round

Feistel Round.

$$L^{i} = R^{i-1}$$
$$R^{i} = L^{i-1} \oplus f(R^{i-1}, K^{i})$$

Inverse Feistel Round

Feistel Round.

$$L^{i} = R^{i-1}$$
$$R^{i} = L^{i-1} \oplus f(R^{i-1}, K^{i})$$

Inverse Feistel Round.

$$L^{i-1} = R^{i} \oplus f(L^{i}, K^{i})$$
$$R^{i-1} = L^{i}$$

Reverse direction and swap left and right!

Negligible Functions

Definition. A function $\epsilon(n)$ is negligible if for every constant c > 0, there exists a constant n_0 , such that

$$\epsilon(n) < \frac{1}{n^c}$$

for all $n \ge n_0$.

Motivation. Events happening with negligible probability can not be exploited by polynomial time algorithms! (they "never" happen)

Pseudo-Random Function

"Definition". A function is pseudo-random if no efficient adversary can distinguish between the function and a random function.

Pseudo-Random Function

"Definition". A function is pseudo-random if no efficient adversary can distinguish between the function and a random function.

Definition. A family of functions $F : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ is pseudo-random if for all polynomial time oracle adversaries A

$$\left| \Pr_{\mathcal{K}} \left[A^{F_{\mathcal{K}}(\cdot)} = 1 \right] - \Pr_{R: \{0,1\}^n \to \{0,1\}^n} \left[A^{R(\cdot)} = 1 \right] \right|$$

is negligible.

Pseudo-Random Permutation

"Definition". A permutation and its inverse is pseudo-random if no efficient adversary can distinguish between the permutation and its inverse, and a random permutation and its inverse.

Pseudo-Random Permutation

"Definition". A permutation and its inverse is pseudo-random if no efficient adversary can distinguish between the permutation and its inverse, and a random permutation and its inverse.

Definition. A family of permutations $P : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ are pseudo-random if for all polynomial time oracle adversaries A

$$\left| \Pr_{\mathcal{K}} \left[A^{\mathcal{P}(\cdot), \mathcal{P}^{-1}(\cdot)} = 1 \right] - \Pr_{\Pi \in \mathcal{S}_{2^n}} \left[A^{\Pi(\cdot), \Pi^{-1}(\cdot)} = 1 \right] \right|$$

is negligible, where S_{2^n} is the set of permutations of $\{0,1\}^n$.

Idealized Four-Round Feistel Network

Definition. Feistel round (H for "Horst Feistel").

 $H_f(L,R) = (R,L \oplus f(R,K))$

Idealized Four-Round Feistel Network

Definition. Feistel round (H for "Horst Feistel").

$$H_f(L,R) = (R,L \oplus f(R,K))$$

Theorem. (Luby and Rackoff) If F is a pseudo-random family of functions, then

$$H_{F_{k_1},F_{k_2},F_{k_3},F_{k_4}}(x) = H_{F_{k_4}}(H_{F_{k_3}}(H_{F_{k_2}}(H_{F_{k_1}}(x))))$$

(and its inverse) is a pseudo-random family of permutations.

Idealized Four-Round Feistel Network

Definition. Feistel round (H for "Horst Feistel").

$$H_f(L,R) = (R,L \oplus f(R,K))$$

Theorem. (Luby and Rackoff) If F is a pseudo-random family of functions, then

$$H_{F_{k_1},F_{k_2},F_{k_3},F_{k_4}}(x) = H_{F_{k_4}}(H_{F_{k_3}}(H_{F_{k_2}}(H_{F_{k_1}}(x))))$$

(and its inverse) is a pseudo-random family of permutations. Why do we need four rounds?