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Quote of the Day

The Magic Words are Squeamish Ossifrage

– Rivest’s RSA-129 challenge plaintext from 1977.

(broken in 1994)
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Greatest Common Divisors

Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m

and n is a common divisor d such that every common divisor d ′

divides d .
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Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m

and n is a common divisor d such that every common divisor d ′

divides d .

◮ The GCD is the positive GCD.
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Greatest Common Divisors

Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m

and n is a common divisor d such that every common divisor d ′

divides d .

◮ The GCD is the positive GCD.

◮ We denote the GCD of m and n by gcd(m, n).
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Properties

◮ gcd(m, n) = gcd(n,m)

◮ gcd(m, n) = gcd(m ± n, n)

◮ gcd(m, n) = gcd(m mod n, n)

◮ gcd(m, n) = 2 gcd(m/2, n/2) if m and n are even.

◮ gcd(m, n) = gcd(m/2, n) if m is even and n is odd.

DD2448 Foundations of Cryptography Febrary 4, 2010



Number Theory Public-Key Cryptography The RSA Cryptosystem

Euclidean Algorithm

Euclidean(m, n)
(1) while n 6= 0
(2) t ← n

(3) n← m mod n

(4) m← t

(5) return m
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Steins Algorithm (Binary GCD Algorithm)

Stein(m, n)
(1) if m = 0 or n = 0 then return 0
(2) s ← 0
(3) while m and n are even
(4) m← m/2, n← n/2, s ← s + 1
(5) while n is even
(6) n← n/2
(7) while m 6= 0
(8) while m is even
(9) m← m/2
(10) if m < n

(11) Swap(m, n)
(12) m← m − n

(13) m← m/2
(14) return 2sm
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Bezout’s Lemma

Lemma. There exists integers a and b such that

gcd(m, n) = am + bn .

DD2448 Foundations of Cryptography Febrary 4, 2010



Number Theory Public-Key Cryptography The RSA Cryptosystem

Bezout’s Lemma

Lemma. There exists integers a and b such that

gcd(m, n) = am + bn .

Proof. Let d > gcd(m, n) be the smallest positive integer on the
form d = am + bn. Write m = cd + r with 0 ≤ r < d . Then

d > r = m − cd = m − c(am + bn) = (1− ca)m + (−cb)n ,

a contradiction! Thus, r = 0 and d | m. Similarly, d | n.
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Bezout’s Lemma

Lemma. There exists integers a and b such that

gcd(m, n) = am + bn .

Proof. Let d > gcd(m, n) be the smallest positive integer on the
form d = am + bn. Write m = cd + r with 0 ≤ r < d . Then

d > r = m − cd = m − c(am + bn) = (1− ca)m + (−cb)n ,

a contradiction! Thus, r = 0 and d | m. Similarly, d | n.

Why is d the greatest common divisor?

DD2448 Foundations of Cryptography Febrary 4, 2010



Number Theory Public-Key Cryptography The RSA Cryptosystem

Extended Euclidean Algorithm (Recursive Version)

ExtendedEuclidean(m, n)
(1) if m mod n = 0
(2) return (0, 1)
(3) else

(4) (x , y)← ExtendedEuclidean(n,m mod n)
(5) return (y , x − y⌊m/n⌋)

If (x , y)← ExtendedEuclidean(m, n) then
gcd(m, n) = xm + yn.
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Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest
common divisor is ±1.

Fact. If a and n are coprime, then there exists a b such that
ab = 1 mod n.
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Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest
common divisor is ±1.

Fact. If a and n are coprime, then there exists a b such that
ab = 1 mod n.

Excercise: Why is this so?
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Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let n1, . . . , nk be positive pairwise
coprime integers and let a1, . . . , ak be integers. Then the equation
system

x = a1 mod n1

x = a2 mod n2

x = a3 mod n3

...

x = ak mod nk

has a unique solution in {0, . . . ,
∏

i ni − 1}.
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Constructive Proof of CRT

1. Set N = n1n2 · . . . · nk .

2. Find ri and si such that rini + si
N
ni

= 1 (Bezout).

3. Note that

si
N

ni

= 1− rini =

{

1 (mod ni )
0 (mod nj) if j 6= i

4. The solution to the equation system becomes:

x =

k
∑

i=1

(

si
N

ni

)

· ai
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The Multiplicative Group

The set Z
∗

n = {0 ≤ a < n : gcd(a, n) = 1} forms a group, since:

◮ Closure. It is closed under multiplication modulo n.

◮ Associativity. For x , y , z ∈ Z
∗

n:

(xy)z = x(yz) mod n .

◮ Identity. For every x ∈ Z
∗

n:

1 · x = x · 1 = x .

◮ Inverse. For every a ∈ Z
∗

n exists b ∈ Z
∗

n such that:

ab = 1 mod n .
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Lagrange’s Theorem

Theorem. If H is a subgroup of a finite group G ,
then |H| divides |G |.

Proof.

1. Define aH = {ah : h ∈ H}. This gives an equivalence relation
x ≈ y ⇔ x = yh ∧ h ∈ H on G .

2. The map φa,b : aH → bH, defined by φa,b(x) = ba−1x is a
bijection, so |aH| = |bH| for a, b ∈ G .
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relative prime to n.
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relative prime to n.

◮ Clearly: φ(p) = p − 1 when p is prime.
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relative prime to n.

◮ Clearly: φ(p) = p − 1 when p is prime.

◮ Similarly: φ(pk) = pk − pk−1 when p is prime and k > 1.
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relative prime to n.

◮ Clearly: φ(p) = p − 1 when p is prime.

◮ Similarly: φ(pk) = pk − pk−1 when p is prime and k > 1.

◮ In general: φ
(

∏

i p
ki

i

)

=
∏

i

(

pk
i − pk−1

i

)

.
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relative prime to n.

◮ Clearly: φ(p) = p − 1 when p is prime.

◮ Similarly: φ(pk) = pk − pk−1 when p is prime and k > 1.

◮ In general: φ
(

∏

i p
ki

i

)

=
∏

i

(

pk
i − pk−1

i

)

.

Excercise: How does this follow from CRT?
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Fermat’s and Euler’s Theorems

Theorem. (Fermat) If b ∈ Z
∗

p and p is prime, then
bp−1 = 1 mod p.

Theorem. (Euler) If b ∈ Z
∗

n, then bφ(n) = 1 mod n.
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Fermat’s and Euler’s Theorems

Theorem. (Fermat) If b ∈ Z
∗

p and p is prime, then
bp−1 = 1 mod p.

Theorem. (Euler) If b ∈ Z
∗

n, then bφ(n) = 1 mod n.

Proof. Note that |Z∗

n| = φ(n). b generates a subgroup 〈b〉 of Z
∗

n,
so |〈b〉| divides φ(n) and bφ(n) = 1 mod n.
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Fermat’s and Euler’s Theorems

Theorem. (Fermat) If b ∈ Z
∗

p and p is prime, then
bp−1 = 1 mod p.

Theorem. (Euler) If b ∈ Z
∗

n, then bφ(n) = 1 mod n.

Proof. Note that |Z∗

n| = φ(n). b generates a subgroup 〈b〉 of Z
∗

n,
so |〈b〉| divides φ(n) and bφ(n) = 1 mod n.

Excercise: What happens when b ∈ Zn \ Z
∗

n?
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Multiplicative Group of a Prime Order Field

Definition. A group G is called cyclic if there exists an element g

such that each element in G is on the form gx for some integer x .

Theorem. If p is prime, then Z
∗

p is cyclic.
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Cipher (Symmetric Cryptosystem)

E E−1cm

k k

m

c = Ek(m) m = E−1
k (c)

Alice Bob
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Public-Key Cryptosystem

E Dcm

pk sk

m

c = Epk(m) m = Dsk(c)

Alice Bob
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History of Public-Key Cryptography

Public-key cryptography was discovered:

◮ By Ellis, Cocks, and Williamson at the Government
Communications Headquarters (GCHQ) in the UK in the early
1970s (not public until 1997).

◮ Independently by Merkle in 1974 (Merkle’s puzzles).

◮ Independently in its discrete-logarithm based form by Diffie
and Hellman in 1977, and instantiated in 1978 (key-exchange).

◮ Independently in its factoring-based form by Rivest, Shamir
and Adleman in 1977.
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Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen,E,D)
where,

◮ Gen is a probabilistic key generation algorithm that
outputs key pairs (pk, sk),

◮ E is a (possibly probabilistic) encryption algorithm that
given a public key pk and a message m in the plaintext space
Mpk outputs a ciphertext c , and

◮ D is a decryption algorithm that given a secret key sk and a
ciphertext c outputs a plaintext m,

such that Dsk(Epk(m)) = m for every public-key pk and m ∈Mpk.
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The RSA Cryptosystem (1/2)

Key Generation.

◮ Choose n-bit primes p and q randomly and define N = pq.

◮ Choose e randomly in Z
∗

φ(N) and compute d = e−1 mod φ(N).

◮ Output the key pair ((N, e), (p, q, d)), where (N, e) is the
public key and (p, q, d) is the secret key.

DD2448 Foundations of Cryptography Febrary 4, 2010



Number Theory Public-Key Cryptography The RSA Cryptosystem

The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext m by computing

c = me mod N .

Decryption. Decrypt a ciphertext c by computing

m = cd mod N .
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Why Does It Work?

(me mod N)d mod N = med mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N

= m · 1t mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N

= m · 1t mod N

= m mod N
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