Number Theory, Public-Key Cryptography, and the RSA Cryptosystem

Douglas Wikström KTH Stockholm dog@csc.kth.se

February 4

DD2448 Foundations of Cryptography

Febrary 4, 2010

• Number Theory

• Public-Key Cryptography

• The RSA Cryptosystem

Quote of the Day

The Magic Words are Squeamish Ossifrage - Rivest's RSA-129 challenge plaintext from 1977.

(broken in 1994)

Greatest Common Divisors

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

Greatest Common Divisors

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

The GCD is the positive GCD.

Greatest Common Divisors

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

- **The** GCD is the **positive** GCD.
- We denote the GCD of m and n by gcd(m, n).

Properties

- gcd(m, n) = gcd(n, m)
- $gcd(m, n) = gcd(m \pm n, n)$
- $gcd(m, n) = gcd(m \mod n, n)$
- gcd(m, n) = 2 gcd(m/2, n/2) if m and n are even.
- gcd(m, n) = gcd(m/2, n) if m is even and n is odd.

Euclidean Algorithm

EUCLIDEAN(m, n)(1) while $n \neq 0$ (2) $t \leftarrow n$ (3) $n \leftarrow m \mod n$ (4) $m \leftarrow t$ (5) return m

Steins Algorithm (Binary GCD Algorithm)

STEIN
$$(m, n)$$

(1) if $m = 0$ or $n = 0$ then return 0
(2) $s \leftarrow 0$
(3) while m and n are even
(4) $m \leftarrow m/2, n \leftarrow n/2, s \leftarrow s + 1$
(5) while n is even
(6) $n \leftarrow n/2$
(7) while $m \neq 0$
(8) while m is even
(9) $m \leftarrow m/2$
(10) if $m < n$
(11) SWAP (m, n)
(12) $m \leftarrow m - n$
(13) $m \leftarrow m/2$
(14) return $2^{s}m$

DD2448 Foundations of Cryptography

Bezout's Lemma

Lemma. There exists integers a and b such that

gcd(m,n) = am + bn.

Bezout's Lemma

Lemma. There exists integers a and b such that

$$gcd(m,n) = am + bn$$
 .

Proof. Let d > gcd(m, n) be the smallest positive integer on the form d = am + bn. Write m = cd + r with $0 \le r < d$. Then

$$d>r=m-cd=m-c(am+bn)=(1-ca)m+(-cb)n$$
 ,

a contradiction! Thus, r = 0 and $d \mid m$. Similarly, $d \mid n$.

Bezout's Lemma

Lemma. There exists integers a and b such that

$$gcd(m,n) = am + bn$$
 .

Proof. Let d > gcd(m, n) be the smallest positive integer on the form d = am + bn. Write m = cd + r with $0 \le r < d$. Then

$$d>r=m-cd=m-c(am+bn)=(1-ca)m+(-cb)n$$
 ,

a contradiction! Thus, r = 0 and $d \mid m$. Similarly, $d \mid n$.

Why is *d* the **greatest** common divisor?

Extended Euclidean Algorithm (Recursive Version)

EXTENDEDEUCLIDEAN
$$(m, n)$$

(1) if $m \mod n = 0$
(2) return $(0, 1)$
(3) else
(4) $(x, y) \leftarrow \text{EXTENDEDEUCLIDEAN}(n, m \mod n)$
(5) return $(y, x - y \lfloor m/n \rfloor)$

If $(x, y) \leftarrow \text{EXTENDEDEUCLIDEAN}(m, n)$ then gcd(m, n) = xm + yn.

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is ± 1 .

Fact. If a and n are coprime, then there exists a b such that $ab = 1 \mod n$.

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is ± 1 .

Fact. If *a* and *n* are coprime, then there exists a *b* such that $ab = 1 \mod n$.

Excercise: Why is this so?

Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let n_1, \ldots, n_k be positive pairwise coprime integers and let a_1, \ldots, a_k be integers. Then the equation system

 $x = a_1 \mod n_1$ $x = a_2 \mod n_2$ $x = a_3 \mod n_3$ \vdots $x = a_k \mod n_k$

has a unique solution in $\{0, \ldots, \prod_i n_i - 1\}$.

Constructive Proof of CRT

1. Set
$$N = n_1 n_2 \cdot \ldots \cdot n_k$$
.

- 2. Find r_i and s_i such that $r_i n_i + s_i \frac{N}{n_i} = 1$ (Bezout).
- 3. Note that

$$s_i \frac{N}{n_i} = 1 - r_i n_i = \begin{cases} 1 \pmod{n_i} \\ 0 \pmod{n_j} & \text{if } j \neq i \end{cases}$$

4. The solution to the equation system becomes:

$$x = \sum_{i=1}^{k} \left(s_i \frac{N}{n_i} \right) \cdot a_i$$

The Multiplicative Group

The set $\mathbb{Z}_n^* = \{ 0 \le a < n : gcd(a, n) = 1 \}$ forms a group, since:

• Closure. It is closed under multiplication modulo n.

• Associativity. For $x, y, z \in \mathbb{Z}_n^*$:

$$(xy)z = x(yz) \mod n$$
.

• Identity. For every $x \in \mathbb{Z}_n^*$:

$$1 \cdot x = x \cdot 1 = x \; .$$

▶ Inverse. For every $a \in \mathbb{Z}_n^*$ exists $b \in \mathbb{Z}_n^*$ such that:

$$ab = 1 \mod n$$
 .

Lagrange's Theorem

Theorem. If *H* is a subgroup of a finite group *G*, then |H| divides |G|.

Proof.

- 1. Define $aH = \{ah : h \in H\}$. This gives an equivalence relation $x \approx y \Leftrightarrow x = yh \land h \in H$ on G.
- 2. The map $\phi_{a,b} : aH \to bH$, defined by $\phi_{a,b}(x) = ba^{-1}x$ is a bijection, so |aH| = |bH| for $a, b \in G$.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relative prime to n.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relative prime to n.

• Clearly: $\phi(p) = p - 1$ when p is prime.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relative prime to n.

- Clearly: $\phi(p) = p 1$ when p is prime.
- Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relative prime to n.

- Clearly: $\phi(p) = p 1$ when p is prime.
- Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.

► In general:
$$\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^k - p_i^{k-1}\right).$$

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relative prime to n.

- Clearly: $\phi(p) = p 1$ when p is prime.
- Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.

• In general:
$$\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^k - p_i^{k-1}\right).$$

Excercise: How does this follow from CRT?

Fermat's and Euler's Theorems

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Fermat's and Euler's Theorems

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Proof. Note that $|\mathbb{Z}_n^*| = \phi(n)$. *b* generates a subgroup $\langle b \rangle$ of \mathbb{Z}_n^* , so $|\langle b \rangle|$ divides $\phi(n)$ and $b^{\phi(n)} = 1 \mod n$.

Fermat's and Euler's Theorems

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Proof. Note that $|\mathbb{Z}_n^*| = \phi(n)$. *b* generates a subgroup $\langle b \rangle$ of \mathbb{Z}_n^* , so $|\langle b \rangle|$ divides $\phi(n)$ and $b^{\phi(n)} = 1 \mod n$.

Excercise: What happens when $b \in \mathbb{Z}_n \setminus \mathbb{Z}_n^*$?

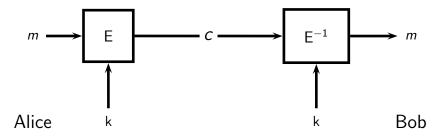
Multiplicative Group of a Prime Order Field

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

The RSA Cryptosystem

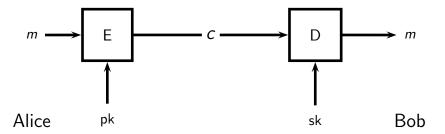
Cipher (Symmetric Cryptosystem)



The RSA Cryptosystem

Public-Key Cryptosystem

$$c = \mathsf{E}_{\mathsf{pk}}(m)$$
 $m = \mathsf{D}_{\mathsf{sk}}(c)$



History of Public-Key Cryptography

Public-key cryptography was discovered:

- By Ellis, Cocks, and Williamson at the Government Communications Headquarters (GCHQ) in the UK in the early 1970s (not public until 1997).
- Independently by Merkle in 1974 (Merkle's puzzles).
- Independently in its discrete-logarithm based form by Diffie and Hellman in 1977, and instantiated in 1978 (key-exchange).
- Independently in its factoring-based form by Rivest, Shamir and Adleman in 1977.

Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen, E, D) where,

- Gen is a probabilistic key generation algorithm that outputs key pairs (pk, sk),
- E is a (possibly probabilistic) encryption algorithm that given a public key pk and a message m in the plaintext space M_{pk} outputs a ciphertext c, and
- D is a decryption algorithm that given a secret key sk and a ciphertext c outputs a plaintext m,

such that $D_{sk}(\mathsf{E}_{\mathsf{pk}}(m)) = m$ for every public-key pk and $m \in \mathcal{M}_{\mathsf{pk}}$.

The RSA Cryptosystem (1/2)

Key Generation.

- Choose *n*-bit primes p and q randomly and define N = pq.
- Choose *e* randomly in $\mathbb{Z}^*_{\phi(N)}$ and compute $d = e^{-1} \mod \phi(N)$.
- Output the key pair ((N, e), (p, q, d)), where (N, e) is the public key and (p, q, d) is the secret key.

The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext *m* by computing

 $c = m^e \mod N$.

Decryption. Decrypt a ciphertext *c* by computing

 $m = c^d \mod N$.

 $(m^e \mod N)^d \mod N = m^{ed} \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

= $m^{1+t\phi(N)} \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

 $= m^{1+t\phi(N)} \mod N$
 $= m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

 $= m^{1+t\phi(N)} \mod N$
 $= m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$
 $= m \cdot 1^t \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

= $m^{1+t\phi(N)} \mod N$
= $m^1 \cdot (m^{\phi(N)})^t \mod N$
= $m \cdot 1^t \mod N$
= $m \mod N$