Textbook RSA and Semantic Security

Douglas Wikström KTH Stockholm dog@csc.kth.se

February 16

DD2448 Foundations of Cryptography

Febrary 16, 2010

• Textbook RSA

• Semantic Security

The RSA Cryptosystem (1/2)

Key Generation.

- Choose *n*-bit primes *p* and *q* randomly and define N = pq.
- Choose *e* randomly in $\mathbb{Z}^*_{\phi(N)}$ and compute $d = e^{-1} \mod \phi(N)$.
- Output the key pair ((N, e), (p, q, d)), where (N, e) is the public key and (p, q, d) is the secret key.

The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext *m* by computing

 $c = m^e \mod N$.

Decryption. Decrypt a ciphertext *c* by computing

 $m = c^d \mod N$.

Factoring From Order of Multiplicative Group

Given N and $\phi(N)$, we can find p and q by solving

$$egin{aligned} \mathcal{N} &= \mathcal{p} q \ \phi(\mathcal{N}) &= (\mathcal{p}-1)(q-1) \end{aligned}$$

Factoring From Encryption & Decryption Exponents (1/3)

• If N = pq with p and q prime, then the CRT implies that

 $x^2 = 1 \mod N$

has four distinct solutions in \mathbb{Z}_N^* , and two of these are **non-trivial**, i.e., distinct from ± 1 .

If x is a non-trivial root, then

$$(x-1)(x+1) = tN$$

but $N \nmid (x - 1), (x + 1)$, so

gcd(x-1, N) > 1 and gcd(x+1, N) > 1.

Factoring From Encryption & Decryption Exponents (2/3)

The encryption & decryption exponents satisfy

 $ed = 1 \mod \phi(N)$,

so if we have $ed - 1 = 2^{s}r$ with r odd, then

$$(p-1) = 2^{s_p} r_p \mid 2^s r$$
 and $(q-1) = 2^{s_q} r_q \mid 2^s r$.

▶ If $v \in \mathbb{Z}_N^*$ is random, then $w = v^r$ is random in the subgroup of elements with order 2^i for some $0 \le i \le \max\{s_p, s_q\}$.

Factoring From Encryption & Decryption Exponents (3/3)

Suppose $s_p \ge s_q$. Then for some $0 < i < s_p$,

$$w^{2^i}=\pm 1 mod mod q$$

and

 $w^{2^i} \mod p$

is uniformly distributed in $\{1, -1\}$.

Conclusion.

 $w^{2'} \pmod{N}$ is a non-trivial root of 1 with probability 1/2, which allows us to factor N.

Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

Small Message. If m is small, then m^e < N. Thus, no reduction takes place, and m can be computed in Z by taking the eth root.

Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

- Small Message. If m is small, then m^e < N. Thus, no reduction takes place, and m can be computed in Z by taking the eth root.
- ▶ Identical Plaintexts. If a message *m* is encrypted under moduli N_1 , N_2 , N_3 , and N_4 as c_1 , c_2 , c_3 , and c_3 , then CRT implies a $c \in \mathbb{Z}^*_{N_1N_2N_3N_4}$ such that $c = c_i \mod N_i$ and $c = m^e \mod N_1N_2N_3N_4$ with $m < N_i$.

Additional Caveats

► Identical Moduli. If a message m is encrypted as c₁ and c₂ using distinct encryption exponents e₁ and e₂ with gcd(e₁, e₂) = 1, and a modulus N, then we can find a, b such that ae₁ + be₂ = 1 and m = c₁^ac₂^b mod N.

Additional Caveats

- ► Identical Moduli. If a message m is encrypted as c₁ and c₂ using distinct encryption exponents e₁ and e₂ with gcd(e₁, e₂) = 1, and a modulus N, then we can find a, b such that ae₁ + be₂ = 1 and m = c₁^ac₂^b mod N.
- ► Reiter-Franklin Attack. If e is small then encryptions of m and f(m) for a polynomial f ∈ Z_N[x] allows efficient computation of m.

Additional Caveats

- ► Identical Moduli. If a message m is encrypted as c₁ and c₂ using distinct encryption exponents e₁ and e₂ with gcd(e₁, e₂) = 1, and a modulus N, then we can find a, b such that ae₁ + be₂ = 1 and m = c₁^ac₂^b mod N.
- ► Reiter-Franklin Attack. If e is small then encryptions of m and f(m) for a polynomial f ∈ Z_N[x] allows efficient computation of m.
- ▶ Wiener's Attack. If a < N^{1/4} and q

Factoring

The obvious way to break RSA is to factor the public modulus N and recover the prime factors p and q.

▶ The number field sieve factors N in time

$$O\left(e^{(1.92+o(1))((\ln N)^{1/3}+(\ln \ln N)^{2/3})}\right)$$

► The elliptic curve method factors *N* in time

$$O\left(e^{(1+o(1))\sqrt{2\ln p \ln \ln p}}\right)$$

Factoring

The obvious way to break RSA is to factor the public modulus N and recover the prime factors p and q.

▶ The number field sieve factors N in time

$$O\left(e^{(1.92+o(1))\left((\ln N)^{1/3}+(\ln \ln N)^{2/3}\right)}\right)$$

► The elliptic curve method factors *N* in time

$$O\left(e^{(1+o(1))\sqrt{2\ln p \ln \ln p}}\right)$$

Note that the latter only depends on the size of p!

Birthday Paradox

Lemma. Let q_0, \ldots, q_k be randomly chosen in a set S. Then

- 1. the probability that $q_i = q_j$ for some $i \neq j$ is approximately $1 e^{-\frac{k^2}{2s}}$, where s = |S|, and
- 2. with $k \approx \sqrt{-2s \ln(1-\delta)}$ we have a collision-probability of δ .

Proof.

$$\left(\frac{s-1}{s}\right)\left(\frac{s-2}{s}\right)\cdot\ldots\cdot\left(\frac{s-k}{s}\right)\approx\prod_{i=1}^{k}e^{-\frac{i}{s}}\approx e^{-\frac{k^2}{2s}}$$

Pollard- ρ (1/2)

Fact. Let $a, a' \in \mathbb{Z}_N$ such that:

$$a > a'$$
 and $a = a' \mod \mathbf{p}$

then

$$p \leq \gcd(a - a', n) < n$$
 .

Pollard- ρ (2/2)

Idea.

1. Generate "random" elements a_1, a_2, \ldots using polynomial $f(\cdot) \in \mathbb{Z}_N[x]$ recursively, i.e., $a_i = f(a_{i-1}) \mod N$.

Pollard- ρ (2/2)

Idea.

- 1. Generate "random" elements a_1, a_2, \ldots using polynomial $f(\cdot) \in \mathbb{Z}_N[x]$ recursively, i.e., $a_i = f(a_{i-1}) \mod N$.
- 2. Find "collisions" (a_i, a_j) after $O(\sqrt{p})$ samples.

Pollard- ρ (2/2)

Idea.

- 1. Generate "random" elements a_1, a_2, \ldots using polynomial $f(\cdot) \in \mathbb{Z}_N[x]$ recursively, i.e., $a_i = f(a_{i-1}) \mod N$.
- 2. Find "collisions" (a_i, a_j) after $O(\sqrt{p})$ samples.
- 3. Avoid GCD-computations using:

$$a = a' \mod p \implies f(a) = f(a') \mod p$$

and "double stepping".

Random Squares

Fact. Given $x \neq \pm y \mod N$ such that $x^2 = y^2 \mod N$, gcd(x - y, N) is a non-trivial factor of N.

Idea.

1. Find z_i , primes $p_{i,j}$, and exponents $e_{i,j}$ such that:

$$z_i^2 = \prod_j p_{i,j}^{\mathbf{e}_{i,j}}$$

2. Find subset S such that

$$\prod_{i\in S} z_i^2 = \prod_{i\in S} \prod_j p_{i,j}^{\mathbf{e}_{i,j}} = \prod_j p_{i,j}^{\mathbf{e}_{i,j}'}$$

with $e'_{i,j}$ even, i.e., both sides are squares.

RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.

- RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- Intuitively, we want to leak no information of the encrypted plaintext.

- RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- Intuitively, we want to leak no knowledge of the encrypted plaintext.

- RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- Intuitively, we want to leak no knowledge of the encrypted plaintext.
- In other words, no function of the plaintext can efficiently be guessed notably better from its ciphertext than without it.

$\operatorname{Exp}_{\mathcal{CS},\mathcal{A}}^{b}$ (Semantic Security Experiment).

- 1. Generate Public Key. $(pk, sk) \leftarrow Gen(1^n)$.
- 2. Adversarial Choice of Messages. $(m_0, m_1) \leftarrow A(pk)$.
- 3. **Guess Message.** Return the first bit output by $A(E_{pk}(m_b))$.

$\operatorname{Exp}_{\mathcal{CS},\mathcal{A}}^{b}$ (Semantic Security Experiment).

- 1. Generate Public Key. $(pk, sk) \leftarrow Gen(1^n)$.
- 2. Adversarial Choice of Messages. $(m_0, m_1) \leftarrow A(pk)$.
- 3. **Guess Message.** Return the first bit output by $A(E_{pk}(m_b))$.

Definition. A cryptosystem CS = (Gen, E, D) is said to be **semantically secure** if for every polynomial time algorithm A

$$|\Pr[\operatorname{Exp}^{0}_{\mathcal{CS},\mathcal{A}}=1] - \Pr[\operatorname{Exp}^{1}_{\mathcal{CS},\mathcal{A}}=1]|$$

is negligible.

Every semantically secure cryptosystem must be probabilistic!

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that $\mathcal{CS} = (Gen, E, D)$ is a semantically secure cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with t(n) polynomial, is encrypted by **repeated independent encryption** of each component using the **same public key** is also semantically secure.

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that $\mathcal{CS} = (Gen, E, D)$ is a semantically secure cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with t(n) polynomial, is encrypted by **repeated independent encryption** of each component using the **same public key** is also semantically secure.

Semantic security is useful!