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The RSA Cryptosystem (1/2)

Key Generation.

◮ Choose n-bit primes p and q randomly and define N = pq.

◮ Choose e randomly in Z∗
φ(N) and compute d = e−1 mod φ(N).

◮ Output the key pair ((N, e), (p, q, d)), where (N, e) is the
public key and (p, q, d) is the secret key.
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The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext m by computing

c = me mod N .

Decryption. Decrypt a ciphertext c by computing

m = cd mod N .
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Factoring From Order of Multiplicative Group

Given N and φ(N), we can find p and q by solving

N = pq

φ(N) = (p − 1)(q − 1)
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Factoring From Encryption & Decryption Exponents (1/3)

◮ If N = pq with p and q prime, then the CRT implies that

x2 = 1 mod N

has four distinct solutions in Z∗
N , and two of these are

non-trivial, i.e., distinct from ±1.

◮ If x is a non-trivial root, then

(x − 1)(x + 1) = tN

but N ∤ (x − 1), (x + 1), so

gcd(x − 1,N) > 1 and gcd(x + 1,N) > 1 .
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Factoring From Encryption & Decryption Exponents (2/3)

◮ The encryption & decryption exponents satisfy

ed = 1 mod φ(N) ,

so if we have ed − 1 = 2s r with r odd, then

(p − 1) = 2sp rp | 2s r and

(q − 1) = 2sq rq | 2s r .

◮ If v ∈ Z∗
N is random, then w = v r is random in the subgroup

of elements with order 2i for some 0 ≤ i ≤ max{sp, sq}.
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Factoring From Encryption & Decryption Exponents (3/3)

Suppose sp ≥ sq. Then for some 0 < i < sp,

w2i

= ±1 mod q

and
w2i

mod p

is uniformly distributed in {1,−1}.

Conclusion.
w2i

(mod N) is a non-trivial root of 1 with probability 1/2, which
allows us to factor N.

DD2448 Foundations of Cryptography Febrary 16, 2010



Textbook RSA Semantic Security

Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

◮ Small Message. If m is small, then me < N. Thus, no
reduction takes place, and m can be computed in Z by
taking the eth root.
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Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

◮ Small Message. If m is small, then me < N. Thus, no
reduction takes place, and m can be computed in Z by
taking the eth root.

◮ Identical Plaintexts. If a message m is encrypted under
moduli N1, N2, N3, and N4 as c1, c2, c3, and c3, then CRT
implies a c ∈ Z∗

N1N2N3N4
such that c = ci mod Ni and

c = me mod N1N2N3N4 with m < Ni .
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Additional Caveats

◮ Identical Moduli. If a message m is encrypted as c1 and c2

using distinct encryption exponents e1 and e2 with
gcd(e1, e2) = 1, and a modulus N, then we can find a, b such
that ae1 + be2 = 1 and m = ca

1cb
2 mod N.
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Additional Caveats

◮ Identical Moduli. If a message m is encrypted as c1 and c2

using distinct encryption exponents e1 and e2 with
gcd(e1, e2) = 1, and a modulus N, then we can find a, b such
that ae1 + be2 = 1 and m = ca

1cb
2 mod N.

◮ Reiter-Franklin Attack. If e is small then encryptions of m

and f (m) for a polynomial f ∈ ZN [x ] allows efficient
computation of m.
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Additional Caveats

◮ Identical Moduli. If a message m is encrypted as c1 and c2

using distinct encryption exponents e1 and e2 with
gcd(e1, e2) = 1, and a modulus N, then we can find a, b such
that ae1 + be2 = 1 and m = ca

1cb
2 mod N.

◮ Reiter-Franklin Attack. If e is small then encryptions of m

and f (m) for a polynomial f ∈ ZN [x ] allows efficient
computation of m.

◮ Wiener’s Attack. If a < N1/4 and q < p < 2q, then N can
be factored in polynomial time with good probability.
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Factoring

The obvious way to break RSA is to factor the public modulus N

and recover the prime factors p and q.

◮ The number field sieve factors N in time

O
(

e(1.92+o(1))((ln N)1/3+(ln lnN)2/3)
)

.

◮ The elliptic curve method factors N in time

O
(

e(1+o(1))
√

2 ln p ln ln p
)

.
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Factoring

The obvious way to break RSA is to factor the public modulus N

and recover the prime factors p and q.

◮ The number field sieve factors N in time

O
(

e(1.92+o(1))((ln N)1/3+(ln lnN)2/3)
)

.

◮ The elliptic curve method factors N in time

O
(

e(1+o(1))
√

2 ln p ln ln p
)

.

Note that the latter only depends on the size of p!
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Birthday Paradox

Lemma. Let q0, . . . , qk be randomly chosen in a set S . Then

1. the probability that qi = qj for some i 6= j is approximately

1− e−
k2

2s , where s = |S |, and

2. with k ≈
√

−2s ln(1− δ) we have a collision-probability of δ.

Proof.

(

s − 1

s

)(

s − 2

s

)

· . . . ·
(

s − k

s

)

≈
k

∏

i=1

e−
i
s ≈ e−

k2

2s .
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Pollard-ρ (1/2)

Fact. Let a, a′ ∈ ZN such that:

a > a′ and a = a′ mod p ,

then
p ≤ gcd(a − a′, n) < n .
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Pollard-ρ (2/2)

Idea.

1. Generate “random” elements a1, a2, . . . using polynomial
f (·) ∈ ZN [x ] recursively, i.e., ai = f (ai−1) mod N.
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Pollard-ρ (2/2)

Idea.

1. Generate “random” elements a1, a2, . . . using polynomial
f (·) ∈ ZN [x ] recursively, i.e., ai = f (ai−1) mod N.

2. Find “collisions” (ai , aj ) after O(
√

p) samples.
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Pollard-ρ (2/2)

Idea.

1. Generate “random” elements a1, a2, . . . using polynomial
f (·) ∈ ZN [x ] recursively, i.e., ai = f (ai−1) mod N.

2. Find “collisions” (ai , aj ) after O(
√

p) samples.

3. Avoid GCD-computations using:

a = a′ mod p =⇒ f (a) = f (a′) mod p

and “double stepping”.
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Random Squares

Fact. Given x 6= ±y mod N such that x2 = y2 mod N,
gcd(x − y ,N) is a non-trivial factor of N.

Idea.

1. Find zi , primes pi ,j , and exponents ei ,j such that:

z2
i =

∏

j

p
ei,j

i ,j

2. Find subset S such that

∏

i∈S

z2
i =

∏

i∈S

∏

j

p
ei,j

i ,j =
∏

j

p
e′i,j
i ,j

with e′i ,j even, i.e., both sides are squares.

DD2448 Foundations of Cryptography Febrary 16, 2010



Textbook RSA Semantic Security

Semantic Security (1/3)

◮ RSA clearly provides some kind of “security”, but it is clear
that we need to be more careful with what we ask for.
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Semantic Security (1/3)

◮ RSA clearly provides some kind of “security”, but it is clear
that we need to be more careful with what we ask for.

◮ Intuitively, we want to leak no information of the encrypted
plaintext.
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Semantic Security (1/3)

◮ RSA clearly provides some kind of “security”, but it is clear
that we need to be more careful with what we ask for.

◮ Intuitively, we want to leak no knowledge of the encrypted
plaintext.

◮ In other words, no function of the plaintext can efficiently be
guessed notably better from its ciphertext than without it.
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Semantic Security (2/3)

Expb
CS,A (Semantic Security Experiment).

1. Generate Public Key. (pk, sk)← Gen(1n).

2. Adversarial Choice of Messages. (m0,m1)← A(pk).

3. Guess Message. Return the first bit output by A(Epk(mb)).
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Semantic Security (2/3)

Expb
CS,A (Semantic Security Experiment).

1. Generate Public Key. (pk, sk)← Gen(1n).

2. Adversarial Choice of Messages. (m0,m1)← A(pk).

3. Guess Message. Return the first bit output by A(Epk(mb)).

Definition. A cryptosystem CS = (Gen,E,D) is said to be
semantically secure if for every polynomial time algorithm A

|Pr[Exp0
CS,A = 1]− Pr[Exp1

CS,A = 1]|

is negligible.
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Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!
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Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that CS = (Gen,E,D) is a semantically secure
cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with
t(n) polynomial, is encrypted by repeated independent
encryption of each component using the same public key is also
semantically secure.
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Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that CS = (Gen,E,D) is a semantically secure
cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with
t(n) polynomial, is encrypted by repeated independent
encryption of each component using the same public key is also
semantically secure.

Semantic security is useful!
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