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ROM-RSA

The RSA Assumption

Definition. The RSA assumption states that if:

1. N = pq factors into two randomly chosen primes p and g of
the same bit-size,

2. eisin ZZ(N)’
3. mis randomly chosen in Z},,

then for every polynomial time algorithm A
Pr[A(N, e, m®* mod N) = m]

is negligible.
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ROM-RSA

Semantically Secure ROM-RSA (1/2)

Suppose that f : {0,1}" — {0,1}" is a randomly chosen function
(a random oracle).

» Key Generation. Choose a random RSA key pair
((N7 e)a (pa q, d))' with |Og2 N =n.

» Encryption. Encrypt a plaintext m € {0,1}" by choosing
r € Zjy, randomly and computing

(u,v) = (r® mod N, f(r) & m) .

» Decryption. Decrypt a ciphertext (u, v) by

m=vaf(u?) .
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ROM-RSA

Semantically Secure RSA in the ROM (2/2)

» We increase the ciphertext size by a factor of two.

» Qur analysis is in the random oracle model, which is
unsound!

DD2448 Foundations of Cryptography Febrary 18, 2010



ROM-RSA

Semantically Secure RSA in the ROM (2/2)

» We increase the ciphertext size by a factor of two.

» Qur analysis is in the random oracle model, which is
unsound!

Solutions.

» Using a “optimal” padding the first problem can be reduced.
See standard OAEP+.
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ROM-RSA

Semantically Secure RSA in the ROM (2/2)

» We increase the ciphertext size by a factor of two.

» Qur analysis is in the random oracle model, which is
unsound!

Solutions.

» Using a “optimal” padding the first problem can be reduced.
See standard OAEP+.

» Using a scheme with much lower rate, the second problem can
be removed.
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ROM-RSA

Semantically Secure RSA in the ROM (2/2)

» We increase the ciphertext size by a factor of two.

» Qur analysis is in the random oracle model, which is
unsound!

Solutions.

» Using a “optimal” padding the first problem can be reduced.
See standard OAEP+.

» Using a scheme with much lower rate, the second problem can
be removed.

» If the key of an ideal cipher is encrypted, then we can avoid
the ROM and still have “optimal padding”
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Rabin

Rabin's Cryptosystem (1/3)

Key Generation.

» Choose n-bit primes p and g such that p,qg = 3 mod 4
randomly and define N = pq.

» Output the key pair (N, (p, q)), where (N, e) is the public key
and (p, q) is the secret key.
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Rabin

Rabin's Cryptosystem (2/3)

Encryption. Encrypt a plaintext m by computing

c=m’mod N .

Decryption. Decrypt a ciphertext ¢ by computing

m=+/cmod N .
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Rabin

Rabin's Cryptosystem (2/3)

Encryption. Encrypt a plaintext m by computing

c=m’mod N .

Decryption. Decrypt a ciphertext ¢ by computing

m=+/cmod N .

There are four roots, so which one should be used!
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Rabin

Rabin's Cryptosystem (3/3)

Suppose y is a quadratic residue modulo p.

(iy(p+1)/4)2 _ P2 od p
-(3)
=\=]Y
p
=y mod p
In Rabin’s cryptosystem:
» Find roots for y, = y mod p and y, = y mod q.

» Combine roots to get the four roots modulo N. Choose the
“right” root and output the plaintext.
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Rabin

Security of Rabin's Cryptosystem

Theorem. Breaking Rabin’s cryptosystem is equivalent to
factoring (provided we do not derandomize decryption!).

Idea.

1. Choose random element r.
2. Hand r?> mod N to adversary.
3. Consider outputs r’ from the adversary such that

(r')> = r> mod N. Then r' # +r mod N, with probability
1/2, in which case ged(r’ — r, N) gives a factor of N.
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Rabin

A Goldwasser-Micali Variant of Rabin

Theorem [CG98]. If factoring is hard and r is a random quadratic
residue modulo N, then for every polynomial time algorithm A

Pr[A(N, r? mod N) = Isb(r)]

is negligible.

» Encryption. Encrypt a plaintext m € {0,1} by choosing a
random quadratic residue r modulo N and computing

(u,v) = (r* mod N, lIsb(r) @& m) .

» Decryption. Decrypt a ciphertext (u, v) by

m = v @ lsb(y/u) where \/u is a quadratic residue .
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Diffie-Hellman

Diffie-Hellman Key Exchange (1/3)

Diffie and Hellman asked themselves:

How can two parties efficiently agree on a secret key using only
public communication?
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Diffie-Hellman

Diffie-Hellman Key Exchange (2/3)

Construction.
Let G be a cyclic group of order g with generator g.

1. » Alice picks a € Z, randomly, computes y, = g2 and hands y,

to Bob.
» Bob picks b € Zg randomly, computes y, = g? and hands y,
to Alice.
2. » Alice computes k = y{.

» Bob computes k = y?.

3. The joint secret key is k.
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Diffie-Hellman

Diffie-Hellman Key Exchange (3/3)

Problems.

» Susceptible to man-in-the-middle attack without
authentication.

» How do we map a random element k € G to a random
symmetric key in {0,1}"7?
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El Gamal

The El Gamal Cryptosystem (1/2)

Definition. Let G be a cyclic group of order g with generator g.

» The key generation algorithm chooses a random element
X € Zq as the private key and defines the public key as

X

y=8

» The encryption algorithm takes a message m € G and the
public key y, chooses r € Zg4, and outputs the pair

(u,v) = Ey(mv r)=1(g",y'm) .

» The decryption algorithm takes a ciphertext (u, v) and the
secret key and outputs

m = Dy(u,v) = vu™>
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El Gamal

The El Gamal Cryptosystem (2/2)

» El Gamal is essentially Diffie-Hellman + OTP.
» Homomorphic property (with public key y)
Ey(mo, ro)Ey(ml, r1) = Ey(moml, rn + I’1) .

This property is very important in the construction of
cryptographic protocols!
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Discrete Logarithms

Discrete Logarithm (1/2)

Definition. Let G be a cyclic group of order g and let g be a
generator G. The discrete logarithm of y € G in the basis g
(written log, y) is defined as the unique x € {0,1,...,g — 1} such

that
y=8

Compare with a “normal” logarithm! (Iny = x iff y = &)
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Discrete Logarithms

Discrete Logarithm (2/2)

Example. 7 is a generator of Z1, additively, since ged(7,12) = 1.
What is log; 37
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Discrete Logarithms

Discrete Logarithm (2/2)

Example. 7 is a generator of Z1, additively, since ged(7,12) = 1.
What is log;3? (9-7 =63 =3 mod 12, so log; 3 =9)
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Discrete Logarithms

Discrete Logarithm (2/2)

Example. 7 is a generator of Z1, additively, since ged(7,12) = 1.

What is log;3? (9-7 =63 =3 mod 12, so log; 3 =9)

Example. 7 is a generator of Z7;.

What is log; 97
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Discrete Logarithms

Discrete Logarithm (2/2)

Example. 7 is a generator of Z1, additively, since ged(7,12) = 1.

What is log;3? (9-7 =63 =3 mod 12, so log; 3 =9)

Example. 7 is a generator of Z7;.

What is log; 97 (7% = 9 mod 13, so log; 9 = 4)
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Discrete Logarithms

Discrete Logarithm Assumption

Let Gy, be a cyclic group of prime order g, such that |log, gn| = n
for n=2,3,4,..., and denote the family {Gg, }nen by G.

Definition. The Discrete Logarithm Assumption (DLA) in G
states that if generators g, and y, of G, are randomly chosen,
then for every polynomial time algorithm A

Pr [A(gm)/n) = |Oggn }/n]

is negligible.
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Discrete Logarithms

Discrete Logarithm Assumption

Let Gy, be a cyclic group of prime order g, such that |log, gn| = n
for n=2,3,4,..., and denote the family {Gg, }nen by G.

Definition. The Discrete Logarithm Assumption (DLA) in G
states that if generators g and y of G are randomly chosen, then
for every polynomial time algorithm A

PrA(g,y) = log, y]

is negligible.

We usually remove the indices from our notation!
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Discrete Logarithms

Diffie-Hellman Assumption

Definition. Let g be a generator of G. The Diffie-Hellman
Assumption (DHA) in G states that if a, b € Zg are randomly
chosen, then for every polynomial time algorithm A

PrAe*,8") = 8|

is negligible.
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Discrete Logarithms

Decision Diffie-Hellman Assumption

Definition. Let g be a generator of G. The Decision
Diffie-Hellman Assumption (DDHA) in G states that if
a,b,c € Zq are randomly chosen, then for every polynomial time
algorithm A

‘Pr [A(ga,gb,gab) = 1] — Pr {A(g",gb,gc) = 1} ‘

is negligible.
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Discrete Logarithms

Relating DL Assumptions

» Computing discrete logarithms is at least as hard as
computing a Diffie-Hellman element g2? from g2 and g?.

» Computing a Diffie-Hellman element g from g2 and g? is at
least as hard as distinguishing a Diffie-Hellman triple
(g2, g°, g2") from a random triple (g2, g%, g°).

» In most groups where the DLA is conjectured, DHA and
DDHA are conjectured as well.

» There exists special elliptic curves where DDHA is easy, but
DHA is conjectured!
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Discrete Logarithms

Security of El Gamal

» Finding the secret key is equivalent to DLA.

» Finding the plaintext from the ciphertext and the public key
and is equivalent to DHA.

» The semantic security of El Gamal is equivalent to DDHA.
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Discrete Logarithms

Brute Force and Shank’s

Let G be a cyclic group of order g and g a generator. We wish to
compute log, y.

» Brute Force. O(q)

» Shanks. Time and SpaceO(\/a).
1. Set z=g".
2. Compute z' for 0 < i < g/m.

3. Find 0 <j < mand0< i< qg/msuch that yg/ = z' and
output x =mi — j.
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Discrete Logarithms

Pollard-p (1/2)

Partition G into 51, S5, and S3 “randomly”.

» Generate “random” sequence ag, a1, an. ..

ag =8
aji—1g ifai1€5
o = 0‘,2—1 if oj_1 €5

i1y if aj_1 € S3
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Discrete Logarithms

Pollard-p (1/2)

Partition G into 51, S5, and S3 “randomly”.

» Generate “random” sequence ag, a1, an. ..

ag =8
ai_18 ifaj_1 €5
2

ap =4 ai_g ifaji_1 €5

i1y if aj_1 € S3

» Each o; = ga"yb", where a;, b; € Zq are known!
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Discrete Logarithms

Pollard-p (1/2)

Partition G into 51, S5, and S3 “randomly”.

» Generate “random” sequence ag, a1, an. ..

ag =8

ai_18 ifaj_1 €5

o = 0‘,2—1 ifaji_1 €5

i1y if aj_1 € S3

» Each o; = ga"yb", where a;, b; € Zq are known!

> |f aj = q; and (ai’ bi) 7& (aj, bj) then y = g(ai—aj)(bj—bi)_l.
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Discrete Logarithms

Pollard-p (2/2)

> If o = Q;j, then Qjt] = Qjt1.
» The sequence ag, a1, a9, ... is “essentially random”.

» The Birthday bound implies that the expected running time is

0(ya).
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Discrete Logarithms

Index Calculus

» Let B={pi1,...,pB} be a set of small prime integers.
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Discrete Logarithms

Index Calculus

» Let B={pi1,...,pB} be a set of small prime integers.

» Compute a; = log, p; for all p; € B.
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Discrete Logarithms

Index Calculus

» Let B={p1,...,ps} be a set of small prime integers.

» Compute a; = log, p; for all p; € B.

1. Choose s; € Z4 randomly and attempt to factor g% =[], p/’”
as an integer.

DD2448 Foundations of Cryptography Febrary 18, 2010



Discrete Logarithms

Index Calculus

» Let B={p1,...,ps} be a set of small prime integers.

» Compute a; = log, p; for all p; € B.

1. Choose s; € Z4 randomly and attempt to factor g% =[], p/’”
as an integer.

2. If g% factored in B and ¢; = (ej1,...,¢€;8) is linearly
independent of ey, ..., 1, then j «— j+ 1.

DD2448 Foundations of Cryptography Febrary 18, 2010



Discrete Logarithms

Index Calculus

» Let B={p1,...,ps} be a set of small prime integers.

» Compute a; = log, p; for all p; € B.

1. Choose s; € Z4 randomly and attempt to factor g% =[], p/’”
as an integer.

2. If g% factored in B and ¢; = (ej1,...,¢€;8) is linearly
independent of ey, ..., 1, then j «— j+ 1.

3. If j < B, then go to (1)
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Discrete Logarithms

Index Calculus

» Let B={pi1,...,pB} be a set of small prime integers.

» Compute a; = log, p; for all p; € B.
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Discrete Logarithms

Index Calculus

» Let B={pi1,...,pB} be a set of small prime integers.
» Compute a; = Iogg p; for all p; € B.

» Repeat:

1. Choose s € Zq randomly.
2. Attempt to factor yg* =[], p{" as an integer.
3. If a factorization is found, then output ()", aie; — s) mod q.
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Discrete Logarithms

Example Groups

» 7, additively?
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Discrete Logarithms

Example Groups

> Zn additively? ((log, y)g = y mod n, so
log, y = yg~! mod n) Bad for crypto!

> Large prime order subgroup of Z, with p prime. In particular
p =2qg + 1 with g prime.

» Large prime order subgroup of GF:k.

» “Carefully chosen” elliptic curve group.
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