ROM-RSA, Rabin, Diffie-Hellman, El Gamal, and Discrete Logarithms

Douglas Wikström KTH Stockholm dog@csc.kth.se

February 18

DD2448 Foundations of Cryptography

Febrary 18, 2010

ROM-RSA	Rabin	Diffie-Hellman	El Gamal	Discrete Logarithms

• ROM-RSA

• Rabin

- Diffie-Hellman
- El Gamal
- Discrete Logarithms

The RSA Assumption

Definition. The RSA assumption states that if:

- 1. N = pq factors into two randomly chosen primes p and q of the same bit-size.
- 2. *e* is in $\mathbb{Z}^*_{\phi(N)}$,
- 3. *m* is randomly chosen in \mathbb{Z}_N^* ,

then for every polynomial time algorithm A

$$\Pr[A(N, e, m^e \mod N) = m]$$

is negligible.

ROM-RSARabinDiffie-HellmanEl GamalDiscrete LogarithmsSemantically Secure ROM-RSA (1/2)

Suppose that $f : \{0,1\}^n \to \{0,1\}^n$ is a randomly chosen function (a random oracle).

- Key Generation. Choose a random RSA key pair ((N, e), (p, q, d)), with $\log_2 N = n$.
- **Encryption.** Encrypt a plaintext $m \in \{0,1\}^n$ by choosing $r \in \mathbb{Z}_N^*$ randomly and computing

$$(u,v) = (r^e \mod N, f(r) \oplus m)$$
.

• **Decryption.** Decrypt a ciphertext (u, v) by

$$m = v \oplus f(u^d)$$
.

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Solutions.

 Using a "optimal" padding the first problem can be reduced. See standard OAEP+.

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Solutions.

- Using a "optimal" padding the first problem can be reduced. See standard OAEP+.
- Using a scheme with much lower rate, the second problem can be removed.

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Solutions.

- Using a "optimal" padding the first problem can be reduced. See standard OAEP+.
- Using a scheme with much lower rate, the second problem can be removed.
- If the key of an ideal cipher is encrypted, then we can avoid the ROM and still have "optimal padding"

ROM-RSA Rabin Diffie-Hellman El Gamal Discrete Logarithms

Rabin's Cryptosystem (1/3)

Key Generation.

- Choose *n*-bit primes *p* and *q* such that *p*, *q* = 3 mod 4 randomly and define *N* = *pq*.
- ► Output the key pair (N, (p, q)), where (N, e) is the public key and (p, q) is the secret key.

ROM-RSARabinDiffie-HellmanEl GamalDiscrete LogarithmsRabin's Cryptosystem (2/3)

Encryption. Encrypt a plaintext *m* by computing

 $c = m^2 \mod N$.

Decryption. Decrypt a ciphertext *c* by computing

 $m=\sqrt{c} \bmod N$.

ROM-RSARabinDiffie-HellmanEl GamalDiscrete LogarithmsRabin's Cryptosystem (2/3)

Encryption. Encrypt a plaintext *m* by computing

 $c = m^2 \mod N$.

Decryption. Decrypt a ciphertext *c* by computing

 $m=\sqrt{c} \mod N$.

There are **four** roots, so which one should be used!

ROM-RSA Rabin Diffie-Hellman El Gamal Discrete Logarithms

Rabin's Cryptosystem (3/3)

Suppose y is a quadratic residue modulo p.

$$\left(\pm y^{(p+1)/4}\right)^2 = y^{(p+1)/2} \mod p$$
$$= y^{(p-1)/2}y \mod p$$
$$= \left(\frac{y}{p}\right)y$$
$$= y \mod p$$

In Rabin's cryptosystem:

- Find roots for $y_p = y \mod p$ and $y_q = y \mod q$.
- Combine roots to get the four roots modulo N. Choose the "right" root and output the plaintext.

DD2448 Foundations of Cryptography

Security of Rabin's Cryptosystem

Theorem. Breaking Rabin's cryptosystem is equivalent to factoring (provided we do not derandomize decryption!).

Idea.

- 1. Choose random element r.
- 2. Hand $r^2 \mod N$ to adversary.
- 3. Consider outputs r' from the adversary such that $(r')^2 = r^2 \mod N$. Then $r' \neq \pm r \mod N$, with probability 1/2, in which case gcd(r' r, N) gives a factor of N.

ROM-RSA Rabin Diffie-Hellman El Gamal Discrete Logarithms A Goldwasser-Micali Variant of Rabin

Theorem [CG98]. If factoring is hard and r is a random quadratic residue modulo N, then for every polynomial time algorithm A

$$\Pr[A(N, r^2 \mod N) = \mathsf{lsb}(r)]$$

is negligible.

▶ **Encryption.** Encrypt a plaintext *m* ∈ {0,1} by choosing a random quadratic residue *r* modulo *N* and computing

$$(u, v) = (r^2 \mod N, \operatorname{lsb}(r) \oplus m)$$
.

Decryption. Decrypt a ciphertext (u, v) by

 $m = v \oplus {
m lsb}(\sqrt{u})$ where \sqrt{u} is a quadratic residue .

Diffie and Hellman asked themselves:

How can two parties efficiently agree on a secret key using only **public** communication?

Construction.

Let G be a cyclic group of order q with generator g.

- Alice picks a ∈ Z_q randomly, computes y_a = g^a and hands y_a to Bob.
 - Bob picks b ∈ Z_q randomly, computes y_b = g^b and hands y_b to Alice.
- 2. Alice computes $k = y_b^a$.
 - Bob computes $k = y_a^b$.
- 3. The joint secret key is k.

Diffie-Hellman Key Exchange (3/3)

Problems.

- Susceptible to man-in-the-middle attack without authentication.
- ► How do we map a random element k ∈ G to a random symmetric key in {0,1}ⁿ?

ROM-RSA Rabin Diffie-Hellman El Gamal Discrete Logarithms

The El Gamal Cryptosystem (1/2)

Definition. Let G be a cyclic group of order q with generator g.

► The key generation algorithm chooses a random element x ∈ Z_q as the private key and defines the public key as

$$y = g^{x}$$

► The encryption algorithm takes a message m ∈ G and the public key y, chooses r ∈ Z_q, and outputs the pair

$$(u,v) = \mathsf{E}_{y}(m,r) = (g^{r},y^{r}m) \ .$$

The decryption algorithm takes a ciphertext (u, v) and the secret key and outputs

$$m = \mathsf{D}_x(u, v) = v u^{-x}$$

.

The El Gamal Cryptosystem (2/2)

- El Gamal is essentially Diffie-Hellman + OTP.
- Homomorphic property (with public key y)

$$E_y(m_0, r_0)E_y(m_1, r_1) = E_y(m_0m_1, r_0 + r_1)$$
.

This property is very important in the construction of cryptographic protocols!

Definition. Let G be a cyclic group of order q and let g be a generator G. The **discrete logarithm** of $y \in G$ in the basis g (written $\log_g y$) is defined as the unique $x \in \{0, 1, \ldots, q-1\}$ such that

$$y = g^x$$
 .

Compare with a "normal" logarithm! $(\ln y = x \text{ iff } y = e^x)$

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7, 12) = 1. What is $\log_7 3$?

ROM-RSARabinDiffie-HellmanEl GamalDiscrete LogarithmsDiscrete Logarithm (2/2)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7, 12) = 1. What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$) ROM-RSARabinDiffie-HellmanEl GamalDiscrete LogarithmsDiscrete Logarithm (2/2)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7, 12) = 1. What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$)

Example. 7 is a generator of \mathbb{Z}_{13}^* .

What is log₇ 9?

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7, 12) = 1. What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$)

Example. 7 is a generator of \mathbb{Z}_{13}^* .

What is $\log_7 9$? (7⁴ = 9 mod 13, so $\log_7 9 = 4$)

Let G_{q_n} be a cyclic group of prime order q_n such that $\lfloor \log_2 q_n \rfloor = n$ for $n = 2, 3, 4, \ldots$, and denote the family $\{G_{q_n}\}_{n \in \mathbb{N}}$ by G.

Definition. The **Discrete Logarithm Assumption (DLA)** in *G* states that if generators g_n and y_n of G_{q_n} are randomly chosen, then for every polynomial time algorithm *A*

$$\Pr\left[A(g_n, y_n) = \log_{g_n} y_n\right]$$

is negligible.

Let G_{q_n} be a cyclic group of prime order q_n such that $\lfloor \log_2 q_n \rfloor = n$ for $n = 2, 3, 4, \ldots$, and denote the family $\{G_{q_n}\}_{n \in \mathbb{N}}$ by G.

Definition. The **Discrete Logarithm Assumption (DLA)** in G states that if generators g and y of G are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g,y) = \log_g y\right]$$

is negligible.

We usually remove the indices from our notation!

Diffie-Hellman Assumption

Definition. Let g be a generator of G. The **Diffie-Hellman** Assumption (DHA) in G states that if $a, b \in \mathbb{Z}_q$ are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g^a,g^b)=g^{ab}\right]$$

is negligible.

Decision Diffie-Hellman Assumption

Definition. Let g be a generator of G. The **Decision Diffie-Hellman Assumption (DDHA)** in G states that if $a, b, c \in \mathbb{Z}_q$ are randomly chosen, then for every polynomial time algorithm A

$$\left| \mathsf{Pr}\left[\mathsf{A}(g^{a},g^{b},g^{ab})=1 \right] - \mathsf{Pr}\left[\mathsf{A}(g^{a},g^{b},g^{c})=1 \right] \right|$$

is negligible.

ROM-RSA Rabin Diffie-Hellman El Gamal Discrete Logarithms

Relating DL Assumptions

- Computing discrete logarithms is at least as hard as computing a Diffie-Hellman element g^{ab} from g^a and g^b.
- Computing a Diffie-Hellman element g^{ab} from g^a and g^b is at least as hard as distinguishing a Diffie-Hellman triple (g^a, g^b, g^{ab}) from a random triple (g^a, g^b, g^c).
- In most groups where the DLA is conjectured, DHA and DDHA are conjectured as well.
- There exists special elliptic curves where DDHA is easy, but DHA is conjectured!

- Finding the secret key is equivalent to DLA.
- Finding the plaintext from the ciphertext and the public key and is equivalent to DHA.
- ► The semantic security of El Gamal is equivalent to DDHA.

Let G be a cyclic group of order q and g a generator. We wish to compute $\log_g y$.

- **•** Brute Force. O(q)
- **Shanks.** Time and **Space** $O(\sqrt{q})$.

1. Set
$$z = g^m$$
.

- 2. Compute z^i for $0 \le i \le q/m$.
- 3. Find $0 \le j \le m$ and $0 \le i \le q/m$ such that $yg^j = z^i$ and output x = mi j.

Partition G into S_1 , S_2 , and S_3 "randomly".

• Generate "random" sequence $\alpha_0, \alpha_1, \alpha_2 \dots$

$$\alpha_0 = g$$

$$\alpha_i = \begin{cases} \alpha_{i-1}g & \text{if } \alpha_{i-1} \in S_1 \\ \alpha_{i-1}^2 & \text{if } \alpha_{i-1} \in S_2 \\ \alpha_{i-1}y & \text{if } \alpha_{i-1} \in S_3 \end{cases}$$

Partition G into S_1 , S_2 , and S_3 "randomly".

• Generate "random" sequence $\alpha_0, \alpha_1, \alpha_2 \dots$

$$\alpha_0 = g$$

$$\alpha_i = \begin{cases} \alpha_{i-1}g & \text{if } \alpha_{i-1} \in S_1 \\ \alpha_{i-1}^2 & \text{if } \alpha_{i-1} \in S_2 \\ \alpha_{i-1}y & \text{if } \alpha_{i-1} \in S_3 \end{cases}$$

► Each
$$\alpha_i = g^{a_i} y^{b_i}$$
, where $a_i, b_i \in \mathbb{Z}_q$ are known!

Partition G into S_1 , S_2 , and S_3 "randomly".

• Generate "random" sequence $\alpha_0, \alpha_1, \alpha_2 \dots$

$$\alpha_0 = g$$

$$\alpha_i = \begin{cases} \alpha_{i-1}g & \text{if } \alpha_{i-1} \in S_1 \\ \alpha_{i-1}^2 & \text{if } \alpha_{i-1} \in S_2 \\ \alpha_{i-1}y & \text{if } \alpha_{i-1} \in S_3 \end{cases}$$

► Each
$$\alpha_i = g^{a_i} y^{b_i}$$
, where $a_i, b_i \in \mathbb{Z}_q$ are known!

• If $\alpha_i = \alpha_j$ and $(a_i, b_i) \neq (a_j, b_j)$ then $y = g^{(a_i - a_j)(b_j - b_i)^{-1}}$.

- If $\alpha_i = \alpha_j$, then $\alpha_{i+1} = \alpha_{j+1}$.
- The sequence $\alpha_0, \alpha_1, \alpha_2, \ldots$ is "essentially random".
- The Birthday bound implies that the expected running time is $O(\sqrt{q})$.

• Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.

- Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.

- Let $\mathcal{B} = \{p_1, \ldots, p_B\}$ be a set of small prime **integers**.
- Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
 - 1. Choose $s_j \in \mathbb{Z}_q$ randomly and attempt to factor $g^{s_j} = \prod_i p_i^{e_{j,i}}$ as an **integer**.

ROM-RSA Rabin Diffie-Hellman El Gamal Discrete Logarithms Index Calculus

- Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
 - 1. Choose $s_j \in \mathbb{Z}_q$ randomly and attempt to factor $g^{s_j} = \prod_i p_i^{e_{j,i}}$ as an **integer**.
 - 2. If g^{s_j} factored in \mathcal{B} and $e_j = (e_{j,1}, \ldots, e_{j,B})$ is linearly independent of e_1, \ldots, e_{j-1} , then $j \leftarrow j + 1$.

ROM-RSA Rabin Diffie-Hellman El Gamal Discrete Logarithms Index Calculus

- Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
 - 1. Choose $s_j \in \mathbb{Z}_q$ randomly and attempt to factor $g^{s_j} = \prod_i p_i^{e_{j,i}}$ as an **integer**.
 - 2. If g^{s_j} factored in \mathcal{B} and $e_j = (e_{j,1}, \ldots, e_{j,B})$ is linearly independent of e_1, \ldots, e_{j-1} , then $j \leftarrow j + 1$.

3. If
$$j < B$$
, then go to (1)

- Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.

• Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.

• Compute
$$a_i = \log_g p_i$$
 for all $p_i \in \mathcal{B}$.

Repeat:

- 1. Choose $s \in \mathbb{Z}_q$ randomly.
- 2. Attempt to factor $yg^s = \prod_i p_i^{e_i}$ as an **integer**.
- 3. If a factorization is found, then output $(\sum_i a_i e_i s) \mod q$.

- ► Z_n additively? ((log_g y)g = y mod n, so log_g y = yg⁻¹ mod n) Bad for crypto!
- Large prime order subgroup of Z^{*}_p with p prime. In particular p = 2q + 1 with q prime.
- Large prime order subgroup of GF^{*}_p.
- "Carefully chosen" elliptic curve group.