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The RSA Assumption

Definition. The RSA assumption states that if:

1. N = pq factors into two randomly chosen primes p and q of
the same bit-size,

2. e is in Z
∗

φ(N),

3. m is randomly chosen in Z
∗

N ,

then for every polynomial time algorithm A

Pr[A(N, e,me mod N) = m]

is negligible.
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Semantically Secure ROM-RSA (1/2)

Suppose that f : {0, 1}n → {0, 1}n is a randomly chosen function
(a random oracle).

◮ Key Generation. Choose a random RSA key pair
((N, e), (p, q, d)), with log2 N = n.

◮ Encryption. Encrypt a plaintext m ∈ {0, 1}n by choosing
r ∈ Z

∗

N randomly and computing

(u, v) = (r e mod N, f (r)⊕m) .

◮ Decryption. Decrypt a ciphertext (u, v) by

m = v ⊕ f (ud) .
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Semantically Secure RSA in the ROM (2/2)

◮ We increase the ciphertext size by a factor of two.

◮ Our analysis is in the random oracle model, which is
unsound!
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Semantically Secure RSA in the ROM (2/2)

◮ We increase the ciphertext size by a factor of two.

◮ Our analysis is in the random oracle model, which is
unsound!

Solutions.

◮ Using a “optimal” padding the first problem can be reduced.
See standard OAEP+.
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Semantically Secure RSA in the ROM (2/2)

◮ We increase the ciphertext size by a factor of two.

◮ Our analysis is in the random oracle model, which is
unsound!

Solutions.

◮ Using a “optimal” padding the first problem can be reduced.
See standard OAEP+.

◮ Using a scheme with much lower rate, the second problem can
be removed.
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Semantically Secure RSA in the ROM (2/2)

◮ We increase the ciphertext size by a factor of two.

◮ Our analysis is in the random oracle model, which is
unsound!

Solutions.

◮ Using a “optimal” padding the first problem can be reduced.
See standard OAEP+.

◮ Using a scheme with much lower rate, the second problem can
be removed.

◮ If the key of an ideal cipher is encrypted, then we can avoid
the ROM and still have “optimal padding”
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Rabin’s Cryptosystem (1/3)

Key Generation.

◮ Choose n-bit primes p and q such that p, q = 3 mod 4
randomly and define N = pq.

◮ Output the key pair (N, (p, q)), where (N, e) is the public key
and (p, q) is the secret key.
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Rabin’s Cryptosystem (2/3)

Encryption. Encrypt a plaintext m by computing

c = m2 mod N .

Decryption. Decrypt a ciphertext c by computing

m =
√

c mod N .
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Rabin’s Cryptosystem (2/3)

Encryption. Encrypt a plaintext m by computing

c = m2 mod N .

Decryption. Decrypt a ciphertext c by computing

m =
√

c mod N .

There are four roots, so which one should be used!
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Rabin’s Cryptosystem (3/3)

Suppose y is a quadratic residue modulo p.

(

±y (p+1)/4
)2

= y (p+1)/2 mod p

= y (p−1)/2y mod p

=

(

y

p

)

y

= y mod p

In Rabin’s cryptosystem:

◮ Find roots for yp = y mod p and yq = y mod q.

◮ Combine roots to get the four roots modulo N. Choose the
“right” root and output the plaintext.
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Security of Rabin’s Cryptosystem

Theorem. Breaking Rabin’s cryptosystem is equivalent to
factoring (provided we do not derandomize decryption!).

Idea.

1. Choose random element r .

2. Hand r2 mod N to adversary.

3. Consider outputs r ′ from the adversary such that
(r ′)2 = r2 mod N. Then r ′ 6= ±r mod N, with probability
1/2, in which case gcd(r ′ − r ,N) gives a factor of N.
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A Goldwasser-Micali Variant of Rabin

Theorem [CG98]. If factoring is hard and r is a random quadratic
residue modulo N, then for every polynomial time algorithm A

Pr[A(N, r2 mod N) = lsb(r)]

is negligible.

◮ Encryption. Encrypt a plaintext m ∈ {0, 1} by choosing a
random quadratic residue r modulo N and computing

(u, v) = (r2 mod N, lsb(r)⊕m) .

◮ Decryption. Decrypt a ciphertext (u, v) by

m = v ⊕ lsb(
√

u) where
√

u is a quadratic residue .
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Diffie-Hellman Key Exchange (1/3)

Diffie and Hellman asked themselves:

How can two parties efficiently agree on a secret key using only
public communication?
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Diffie-Hellman Key Exchange (2/3)

Construction.
Let G be a cyclic group of order q with generator g .

1. ◮ Alice picks a ∈ Zq randomly, computes ya = g a and hands ya

to Bob.

◮ Bob picks b ∈ Zq randomly, computes yb = gb and hands yb

to Alice.

2. ◮ Alice computes k = ya
b .

◮ Bob computes k = yb
a .

3. The joint secret key is k.
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Diffie-Hellman Key Exchange (3/3)

Problems.

◮ Susceptible to man-in-the-middle attack without
authentication.

◮ How do we map a random element k ∈ G to a random
symmetric key in {0, 1}n?
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The El Gamal Cryptosystem (1/2)

Definition. Let G be a cyclic group of order q with generator g .

◮ The key generation algorithm chooses a random element
x ∈ Zq as the private key and defines the public key as

y = gx .

◮ The encryption algorithm takes a message m ∈ G and the
public key y , chooses r ∈ Zq, and outputs the pair

(u, v) = Ey (m, r) = (g r , y rm) .

◮ The decryption algorithm takes a ciphertext (u, v) and the
secret key and outputs

m = Dx(u, v) = vu−x .
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The El Gamal Cryptosystem (2/2)

◮ El Gamal is essentially Diffie-Hellman + OTP.

◮ Homomorphic property (with public key y)

Ey (m0, r0)Ey (m1, r1) = Ey (m0m1, r0 + r1) .

This property is very important in the construction of
cryptographic protocols!
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Discrete Logarithm (1/2)

Definition. Let G be a cyclic group of order q and let g be a
generator G . The discrete logarithm of y ∈ G in the basis g

(written logg y) is defined as the unique x ∈ {0, 1, . . . , q − 1} such
that

y = gx .

Compare with a “normal” logarithm! (ln y = x iff y = ex )

DD2448 Foundations of Cryptography Febrary 18, 2010



ROM-RSA Rabin Diffie-Hellman El Gamal Discrete Logarithms

Discrete Logarithm (2/2)

Example. 7 is a generator of Z12 additively, since gcd(7, 12) = 1.

What is log7 3?
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Discrete Logarithm (2/2)

Example. 7 is a generator of Z12 additively, since gcd(7, 12) = 1.

What is log7 3? (9 · 7 = 63 = 3 mod 12, so log7 3 = 9)
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Discrete Logarithm (2/2)

Example. 7 is a generator of Z12 additively, since gcd(7, 12) = 1.

What is log7 3? (9 · 7 = 63 = 3 mod 12, so log7 3 = 9)

Example. 7 is a generator of Z
∗

13.

What is log7 9?
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Discrete Logarithm (2/2)

Example. 7 is a generator of Z12 additively, since gcd(7, 12) = 1.

What is log7 3? (9 · 7 = 63 = 3 mod 12, so log7 3 = 9)

Example. 7 is a generator of Z
∗

13.

What is log7 9? (74 = 9 mod 13, so log7 9 = 4)
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Discrete Logarithm Assumption

Let Gqn be a cyclic group of prime order qn such that ⌊log2 qn⌋ = n

for n = 2, 3, 4, . . ., and denote the family {Gqn}n∈N by G .

Definition. The Discrete Logarithm Assumption (DLA) in G

states that if generators gn and yn of G qn are randomly chosen,
then for every polynomial time algorithm A

Pr
[

A(gn, yn) = loggn
yn

]

is negligible.
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Discrete Logarithm Assumption

Let Gqn be a cyclic group of prime order qn such that ⌊log2 qn⌋ = n

for n = 2, 3, 4, . . ., and denote the family {Gqn}n∈N by G .

Definition. The Discrete Logarithm Assumption (DLA) in G

states that if generators g and y of G are randomly chosen, then
for every polynomial time algorithm A

Pr
[

A(g , y) = logg y
]

is negligible.

We usually remove the indices from our notation!
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Diffie-Hellman Assumption

Definition. Let g be a generator of G . The Diffie-Hellman
Assumption (DHA) in G states that if a, b ∈ Zq are randomly
chosen, then for every polynomial time algorithm A

Pr
[

A(ga, gb) = gab
]

is negligible.
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Decision Diffie-Hellman Assumption

Definition. Let g be a generator of G . The Decision
Diffie-Hellman Assumption (DDHA) in G states that if
a, b, c ∈ Zq are randomly chosen, then for every polynomial time
algorithm A

∣

∣

∣
Pr

[

A(ga, gb, gab) = 1
]

− Pr
[

A(ga, gb, g c ) = 1
]
∣

∣

∣

is negligible.
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Relating DL Assumptions

◮ Computing discrete logarithms is at least as hard as
computing a Diffie-Hellman element gab from ga and gb.

◮ Computing a Diffie-Hellman element gab from ga and gb is at
least as hard as distinguishing a Diffie-Hellman triple
(ga, gb, gab) from a random triple (ga, gb, g c ).

◮ In most groups where the DLA is conjectured, DHA and
DDHA are conjectured as well.

◮ There exists special elliptic curves where DDHA is easy, but
DHA is conjectured!
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Security of El Gamal

◮ Finding the secret key is equivalent to DLA.

◮ Finding the plaintext from the ciphertext and the public key
and is equivalent to DHA.

◮ The semantic security of El Gamal is equivalent to DDHA.
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Brute Force and Shank’s

Let G be a cyclic group of order q and g a generator. We wish to
compute logg y .

◮ Brute Force. O(q)

◮ Shanks. Time and SpaceO
(√

q
)

.

1. Set z = gm.

2. Compute z i for 0 ≤ i ≤ q/m.

3. Find 0 ≤ j ≤ m and 0 ≤ i ≤ q/m such that yg j = z i and
output x = mi − j .

DD2448 Foundations of Cryptography Febrary 18, 2010



ROM-RSA Rabin Diffie-Hellman El Gamal Discrete Logarithms

Pollard-ρ (1/2)

Partition G into S1, S2, and S3 “randomly”.

◮ Generate “random” sequence α0, α1, α2 . . .

α0 = g

αi =







αi−1g if αi−1 ∈ S1

α2
i−1 if αi−1 ∈ S2

αi−1y if αi−1 ∈ S3
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Pollard-ρ (1/2)

Partition G into S1, S2, and S3 “randomly”.

◮ Generate “random” sequence α0, α1, α2 . . .

α0 = g

αi =







αi−1g if αi−1 ∈ S1

α2
i−1 if αi−1 ∈ S2

αi−1y if αi−1 ∈ S3

◮ Each αi = gai ybi , where ai , bi ∈ Zq are known!
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Pollard-ρ (1/2)

Partition G into S1, S2, and S3 “randomly”.

◮ Generate “random” sequence α0, α1, α2 . . .

α0 = g

αi =







αi−1g if αi−1 ∈ S1

α2
i−1 if αi−1 ∈ S2

αi−1y if αi−1 ∈ S3

◮ Each αi = gai ybi , where ai , bi ∈ Zq are known!

◮ If αi = αj and (ai , bi ) 6= (aj , bj) then y = g (ai−aj)(bj−bi )
−1

.
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Pollard-ρ (2/2)

◮ If αi = αj , then αi+1 = αj+1.

◮ The sequence α0, α1, α2, . . . is “essentially random”.

◮ The Birthday bound implies that the expected running time is
O(
√

q).
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

1. Choose sj ∈ Zq randomly and attempt to factor g sj =
∏

i p
ej,i

i

as an integer.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

1. Choose sj ∈ Zq randomly and attempt to factor g sj =
∏

i p
ej,i

i

as an integer.
2. If g sj factored in B and ej = (ej,1, . . . , ej,B ) is linearly

independent of e1, . . . , ej−1, then j ← j + 1.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

1. Choose sj ∈ Zq randomly and attempt to factor g sj =
∏

i p
ej,i

i

as an integer.
2. If g sj factored in B and ej = (ej,1, . . . , ej,B ) is linearly

independent of e1, . . . , ej−1, then j ← j + 1.
3. If j < B, then go to (1)
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.
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Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

◮ Repeat:

1. Choose s ∈ Zq randomly.
2. Attempt to factor yg s =

∏

i p
ei

i as an integer.
3. If a factorization is found, then output (

∑

i aiei − s) mod q.
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Example Groups

◮ Zn additively?
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Example Groups

◮ Zn additively? ((logg y)g = y mod n, so
logg y = yg−1 mod n) Bad for crypto!

◮ Large prime order subgroup of Z
∗

p with p prime. In particular
p = 2q + 1 with q prime.

◮ Large prime order subgroup of GF∗

pk .

◮ “Carefully chosen” elliptic curve group.
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