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Classical Ciphers Continued

Ceasar Cipher (Shift Cipher)

Consider English, with alphabet A-Z , where denotes space,
thought of as integers 0-26, i.e., Z27

◮ Key. Random letter k ∈ Z27.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n

27 gives ciphertext
c = (c1, . . . , cn), where ci = mi + k mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n

27 gives plaintext
m = (m1, . . . ,mn), where mi = ci − k mod 27.
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Classical Ciphers Continued

Ceasar Cipher Example

Encoding.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
000102030405060708091011121314151617181920212223242526

Key: G = 6
Plaintext. B R I B E L U L A T O B U Y J A S

Plaintext. 011708010426112011002619142601202426090018

Ciphertext. 072314071005172617060525200507260305150624

Ciphertext. H X O H K F R R G F Z U F H D F P G Y
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Classical Ciphers Continued

Statistical Attack Against Ceasar (1/3)

Decrypt with all possible keys and see
if some English shows up, or more
precisely...
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Classical Ciphers Continued

Statistical Attack Against Ceasar (2/3)

Written English Letter Frequency Table F [·].

A 0.072 J 0.001 S 0.056
B 0.013 K 0.007 T 0.080
C 0.024 L 0.035 U 0.024
D 0.037 M 0.021 V 0.009
E 0.112 N 0.059 W 0.021
F 0.020 O 0.066 X 0.001
G 0.018 P 0.017 Y 0.017
H 0.054 Q 0.001 Z 0.001
I 0.061 R 0.053 0.120

Note that the same frequencies appear in a ciphertext of written
English, but in shifted order!
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Classical Ciphers Continued

Statistical Attack Against Ceasar (3/3)

◮ Check that the plaintext of our ciphertext has similar
frequencies as written English.

◮ Find the key k that maximizes the inner product
T (E−1

k (C )) · F , where T (s) and F denotes the frequency
tables of the string s and English.

This usually gives the correct key k.
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Classical Ciphers Continued

Affine Cipher

Affine Cipher.

◮ Key. Random pair k = (a, b), where a ∈ Z27 is relatively
prime to 27, and b ∈ Z27.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n

27 gives ciphertext
c = (c1, . . . , cn), where ci = ami + b mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n

27 gives plaintext
m = (m1, . . . ,mn), where mi = (ci − b)a−1 mod 27.
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Classical Ciphers Continued

Substitution Cipher

Ceasar cipher and affine cipher are examples of substitution ciphers.

Substitution Cipher.

◮ Key. Random permutation σ ∈ S of the symbols in the
alphabet, for some subset S of all permutations.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n

27 gives ciphertext
c = (c1, . . . , cn), where ci = σ(mi ).

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n

27 gives plaintext
m = (m1, . . . ,mn), where mi = σ

−1(ci ).
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Classical Ciphers Continued

Digrams and Trigrams

◮ A digram is an ordered pair of symbols.

◮ A trigram is an ordered triple of symbols.

◮ It is useful to compute frequency tables for the most frequent
digrams and trigrams, and not only the frequencies for
individual symbols.
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Classical Ciphers Continued

Generic Attack Against Substitution Cipher

1. Compute symbol/digram/trigram frequency tables for the
candidate language and the ciphertext.

2. Try to match symbols/digrams/trigrams with similar
frequencies.

3. Try to recognize words to confirm your guesses (we would use
a dictionary (or Google!) here).

4. Backtrack/repeat until the plaintext can be guessed.

This is hard when several symbols have similar frequencies. A large
amount of ciphertext is needed. How can we ensure this?
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Classical Ciphers Continued

Vigénère

Vigénère Cipher.

◮ Key. k = (k1, . . . , kl ), where ki ∈ Z27 is random.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n

27 gives ciphertext
c = (c1, . . . , cn), where ci = mi + ki mod l mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n

27 gives plaintext
m = (m1, . . . ,mn), where mi = ci − ki mod l mod 27.
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Classical Ciphers Continued

Vigénère

Vigénère Cipher.

◮ Key. k = (k1, . . . , kl ), where ki ∈ Z27 is random.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n

27 gives ciphertext
c = (c1, . . . , cn), where ci = mi + ki mod l mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n

27 gives plaintext
m = (m1, . . . ,mn), where mi = ci − ki mod l mod 27.

We could even make a variant of Vigénère based on the affine
cipher, but is Vigénère really any better than Ceasar?
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Classical Ciphers Continued

Attack Vigénère (1/2)

Index of Coincidence.

◮ Each probability distribution p1, . . . , pn on n symbols may be
viewed as a point p = (p1, . . . , pn) on a n − 1 dimensional
hyperplane in R

n orthogonal to the vector 1

◮ Such a point p = (p1, . . . , pn) is at distance
√

F (p) from the
origin, where F (p) =

∑

n

i=1 p
2
i
.

◮ It is clear that p is closest to the origin, when p is the uniform
distribution, i.e., when F (p) is minimized.

◮ F (p) is invariant under permutation of the underlying symbols
−→ tool to check if a set of symbols is the result of some

substitution cipher.
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Classical Ciphers Continued

Attack Vigénère (2/2)

1. For l = 1, 2, 3, . . ., we form











C1

C2
...
Cl











=











c1 cl+1 c2l+1 · · ·
c2 cl+2 c2l+2 · · ·
...

...
...

. . .

cl c2l c3l · · ·











and compute fl =
1
l

∑

l

i=1 F (Ci ).

2. A local maximum with smallest l is probably the right length.

3. Then attack each Ci separately to recover ki , using the attack
against the Ceasar cipher.
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Classical Ciphers Continued

Hill Cipher

Hill Cipher.

◮ Key. k = A, where A is an invertible l × l -matrix over Z27.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n

27 gives ciphertext
c = (c1, . . . , cn), where (computed modulo 27):

(ci+0, . . . , ci+l−1) = (mi+0, . . . ,mi+l−1)A .

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n

27 gives plaintext
m = (m1, . . . ,mn), where (computed modulo 27):

(mi+0, . . . ,mi+l−1) = (ci+0, . . . , ci+l−1)A
−1

.

for i = 1, l + 1, 2l + 1, . . .
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Classical Ciphers Continued

Permutation Cipher (Transposition Cipher)

The permutation cipher is a special case of the Hill cipher.

Permutation Cipher.

◮ Key. Random permutation π ∈ S for some subset S of the
set of permutations of {1, 2, . . . , l}.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
l

27 gives ciphertext
c = (c1, . . . , cn), where ci = m

π(i mod l).

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
l

27 gives plaintext
m = (m1, . . . ,mn), where mi = c

π
−1(i mod l).
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