Lecture 2 Classical Ciphers (Only one hour lecture)

> Douglas Wikström KTH Stockholm dog@csc.kth.se

January 31, 2014

DD2448 Foundations of Cryptography

Ceasar Cipher (Shift Cipher)

Consider English, with alphabet A-Z_, where _ denotes space, thought of as integers 0-26, i.e., \mathbb{Z}_{27}

- Key. Random letter $k \in \mathbb{Z}_{27}$.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = m_i + k \mod 27$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = c_i k \mod 27$.

Ceasar Cipher Example

Encoding. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 000102030405060708091011121314151617181920212223242526

 Key: G = 6

 Plaintext.
 B R I B E _ L U L A _ T O _ B U Y _ J A S

 Plaintext.
 011708010426112011002619142601202426090018

 Ciphertext.
 072314071005172617060525200507260305150624

 Ciphertext.
 H X O H K F R _ R G F Z U F H _ D F P G Y

Statistical Attack Against Ceasar (1/3)

Decrypt with all possible keys and see if some English shows up, or more precisely...

Statistical Attack Against Ceasar (2/3)

Written English Letter Frequency Table $F[\cdot]$.

0.072	J	0.001	S	0.056
0.013	Κ	0.007	Т	0.080
0.024	L	0.035	U	0.024
0.037	Μ	0.021	V	0.009
0.112	Ν	0.059	W	0.021
0.020	0	0.066	Х	0.001
0.018	Р	0.017	Υ	0.017
0.054	Q	0.001	Ζ	0.001
0.061	R	0.053	_	0.120
	0.072 0.013 0.024 0.037 0.112 0.020 0.018 0.054 0.061	0.072 J 0.013 K 0.024 L 0.037 M 0.112 N 0.020 O 0.018 P 0.054 Q 0.061 R	0.072 J 0.001 0.013 K 0.007 0.024 L 0.035 0.037 M 0.021 0.112 N 0.059 0.020 O 0.066 0.018 P 0.017 0.054 Q 0.001 0.061 R 0.053	0.072 J 0.001 S 0.013 K 0.007 T 0.024 L 0.035 U 0.037 M 0.021 V 0.112 N 0.059 W 0.020 O 0.066 X 0.018 P 0.017 Y 0.054 Q 0.001 Z 0.061 R 0.053 _

Note that the same frequencies appear in a ciphertext of written English, but in shifted order!

Statistical Attack Against Ceasar (3/3)

- Check that the plaintext of our ciphertext has similar frequencies as written English.
- ► Find the key k that maximizes the inner product T(E_k⁻¹(C)) · F, where T(s) and F denotes the frequency tables of the string s and English.

This usually gives the correct key k.

Affine Cipher

Affine Cipher.

- Key. Random pair k = (a, b), where a ∈ Z₂₇ is relatively prime to 27, and b ∈ Z₂₇.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = am_i + b \mod 27$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = (c_i b)a^{-1} \mod 27$.

Substitution Cipher

Ceasar cipher and affine cipher are examples of substitution ciphers.

Substitution Cipher.

- ► Key. Random permutation σ ∈ S of the symbols in the alphabet, for some subset S of all permutations.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = \sigma(m_i)$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = \sigma^{-1}(c_i)$.

Digrams and Trigrams

- A digram is an ordered pair of symbols.
- A trigram is an ordered triple of symbols.
- It is useful to compute frequency tables for the most frequent digrams and trigrams, and not only the frequencies for individual symbols.

Generic Attack Against Substitution Cipher

- 1. Compute symbol/digram/trigram frequency tables for the candidate language and the ciphertext.
- 2. Try to match symbols/digrams/trigrams with similar frequencies.
- 3. Try to recognize words to confirm your guesses (we would use a dictionary (or Google!) here).
- 4. Backtrack/repeat until the plaintext can be guessed.

This is hard when several symbols have similar frequencies. A large amount of ciphertext is needed. How can we ensure this?

Vigénère

Vigénère Cipher.

- Key. $k = (k_1, \dots, k_l)$, where $k_i \in \mathbb{Z}_{27}$ is random.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = m_i + k_i \mod l \mod 27$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = c_i k_i \mod l \mod 27$.

Vigénère

Vigénère Cipher.

- Key. $k = (k_1, \dots, k_l)$, where $k_i \in \mathbb{Z}_{27}$ is random.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = m_i + k_i \mod l \mod 27$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = c_i k_i \mod l \mod 27$.

We could even make a variant of Vigénère based on the affine cipher, but is Vigénère really any better than Ceasar?

Attack Vigénère (1/2)

Index of Coincidence.

- ► Each probability distribution p₁,..., p_n on n symbols may be viewed as a point p = (p₁,..., p_n) on a n − 1 dimensional hyperplane in ℝⁿ orthogonal to the vector 1
- ▶ Such a point $p = (p_1, ..., p_n)$ is at distance $\sqrt{F(p)}$ from the origin, where $F(p) = \sum_{i=1}^{n} p_i^2$.
- ► It is clear that p is closest to the origin, when p is the uniform distribution, i.e., when F(p) is minimized.
- F(p) is invariant under permutation of the underlying symbols
 → tool to check if a set of symbols is the result of *some* substitution cipher.

Attack Vigénère (2/2)

1. For I = 1, 2, 3, ..., we form

$$\begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_l \end{pmatrix} = \begin{pmatrix} c_1 & c_{l+1} & c_{2l+1} & \cdots \\ c_2 & c_{l+2} & c_{2l+2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ c_l & c_{2l} & c_{3l} & \cdots \end{pmatrix}$$

and compute $f_l = \frac{1}{l} \sum_{i=1}^{l} F(C_i)$.

- 2. A local maximum with smallest *l* is probably the right length.
- 3. Then attack each C_i separately to recover k_i, using the attack against the Ceasar cipher.

Hill Cipher

Hill Cipher.

- Key. k = A, where A is an invertible $I \times I$ -matrix over \mathbb{Z}_{27} .
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where (computed modulo 27):

$$(c_{i+0},\ldots,c_{i+l-1})=(m_{i+0},\ldots,m_{i+l-1})A$$
.

▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where (computed modulo 27):

$$(m_{i+0},\ldots,m_{i+l-1})=(c_{i+0},\ldots,c_{i+l-1})A^{-1}$$

for $i = 1, l + 1, 2l + 1, \ldots$

Permutation Cipher (Transposition Cipher)

The permutation cipher is a special case of the Hill cipher.

Permutation Cipher.

- Key. Random permutation π ∈ S for some subset S of the set of permutations of {1,2,..., I}.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^l$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = m_{\pi(i \mod l)}$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^l$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = c_{\pi^{-1}(i \mod l)}$.