Lecture 5

Douglas Wikström KTH Stockholm dog@csc.kth.se

February 21, 2014

DD2448 Foundations of Cryptography

February 21, 2014

Perfect Secrecy

Information Theory

Perfect Secrecy (1/3)

When is a cipher perfectly secure?

DD2448 Foundations of Cryptography

February 21, 2014

Perfect Secrecy (1/3)

When is a cipher perfectly secure?

How should we formalize this?

Perfect Secrecy (2/3)

Definition. A cryptosystem has perfect secrecy if guessing the plaintext is as hard to do given the ciphertext as it is without it.

Perfect Secrecy (2/3)

Definition. A cryptosystem has perfect secrecy if guessing the plaintext is as hard to do given the ciphertext as it is without it.

Definition. A cryptosystem has perfect secrecy if

$$\Pr[M = m | C = c] = \Pr[M = m]$$

for every $m \in \mathcal{M}$ and $c \in \mathcal{C}$, where M and C are random variables taking values over \mathcal{M} and C.

Perfect Secrecy (3/3)

Game Based Definition. Exp_A^b , where A is a strategy:

- 1. $\mathbf{k} \leftarrow_R \mathcal{K}$ 2. $(m_0, m_1) \leftarrow A$ 3. $c = \mathsf{E}_{\mathsf{k}}(m_b)$ 4. $d \leftarrow A(c)$, with $d \in \{0, 1\}$
- 5. Output *d*.

Definition. A cryptosystem has perfect secrecy if for every **computationally unbounded** strategy *A*,

$$\mathsf{Pr}\left[\operatorname{Exp}^{\mathsf{0}}_{\mathcal{A}}=1
ight]=\mathsf{Pr}\left[\operatorname{Exp}^{\mathsf{1}}_{\mathcal{A}}=1
ight]$$
 .

One-Time Pad

One-Time Pad (OTP).

- Key. Random tuple $k = (b_0, \dots, b_{n-1}) \in \mathbb{Z}_2^n$.
- ▶ **Encrypt.** Plaintext $m = (m_0, ..., m_{n-1}) \in \mathbb{Z}_2^n$ gives ciphertext $c = (c_0, ..., c_{n-1})$, where $c_i = m_i \oplus b_i$.
- ▶ **Decrypt.** Ciphertext $c = (c_0, ..., c_{n-1}) \in \mathbb{Z}_2^n$ gives plaintext $m = (m_0, ..., m_{n-1})$, where $m_i = c_i \oplus b_i$.

Bayes' Theorem

Theorem. If A and B are events and Pr[B] > 0, then

$$\Pr[A|B] = \frac{\Pr[A]\Pr[B|A]}{\Pr[B]}$$

Terminology:

 $\begin{array}{l} \Pr{[A]} - \operatorname{prior} \ \mathrm{probability} \ \mathrm{of} \ A \\ \Pr{[B]} - \operatorname{prior} \ \mathrm{probability} \ \mathrm{of} \ B \\ \Pr{[A|B]} - \operatorname{posterior} \ \mathrm{probability} \ \mathrm{of} \ A \ \mathrm{given} \ B \\ \Pr{[B|A]} - \operatorname{posterior} \ \mathrm{probability} \ \mathrm{of} \ B \ \mathrm{given} \ A \end{array}$

One-Time Pad Has Perfect Secrecy

Probabilistic Argument. Bayes implies that:

$$\Pr[M = m | C = c] = \frac{\Pr[M = m] \Pr[C = c | M = m]}{\Pr[C = c]}$$
$$= \Pr[M = m] \frac{2^{-n}}{2^{-n}}$$
$$= \Pr[M = m] .$$

Simulation Argument. The ciphertext is uniformly and independently distributed from the plaintext. We can simulate it on our own!

Theorem. "For every cipher with perfect secrecy, the key requires at least as much space to represent as the plaintext."

Dangerous in practice to rely on no reuse.

Information Theory

- Information theory is a mathematical theory of communication.
- Typical questions studied are how to compress, transmit, and store information.
- Information theory is also useful to argue about some cryptographic schemes and protocols.

Classical Information Theory

- Memoryless Source Over Finite Alphabet. A source produces symbols from an alphabet Σ = {a₁,..., a_n}. Each generated symbol is identically and independently distributed.
- **Binary Channel.** A binary channel can (only) send bits.
- Coder/Decoder. Our goal is to come up with a scheme to:
 - 1. convert a symbol *a* from the alphabet Σ into a sequence (b_1, \ldots, b_l) of bits,
 - 2. send the bits over the channel, and
 - 3. decode the sequence into *a* again at the receiving end.

Classical Information Theory

Alice

Bob

Optimization Goal

We want to minimize the **expected** number of bits/symbol we send over the binary channel, i.e., if X is a random variable over Σ and l(x) is the length of the codeword of x then we wish to minimize

$$\operatorname{E}\left[I(X)\right] = \sum_{x \in \Sigma} \mathsf{P}_X(x) I(x) \; .$$

X takes values in Σ = {a, b, c, d} with uniform distribution. How would you encode this?

X takes values in Σ = {a, b, c, d} with uniform distribution. How would you encode this?

It seems we need $I(x) = \log |\Sigma|$. This gives the Hartley measure.

- X takes values in Σ = {a, b, c, d} with uniform distribution. How would you encode this?
- ► X takes values in $\Sigma = \{a, b, c\}$, with $P_X(a) = \frac{1}{2}$, $P_X(b) = \frac{1}{4}$, and $P_X(c) = \frac{1}{4}$. How would you encode this?

It seems we need $I(x) = \log |\Sigma|$. This gives the Hartley measure. **hmmm...**

- X takes values in Σ = {a, b, c, d} with uniform distribution. How would you encode this?
- ► X takes values in $\Sigma = \{a, b, c\}$, with $P_X(a) = \frac{1}{2}$, $P_X(b) = \frac{1}{4}$, and $P_X(c) = \frac{1}{4}$. How would you encode this?

It seems we need $I(x) = \log \frac{1}{P_X(x)}$ bits to encode x.

Entropy

Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in \mathcal{X} . Then the **entropy** of X is

$$H(X) = -\sum_{x \in \mathcal{X}} \mathsf{P}_{X}(x) \log \mathsf{P}_{X}(x)$$

Examples and intuition are nice, but what we need is a theorem that states that this is **exactly** the right expected length of an optimal code.

Jensen's Inequality

Definition. A function $f : \mathcal{X} \to (a, b)$ is **concave** if

$$\lambda \cdot f(x) + (1-\lambda)f(y) \leq f\left(\lambda \cdot x + (1-\lambda)y
ight) \; ,$$

for every $x, y \in (a, b)$ and $0 \le \lambda \le 1$.

Jensen's Inequality

Definition. A function $f : \mathcal{X} \to (a, b)$ is **concave** if

$$\lambda \cdot f(x) + (1-\lambda)f(y) \leq f\left(\lambda \cdot x + (1-\lambda)y
ight) \; ,$$

for every $x, y \in (a, b)$ and $0 \le \lambda \le 1$.

Theorem. Suppose f is continuous and strictly concave on (a, b), and X is a discrete random variable taking values in (a, b). Then

 $\operatorname{E}\left[f(X)\right] \leq f(\operatorname{E}\left[X\right]) \;\;,$

with equality iff X is constant.

Jensen's Inequality

Definition. A function $f : \mathcal{X} \to (a, b)$ is **concave** if

$$\lambda \cdot f(x) + (1-\lambda)f(y) \leq f\left(\lambda \cdot x + (1-\lambda)y
ight) \; ,$$

for every $x, y \in (a, b)$ and $0 \le \lambda \le 1$.

Theorem. Suppose f is continuous and strictly concave on (a, b), and X is a discrete random variable taking values in (a, b). Then

$$\operatorname{E}\left[f(X)\right] \leq f(\operatorname{E}\left[X\right]) \;\;,$$

with equality iff X is constant.

Proof idea. Consider two points + induction over number of points.

Kraft's Inequality

Theorem. There exists a prefix-free code E with codeword lengths I_x , for $x \in \Sigma$ if and only if

$$\sum_{\mathbf{x}\in \mathbf{\Sigma}} 2^{-l_{\mathbf{x}}} \leq 1$$
 .

Proof Sketch. \Rightarrow Given a prefix-free code, we consider the corresponding binary tree with codewords at the leaves. We may "fold" it by replacing two sibling leaves E(x) and E(y) by (xy) with length $I_x - 1$. Repeat.

 \Leftarrow Given lengths $I_{x_1} \leq I_{x_2} \leq \ldots \leq I_{x_n}$ we start with the complete binary tree of depth I_{x_n} and prune it.

Binary Source Coding Theorem

Theorem. Let E be an optimal code and let I(x) be the length of the codeword of x. Then

 $H(X) \leq \operatorname{E} \left[I(X) \right] < H(X) + 1$.

Binary Source Coding Theorem

Theorem. Let E be an optimal code and let I(x) be the length of the codeword of x. Then

$$H(X) \leq \operatorname{E} \left[l(X) \right] < H(X) + 1$$
.

Proof of Upper Bound.

Define $I_x = \left[-\log P_X(x) \right]$. Then we have

$$\sum_{x \in \Sigma} 2^{-l_x} \leq \sum_{x \in \Sigma} 2^{\log \mathsf{P}_X(x)} = \sum_{x \in \Sigma} \mathsf{P}_X(x) = 1$$

Kraft's inequality implies that there is a code with codeword lengths l_x . Then note that $\sum_{x \in \Sigma} P_X(x) \left[-\log P_X(x) \right] < H(X) + 1.$

Huffman's Code (1/2)

Huffman's Code (2/2)

Theorem. Huffman's code is optimal.

Proof idea.

There exists an optimal code where the two least likely symbols are neighbors.

Conditional Entropy

Definition. Let (X, Y) be a random variable taking values in $\mathcal{X} \times \mathcal{Y}$. We define **conditional entropy**

$$H(X|y) = -\sum_{x} \mathsf{P}_{X|Y}(x|y) \log \mathsf{P}_{X|Y}(x|y) \text{ and}$$
$$H(X|Y) = \sum_{y} \mathsf{P}_{Y}(y) H(X|y)$$

Note that H(X|y) is simply the ordinary entropy function of a random variable with probability function $P_{X|Y}(\cdot|y)$.

Properties of Entropy

Let X be a random variable taking values in \mathcal{X} .

Upper Bound. $H(X) = \mathbb{E}\left[-\log \mathsf{P}_X(X)\right] \le \log |\mathcal{X}|.$

Chain Rule and Conditioning.

$$H(X, Y) = -\sum_{x,y} P_{X,Y}(x, y) \log P_{X,Y}(x, y)$$

= $-\sum_{x,y} P_{X,Y}(x, y) (\log P_Y(y) + \log P_{X|Y}(x|y))$
= $-\sum_{y} P_Y(y) \log P_Y(y) - \sum_{x,y} P_{X,Y}(x, y) \log P_{X|Y}(x|y)$
= $H(Y) + H(X|Y)$