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Perfect Secrecy (1/3)

When is a cipher perfectly secure?
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Perfect Secrecy Information Theory

Perfect Secrecy (1/3)

When is a cipher perfectly secure?

How should we formalize this?
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Perfect Secrecy Information Theory

Perfect Secrecy (2/3)

Definition. A cryptosystem has perfect secrecy if guessing the
plaintext is as hard to do given the ciphertext as it is without it.
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Perfect Secrecy Information Theory

Perfect Secrecy (2/3)

Definition. A cryptosystem has perfect secrecy if guessing the
plaintext is as hard to do given the ciphertext as it is without it.

Definition. A cryptosystem has perfect secrecy if

Pr [M = m |C = c ] = Pr [M = m]

for every m ∈ M and c ∈ C, where M and C are random variables
taking values overM and C.
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Perfect Secrecy Information Theory

Perfect Secrecy (3/3)

Game Based Definition. ExpbA, where A is a strategy:

1. k←R K

2. (m0,m1)← A

3. c = Ek(mb)

4. d ← A(c), with d ∈ {0, 1}

5. Output d .

Definition. A cryptosystem has perfect secrecy if for every
computationally unbounded strategy A,

Pr
[

Exp0A = 1
]

= Pr
[

Exp1A = 1
]

.
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Perfect Secrecy Information Theory

One-Time Pad

One-Time Pad (OTP).

◮ Key. Random tuple k = (b0, . . . , bn−1) ∈ Z
n
2.

◮ Encrypt. Plaintext m = (m0, . . . ,mn−1) ∈ Z
n
2 gives

ciphertext c = (c0, . . . , cn−1), where ci = mi ⊕ bi .

◮ Decrypt. Ciphertext c = (c0, . . . , cn−1) ∈ Z
n
2 gives plaintext

m = (m0, . . . ,mn−1), where mi = ci ⊕ bi .
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Perfect Secrecy Information Theory

Bayes’ Theorem

Theorem. If A and B are events and Pr[B ] > 0, then

Pr [A |B ] =
Pr [A] Pr [B |A ]

Pr [B ]

Terminology:

Pr [A] – prior probability of A
Pr [B ] – prior probability of B
Pr [A |B ] – posterior probability of A given B

Pr [B |A ] – posterior probability of B given A
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Perfect Secrecy Information Theory

One-Time Pad Has Perfect Secrecy

◮ Probabilistic Argument. Bayes implies that:

Pr [M = m |C = c ] =
Pr [M = m] Pr [C = c |M = m ]

Pr [C = c]

= Pr [M = m]
2−n

2−n

= Pr [M = m] .

◮ Simulation Argument. The ciphertext is uniformly and
independently distributed from the plaintext. We can
simulate it on our own!
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Perfect Secrecy Information Theory

Bad News

Theorem. “For every cipher with perfect secrecy, the key requires
at least as much space to represent as the plaintext.”

Dangerous in practice to rely on no reuse.
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Perfect Secrecy Information Theory

Information Theory

◮ Information theory is a mathematical theory of
communication.

◮ Typical questions studied are how to compress, transmit, and
store information.

◮ Information theory is also useful to argue about some
cryptographic schemes and protocols.
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Perfect Secrecy Information Theory

Classical Information Theory

◮ Memoryless Source Over Finite Alphabet. A source
produces symbols from an alphabet Σ = {a1, . . . , an}. Each
generated symbol is identically and independently distributed.

◮ Binary Channel. A binary channel can (only) send bits.

◮ Coder/Decoder. Our goal is to come up with a scheme to:

1. convert a symbol a from the alphabet Σ into a sequence
(b1, . . . , bl) of bits,

2. send the bits over the channel, and
3. decode the sequence into a again at the receiving end.
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Classical Information Theory

Enc Channel Decm m

Alice Bob
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Perfect Secrecy Information Theory

Optimization Goal

We want to minimize the expected number of bits/symbol we
send over the binary channel, i.e., if X is a random variable over Σ
and l(x) is the length of the codeword of x then we wish to
minimize

E [l(X )] =
∑

x∈Σ

PX (x) l(x) .
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Perfect Secrecy Information Theory

Examples:

◮ X takes values in Σ = {a, b, c , d} with uniform distribution.
How would you encode this?
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Perfect Secrecy Information Theory

Examples:

◮ X takes values in Σ = {a, b, c , d} with uniform distribution.
How would you encode this?

It seems we need l(x) = log |Σ|. This gives the Hartley measure.
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Perfect Secrecy Information Theory

Examples:

◮ X takes values in Σ = {a, b, c , d} with uniform distribution.
How would you encode this?

◮ X takes values in Σ = {a, b, c}, with PX (a) = 1
2 , PX (b) = 1

4 ,
and PX (c) = 1

4 . How would you encode this?

It seems we need l(x) = log |Σ|. This gives the Hartley measure.
hmmm...
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Perfect Secrecy Information Theory

Examples:

◮ X takes values in Σ = {a, b, c , d} with uniform distribution.
How would you encode this?

◮ X takes values in Σ = {a, b, c}, with PX (a) = 1
2 , PX (b) = 1

4 ,
and PX (c) = 1

4 . How would you encode this?

It seems we need l(x) = log 1
PX (x)

bits to encode x .
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Perfect Secrecy Information Theory

Entropy

Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in X . Then
the entropy of X is

H(X ) = −
∑

x∈X

PX (x) log PX (x) .

Examples and intuition are nice, but what we need is a theorem
that states that this is exactly the right expected length of an
optimal code.
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Perfect Secrecy Information Theory

Jensen’s Inequality

Definition. A function f : X → (a, b) is concave if

λ · f (x) + (1− λ)f (y) ≤ f (λ · x + (1− λ)y) ,

for every x , y ∈ (a, b) and 0 ≤ λ ≤ 1.

DD2448 Foundations of Cryptography February 21, 2014



Perfect Secrecy Information Theory

Jensen’s Inequality

Definition. A function f : X → (a, b) is concave if

λ · f (x) + (1− λ)f (y) ≤ f (λ · x + (1− λ)y) ,

for every x , y ∈ (a, b) and 0 ≤ λ ≤ 1.

Theorem. Suppose f is continuous and strictly concave on (a, b),
and X is a discrete random variable taking values in (a, b). Then

E [f (X )] ≤ f (E [X ]) ,

with equality iff X is constant.
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Perfect Secrecy Information Theory

Jensen’s Inequality

Definition. A function f : X → (a, b) is concave if

λ · f (x) + (1− λ)f (y) ≤ f (λ · x + (1− λ)y) ,

for every x , y ∈ (a, b) and 0 ≤ λ ≤ 1.

Theorem. Suppose f is continuous and strictly concave on (a, b),
and X is a discrete random variable taking values in (a, b). Then

E [f (X )] ≤ f (E [X ]) ,

with equality iff X is constant.

Proof idea. Consider two points + induction over number of
points.
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Perfect Secrecy Information Theory

Kraft’s Inequality

Theorem. There exists a prefix-free code E with codeword lengths
lx , for x ∈ Σ if and only if

∑

x∈Σ

2−lx ≤ 1 .

Proof Sketch. ⇒ Given a prefix-free code, we consider the
corresponding binary tree with codewords at the leaves. We may
“fold” it by replacing two sibling leaves E(x) and E(y) by (xy)
with length lx − 1. Repeat.

⇐ Given lengths lx1 ≤ lx2 ≤ . . . ≤ lxn we start with the complete
binary tree of depth lxn and prune it.
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Perfect Secrecy Information Theory

Binary Source Coding Theorem

Theorem. Let E be an optimal code and let l(x) be the length of
the codeword of x . Then

H(X ) ≤ E [l(X )] < H(X ) + 1 .
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Perfect Secrecy Information Theory

Binary Source Coding Theorem

Theorem. Let E be an optimal code and let l(x) be the length of
the codeword of x . Then

H(X ) ≤ E [l(X )] < H(X ) + 1 .

Proof of Upper Bound.
Define lx = ⌈− log PX (x)⌉. Then we have

∑

x∈Σ

2−lx ≤
∑

x∈Σ

2log PX (x) =
∑

x∈Σ

PX (x) = 1

Kraft’s inequality implies that there is a code with codeword
lengths lx . Then note that
∑

x∈Σ PX (x) ⌈− log PX (x)⌉ < H(X ) + 1.
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Perfect Secrecy Information Theory

Huffman’s Code (1/2)

Input: {(a1, p1), . . . , (an, pn)}.
Output: 0/1-labeled rooted tree.
Huffman({(a1, p1), . . . , (an, pn)})
(1) S ← {(a1, p1, a1), . . . , (an, pn, an)}
(2) while |S | ≥ 2
(3) Find (bi , pi , ti), (bj , pj , tj) ∈ S with mini-

mal pi and pj .
(4) S ← S \ {(bi , pi , ti ), (bj , pj , tj )}
(5) S ← S ∪ {

(

bi‖bj , pi + pj ,Node(ti , tj )
)

}
(6) return S
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Huffman’s Code (2/2)

Theorem. Huffman’s code is optimal.

Proof idea.
There exists an optimal code where the two least likely symbols are
neighbors.
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Perfect Secrecy Information Theory

Conditional Entropy

Definition. Let (X ,Y ) be a random variable taking values in
X × Y. We define conditional entropy

H(X |y) = −
∑

x

PX |Y (x |y ) log PX |Y (x |y ) and

H(X |Y ) =
∑

y

PY (y)H(X |y)

Note that H(X |y) is simply the ordinary entropy function of a
random variable with probability function PX |Y ( · |y ).
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Perfect Secrecy Information Theory

Properties of Entropy

Let X be a random variable taking values in X .

Upper Bound. H(X ) = E [− log PX (X )] ≤ log |X |.

Chain Rule and Conditioning.

H(X ,Y ) = −
∑

x ,y

PX ,Y (x , y) log PX ,Y (x , y)

= −
∑

x ,y

PX ,Y (x , y)
(

log PY (y) + log PX |Y (x |y )
)

= −
∑

y

PY (y) log PY (y)−
∑

x ,y

PX ,Y (x , y) log PX |Y (x |y )

= H(Y ) + H(X |Y )
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