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Greatest Common Divisors

Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m
and n is a common divisor d such that every common divisor d ′

divides d .
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Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m
and n is a common divisor d such that every common divisor d ′

divides d .

◮ The GCD is the positive GCD.
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Greatest Common Divisors

Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m
and n is a common divisor d such that every common divisor d ′

divides d .

◮ The GCD is the positive GCD.

◮ We denote the GCD of m and n by gcd(m, n).
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Properties

◮ gcd(m, n) = gcd(n,m)

◮ gcd(m, n) = gcd(m ± n, n)

◮ gcd(m, n) = gcd(m mod n, n)

◮ gcd(m, n) = 2 gcd(m/2, n/2) if m and n are even.

◮ gcd(m, n) = gcd(m/2, n) if m is even and n is odd.
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Euclidean Algorithm

Euclidean(m, n)
(1) while n 6= 0
(2) t ← n

(3) n← m mod n

(4) m← t

(5) return m
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Steins Algorithm (Binary GCD Algorithm)

Stein(m, n)
(1) if m = 0 or n = 0 then return 0
(2) s ← 0
(3) while m and n are even
(4) m← m/2, n← n/2, s ← s + 1
(5) while n is even
(6) n← n/2
(7) while m 6= 0
(8) while m is even
(9) m← m/2
(10) if m < n

(11) Swap(m, n)
(12) m← m − n

(13) m← m/2
(14) return 2sm
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Bezout’s Lemma

Lemma. There exists integers a and b such that

gcd(m, n) = am + bn .
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Bezout’s Lemma

Lemma. There exists integers a and b such that

gcd(m, n) = am + bn .

Proof. Let d > gcd(m, n) be the smallest positive integer on the
form d = am + bn. Write m = cd + r with 0 < r < d . Then

d > r = m − cd = m − c(am + bn) = (1− ca)m + (−cb)n ,

a contradiction! Thus, r = 0 and d | m. Similarly, d | n.
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Extended Euclidean Algorithm (Recursive Version)

ExtendedEuclidean(m, n)
(1) if m mod n = 0
(2) return (0, 1)
(3) else

(4) (x , y)← ExtendedEuclidean(n,m mod n)
(5) return (y , x − y⌊m/n⌋)

If (x , y)← ExtendedEuclidean(m, n) then
gcd(m, n) = xm + yn.
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Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest
common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that
ab = 1 mod n.
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Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest
common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that
ab = 1 mod n.

Excercise: Why is this so?
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Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let n1, . . . , nk be positive pairwise
coprime integers and let a1, . . . , ak be integers. Then the equation
system

x = a1 mod n1

x = a2 mod n2

x = a3 mod n3
...

x = ak mod nk

has a unique solution in {0, . . . ,
∏

i ni − 1}.
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Constructive Proof of CRT

1. Set N = n1n2 · . . . · nk .

2. Find ri and si such that rini + si
N
ni

= 1 (Bezout).

3. Note that

si
N

ni
= 1− rini =

{

1 (mod ni )
0 (mod nj) if j 6= i

4. The solution to the equation system becomes:

x =

k
∑

i=1

(

si
N

ni

)

· ai
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The Multiplicative Group

The set Z∗

n = {0 ≤ a < n : gcd(a, n) = 1} forms a group, since:

◮ Closure. It is closed under multiplication modulo n.

◮ Associativity. For x , y , z ∈ Z
∗

n:

(xy)z = x(yz) mod n .

◮ Identity. For every x ∈ Z
∗

n:

1 · x = x · 1 = x .

◮ Inverse. For every a ∈ Z
∗

n exists b ∈ Z
∗

n such that:

ab = 1 mod n .
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Lagrange’s Theorem

Theorem. If H is a subgroup of a finite group G ,
then |H| divides |G |.

Proof.

1. Define aH = {ah : h ∈ H}. This gives an equivalence relation
x ≈ y ⇔ x = yh ∧ h ∈ H on G .

2. The map φa,b : aH → bH, defined by φa,b(x) = ba−1x is a
bijection, so |aH| = |bH| for a, b ∈ G .
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relatively prime to n.
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relatively prime to n.

◮ Clearly: φ(p) = p − 1 when p is prime.
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relatively prime to n.

◮ Clearly: φ(p) = p − 1 when p is prime.

◮ Similarly: φ(pk) = pk − pk−1 when p is prime and k > 1.
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relatively prime to n.

◮ Clearly: φ(p) = p − 1 when p is prime.

◮ Similarly: φ(pk) = pk − pk−1 when p is prime and k > 1.

◮ In general: φ
(

∏

i p
ki
i

)

=
∏

i

(

pki − pk−1
i

)

.
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Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relatively prime to n.

◮ Clearly: φ(p) = p − 1 when p is prime.

◮ Similarly: φ(pk) = pk − pk−1 when p is prime and k > 1.

◮ In general: φ
(

∏

i p
ki
i

)

=
∏

i

(

pki − pk−1
i

)

.

Excercise: How does this follow from CRT?
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Fermat’s and Euler’s Theorems

Theorem. (Fermat) If b ∈ Z
∗

p and p is prime, then
bp−1 = 1 mod p.

Theorem. (Euler) If b ∈ Z
∗

n, then bφ(n) = 1 mod n.
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Fermat’s and Euler’s Theorems

Theorem. (Fermat) If b ∈ Z
∗

p and p is prime, then
bp−1 = 1 mod p.

Theorem. (Euler) If b ∈ Z
∗

n, then bφ(n) = 1 mod n.

Proof. Note that |Z∗

n| = φ(n). b generates a subgroup 〈b〉 of Z∗

n,
so |〈b〉| divides φ(n) and bφ(n) = 1 mod n.
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Multiplicative Group of a Prime Order Field

Definition. A group G is called cyclic if there exists an element g
such that each element in G is on the form gx for some integer x .

Theorem. If p is prime, then Z
∗

p is cyclic.
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Cipher (Symmetric Cryptosystem)

E E−1cm

k k

m

c = Ek(m) m = E−1k (c)

Alice Bob
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Public-Key Cryptosystem

E Ecm

pk sk

m

c = Epk(m) m = Esk(c)

Alice Bob
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History of Public-Key Cryptography

Public-key cryptography was discovered:

◮ By Ellis, Cocks, and Williamson at the Government
Communications Headquarters (GCHQ) in the UK in the early
1970s (not public until 1997).

◮ Independently by Merkle in 1974 (Merkle’s puzzles).

◮ Independently in its discrete-logarithm based form by Diffie
and Hellman in 1977, and instantiated in 1978 (key-exchange).

◮ Independently in its factoring-based form by Rivest, Shamir
and Adleman in 1977.
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Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen,E,E) where,

◮ Gen is a probabilistic key generation algorithm that
outputs key pairs (pk, sk),

◮ E is a (possibly probabilistic) encryption algorithm that
given a public key pk and a message m in the plaintext space
Mpk outputs a ciphertext c , and

◮ E is a decryption algorithm that given a secret key sk and a
ciphertext c outputs a plaintext m,

such that Esk(Epk(m)) = m for every (pk, sk) and m ∈ Mpk.
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The RSA Cryptosystem (1/2)

Key Generation.

◮ Choose n/2-bit primes p and q randomly and define N = pq.

◮ Choose e in Z
∗

φ(N) and compute d = e−1 mod φ(N).

◮ Output the key pair ((N, e), (p, q, d)), where (N, e) is the
public key and (p, q, d) is the secret key.
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The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext m ∈ Z
∗

N by computing

c = me mod N .

Decryption. Decrypt a ciphertext c by computing

m = cd mod N .
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Why Does It Work?

(me mod N)d mod N = med mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N

= m · 1t mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N

= m · 1t mod N

= m mod N
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Implementing RSA

◮ Modular arithmetic.

◮ Primality test.
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Modular Arithmetic (1/2)

Basic operations on O(n)-bit integers using “school book”
implementations.

Operation Running time

Addition O(n)
Subtraction O(n)
Multiplication O(n2)
Modular reduction O(n2)

What about modular exponentiation?
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Modular Arithmetic (2/2)

Square-and-Multiply.

SquareAndMultiply(x , e,N)

1 z ← 1
2 i =index of most significant bit
3 while i ≥ 0

do

4 z ← z · z mod N

5 if ei = 1
then z ← z · x mod N

6 i ← i − 1
7 return z
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Prime Number Theorem

The primes are relatively dense.
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Prime Number Theorem

The primes are relatively dense.

Theorem. Let π(m) denote the number of primes 0 < p ≤ m.
Then

lim
m→∞

π(m)
m
lnm

= 1 .
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Prime Number Theorem

The primes are relatively dense.

Theorem. Let π(m) denote the number of primes 0 < p ≤ m.
Then

lim
m→∞

π(m)
m
lnm

= 1 .

To generate a random prime, we repeatedly pick a random integer
m and check if it is prime. It should be prime with probability
1/ lnm.
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Legendre Symbol (1/2)

Definition. Given an odd integer b ≥ 3, an integer a is called a
quadratic residue modulo b if there exists an integer x such that
a = x2 mod b.

Definition. The Legendre Symbol of an integer a modulo an
odd prime p is defined by

(

a

p

)

=







0 if a = 0
1 if a is a quadratic residue modulo p

−1 if a is a quadratic non-residue modulo p

.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.

◮ If a(p−1)/2 = 1 mod p and b generates Z∗

p, then

a(p−1)/2 = bx(p−1)/2 = 1 mod p for some x . Since b is a
generator, (p − 1) | x(p − 1)/2 and x must be even.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.

◮ If a(p−1)/2 = 1 mod p and b generates Z∗

p, then

a(p−1)/2 = bx(p−1)/2 = 1 mod p for some x . Since b is a
generator, (p − 1) | x(p − 1)/2 and x must be even.

◮ If a is a non-residue, then a(p−1)/2 6= 1 mod p, but
(

a(p−1)/2
)2

= 1 mod p, so a(p−1)/2 = −1 mod p.

DD2448 Foundations of Cryptography February 28, 2014



Repetition of Number Theory Public-Key Cryptography RSA

Jacobi Symbol

Definition. The Jacobi Symbol of an integer a modulo an odd
integer b =

∏

i p
ei
i , with pi prime, is defined by

(a

b

)

=
∏

i

(

a

pi

)ei

.

Note that we can have
(

a
b

)

= 1 even when a is a non-residue
modulo b.
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Properties of the Jacobi Symbol

Basic Properties.

(a

b

)

=

(

a mod b

b

)

(ac

b

)

=
(a

b

)(c

b

)

.

Law of Quadratic Reciprocity. If a and b are odd integers, then

(a

b

)

= (−1)
(a−1)(b−1)

4

(

b

a

)

.

Supplementary Laws. If b is an odd integer, then
(

−1

b

)

= (−1)
b−1
2 and

(

2

b

)

= (−1)
b2−1

8 .
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Computing the Jacobi Symbol (1/2)

The following assumes that a ≥ 0 and that b ≥ 3 is odd.

Jacobi(a, b)
(1) if a < 2
(2) return a

(3) s ← 1
(4) while a is even

(5) s ← s · (−1)
1
8
(b2−1)

(6) a← a/2
(7) if a < b

(8) Swap(a,b)

(9) s ← s · (−1)
1
4
(a−1)(b−1)

(10) return s · Jacobi(a mod b, b)
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Solovay-Strassen Primality Test (1/2)

The following assumes that n ≥ 3.

SolovayStrassen(n, r)
(1) for i = 1 to r

(2) Choose 0 < a < n randomly.
(3) if

(

a
n

)

= 0 or
(

a
n

)

6= a(n−1)/2 mod n

(4) return composite

(5) return probably prime
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Solovay-Strassen Primality Test (2/2)

Analysis.

◮ If m is prime, then 0 6=
(

a
m

)

= a(m−1)/2 mod m for all
0 < a < m, so we never claim that a prime is composite.
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Solovay-Strassen Primality Test (2/2)

Analysis.

◮ If m is prime, then 0 6=
(

a
m

)

= a(m−1)/2 mod m for all
0 < a < m, so we never claim that a prime is composite.

◮ If
(

a
m

)

= 0, then
(

a
p

)

= 0 for some prime factor p of m.

Thus, p | a and m is composite, so we never wrongly return
from within the loop.
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Solovay-Strassen Primality Test (2/2)

Analysis.

◮ If m is prime, then 0 6=
(

a
m

)

= a(m−1)/2 mod m for all
0 < a < m, so we never claim that a prime is composite.

◮ If
(

a
m

)

= 0, then
(

a
p

)

= 0 for some prime factor p of m.

Thus, p | a and m is composite, so we never wrongly return
from within the loop.

◮ At most half of all elements a in Z
∗

m have the property that

( a

m

)

= a(m−1)/2 mod m .
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