Lecture 6

KTH Stockholm

February 28, 2014

DD2448 Foundations of Cryptography

February 28, 2014

Greatest Common Divisors

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

Greatest Common Divisors

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

The GCD is the positive GCD.

Greatest Common Divisors

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

- The GCD is the positive GCD.
- We denote the GCD of m and n by gcd(m, n).

Properties

- gcd(m, n) = gcd(n, m)
- $gcd(m, n) = gcd(m \pm n, n)$
- $gcd(m, n) = gcd(m \mod n, n)$
- gcd(m, n) = 2 gcd(m/2, n/2) if m and n are even.
- gcd(m, n) = gcd(m/2, n) if m is even and n is odd.

RSA

Euclidean Algorithm

EUCLIDEAN(m, n)(1) while $n \neq 0$ (2) $t \leftarrow n$ (3) $n \leftarrow m \mod n$ (4) $m \leftarrow t$ (5) return m

RSA

Steins Algorithm (Binary GCD Algorithm)

```
STEIN(m, n)
(1)
         if m = 0 or n = 0 then return 0
(2)
         s \leftarrow 0
(3)
         while m and n are even
(4)
             m \leftarrow m/2, n \leftarrow n/2, s \leftarrow s+1
(5)
         while n is even
(6)
             n \leftarrow n/2
(7)
         while m \neq 0
(8)
             while m is even
(9)
                 m \leftarrow m/2
(10)
            if m < n
(11)
                 SWAP(m, n)
(12)
            m \leftarrow m - n
(13)
             m \leftarrow m/2
(14)
         return 2<sup>s</sup>m
```

DD2448 Foundations of Cryptography

Bezout's Lemma

Lemma. There exists integers a and b such that

gcd(m,n) = am + bn.

Bezout's Lemma

Lemma. There exists integers a and b such that

$$\gcd(m,n) = am + bn$$
 .

Proof. Let d > gcd(m, n) be the smallest positive integer on the form d = am + bn. Write m = cd + r with 0 < r < d. Then

$$d>r=m-cd=m-c(am+bn)=(1-ca)m+(-cb)n$$
 ,

a contradiction! Thus, r = 0 and $d \mid m$. Similarly, $d \mid n$.

Extended Euclidean Algorithm (Recursive Version)

EXTENDEDEUCLIDEAN
$$(m, n)$$

(1) if $m \mod n = 0$
(2) return $(0, 1)$
(3) else
(4) $(x, y) \leftarrow \text{EXTENDEDEUCLIDEAN}(n, m \mod n)$
(5) return $(y, x - y \lfloor m/n \rfloor)$

If $(x, y) \leftarrow \text{EXTENDEDEUCLIDEAN}(m, n)$ then gcd(m, n) = xm + yn.

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1 \mod n$.

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1 \mod n$.

Excercise: Why is this so?

Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let n_1, \ldots, n_k be positive pairwise coprime integers and let a_1, \ldots, a_k be integers. Then the equation system

 $x = a_1 \mod n_1$ $x = a_2 \mod n_2$ $x = a_3 \mod n_3$ \vdots $x = a_k \mod n_k$

has a unique solution in $\{0, \ldots, \prod_i n_i - 1\}$.

Constructive Proof of CRT

1. Set
$$N = n_1 n_2 \cdot \ldots \cdot n_k$$
.

- 2. Find r_i and s_i such that $r_i n_i + s_i \frac{N}{n_i} = 1$ (Bezout).
- 3. Note that

$$s_i \frac{N}{n_i} = 1 - r_i n_i = \begin{cases} 1 \pmod{n_i} \\ 0 \pmod{n_j} & \text{if } j \neq i \end{cases}$$

4. The solution to the equation system becomes:

$$x = \sum_{i=1}^{k} \left(s_i \frac{N}{n_i} \right) \cdot a_i$$

The Multiplicative Group

The set $\mathbb{Z}_n^* = \{0 \le a < n : gcd(a, n) = 1\}$ forms a group, since:

- Closure. It is closed under multiplication modulo n.
- Associativity. For $x, y, z \in \mathbb{Z}_n^*$:

$$(xy)z = x(yz) \mod n$$
.

• Identity. For every $x \in \mathbb{Z}_n^*$:

$$1 \cdot x = x \cdot 1 = x \; .$$

• Inverse. For every $a \in \mathbb{Z}_n^*$ exists $b \in \mathbb{Z}_n^*$ such that:

$$ab = 1 \mod n$$
 .

Lagrange's Theorem

Theorem. If *H* is a subgroup of a finite group *G*, then |H| divides |G|.

- 1. Define $aH = \{ah : h \in H\}$. This gives an equivalence relation $x \approx y \Leftrightarrow x = yh \land h \in H$ on G.
- 2. The map $\phi_{a,b} : aH \to bH$, defined by $\phi_{a,b}(x) = ba^{-1}x$ is a bijection, so |aH| = |bH| for $a, b \in G$.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

• Clearly: $\phi(p) = p - 1$ when p is prime.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

- Clearly: $\phi(p) = p 1$ when p is prime.
- Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

- Clearly: $\phi(p) = p 1$ when p is prime.
- Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.

• In general:
$$\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^k - p_i^{k-1}\right).$$

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

- Clearly: $\phi(p) = p 1$ when p is prime.
- Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.

• In general:
$$\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^k - p_i^{k-1}\right).$$

Excercise: How does this follow from CRT?

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Proof. Note that $|\mathbb{Z}_n^*| = \phi(n)$. *b* generates a subgroup $\langle b \rangle$ of \mathbb{Z}_n^* , so $|\langle b \rangle|$ divides $\phi(n)$ and $b^{\phi(n)} = 1 \mod n$.

Multiplicative Group of a Prime Order Field

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

RSA

Cipher (Symmetric Cryptosystem)

Public-Key Cryptography

RSA

Public-Key Cryptosystem

History of Public-Key Cryptography

Public-key cryptography was discovered:

- By Ellis, Cocks, and Williamson at the Government Communications Headquarters (GCHQ) in the UK in the early 1970s (not public until 1997).
- Independently by Merkle in 1974 (Merkle's puzzles).
- Independently in its discrete-logarithm based form by Diffie and Hellman in 1977, and instantiated in 1978 (key-exchange).
- Independently in its factoring-based form by Rivest, Shamir and Adleman in 1977.

Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen, E, E) where,

- Gen is a probabilistic key generation algorithm that outputs key pairs (pk, sk),
- E is a (possibly probabilistic) encryption algorithm that given a public key pk and a message m in the plaintext space M_{pk} outputs a ciphertext c, and
- E is a decryption algorithm that given a secret key sk and a ciphertext c outputs a plaintext m,

such that $\mathsf{E}_{\mathsf{sk}}(\mathsf{E}_{\mathsf{pk}}(m)) = m$ for every $(\mathsf{pk},\mathsf{sk})$ and $m \in \mathcal{M}_{\mathsf{pk}}$.

The RSA Cryptosystem (1/2)

Key Generation.

- Choose n/2-bit primes p and q randomly and define N = pq.
- Choose e in $\mathbb{Z}^*_{\phi(N)}$ and compute $d = e^{-1} \mod \phi(N)$.
- Output the key pair ((N, e), (p, q, d)), where (N, e) is the public key and (p, q, d) is the secret key.

The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext $m \in \mathbb{Z}_N^*$ by computing

 $c=m^e \bmod N$.

Decryption. Decrypt a ciphertext *c* by computing

 $m = c^d \mod N$.

 $(m^e \mod N)^d \mod N = m^{ed} \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

= $m^{1+t\phi(N)} \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

 $= m^{1+t\phi(N)} \mod N$
 $= m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

 $= m^{1+t\phi(N)} \mod N$
 $= m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$
 $= m \cdot 1^t \mod N$

RSA

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

 $= m^{1+t\phi(N)} \mod N$
 $= m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$
 $= m \cdot 1^t \mod N$
 $= m \mod N$

Implementing RSA

- Modular arithmetic.
- Primality test.

Modular Arithmetic (1/2)

Basic operations on O(n)-bit integers using "school book" implementations.

Operation	Running time
Addition	O(n)
Subtraction	O(n)
Multiplication	$O(n^2)$
Modular reduction	$O(n^2)$

What about modular exponentiation?

Modular Arithmetic (2/2)

Square-and-Multiply.

```
SquareAndMultiply(x, e, N)
1 z \leftarrow 1
2
  i = index of most significant bit
3
    while i > 0
           do
4
               z \leftarrow z \cdot z \mod N
5
               if e_i = 1
                  then z \leftarrow z \cdot x \mod N
               i \leftarrow i - 1
6
7
    return z
```

Prime Number Theorem

The primes are relatively dense.

Prime Number Theorem

The primes are relatively dense.

Theorem. Let $\pi(m)$ denote the number of primes 0 .Then

$$\lim_{m
ightarrow\infty}rac{\pi(m)}{rac{m}{\ln m}}=1$$
 .

Prime Number Theorem

The primes are relatively dense.

Theorem. Let $\pi(m)$ denote the number of primes 0 .Then

$$\lim_{m\to\infty}\frac{\pi(m)}{\frac{m}{\ln m}}=1$$
.

To generate a random prime, we repeatedly pick a random integer m and check if it is prime. It should be prime with probability $1/\ln m$.

Definition. Given an odd integer $b \ge 3$, an integer *a* is called a **quadratic residue** modulo *b* if there exists an integer *x* such that $a = x^2 \mod b$.

Definition. The **Legendre Symbol** of an integer a modulo an **odd prime** p is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a = 0\\ 1 & \text{if } a \text{ is a quadratic residue modulo } p\\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p \end{cases}$$

Theorem. If *p* is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p \ .$$

Theorem. If *p* is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p \ .$$

• If
$$a = y^2 \mod p$$
, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.

Theorem. If *p* is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p \ .$$

• If
$$a = y^2 \mod p$$
, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.

Theorem. If *p* is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p \ .$$

• If
$$a = y^2 \mod p$$
, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.

▶ If a is a non-residue, then
$$a^{(p-1)/2} \neq 1 \mod p$$
, but $(a^{(p-1)/2})^2 = 1 \mod p$, so $a^{(p-1)/2} = -1 \mod p$.

Jacobi Symbol

Definition. The **Jacobi Symbol** of an integer *a* modulo an odd integer $b = \prod_i p_i^{e_i}$, with p_i prime, is defined by

$$\left(\frac{a}{b}\right) = \prod_{i} \left(\frac{a}{p_i}\right)^{e_i}$$

Note that we can have $\left(\frac{a}{b}\right) = 1$ even when a is a non-residue modulo b.

RSA

Properties of the Jacobi Symbol

Basic Properties.

$$\begin{pmatrix} \frac{a}{b} \end{pmatrix} = \left(\frac{a \mod b}{b} \right)$$
$$\begin{pmatrix} \frac{ac}{b} \end{pmatrix} = \left(\frac{a}{b} \right) \left(\frac{c}{b} \right) .$$

Law of Quadratic Reciprocity. If a and b are odd integers, then

$$\left(\frac{a}{b}\right) = (-1)^{\frac{(a-1)(b-1)}{4}} \left(\frac{b}{a}\right)$$

Supplementary Laws. If *b* is an odd integer, then

$$\left(\frac{-1}{b}\right) = (-1)^{\frac{b-1}{2}}$$
 and $\left(\frac{2}{b}\right) = (-1)^{\frac{b^2-1}{8}}$

Computing the Jacobi Symbol (1/2)

The following assumes that $a \ge 0$ and that $b \ge 3$ is odd.

Solovay-Strassen Primality Test (1/2)

The following assumes that $n \geq 3$.

SOLOVAYSTRASSEN(n, r)(1) for i = 1 to r(2) Choose 0 < a < n randomly. (3) if $\left(\frac{a}{n}\right) = 0$ or $\left(\frac{a}{n}\right) \neq a^{(n-1)/2} \mod n$ (4) return composite (5) return probably prime

Solovay-Strassen Primality Test (2/2)

Analysis.

If m is prime, then 0 ≠ (^a/_m) = a^{(m-1)/2} mod m for all 0 < a < m, so we never claim that a prime is composite.

Solovay-Strassen Primality Test (2/2)

Analysis.

- If m is prime, then 0 ≠ (^a/_m) = a^{(m-1)/2} mod m for all 0 < a < m, so we never claim that a prime is composite.
- If (^a/_m) = 0, then (^a/_p) = 0 for some prime factor p of m. Thus, p | a and m is composite, so we never wrongly return from within the loop.

RSA

Solovay-Strassen Primality Test (2/2)

Analysis.

- If m is prime, then 0 ≠ (^a/_m) = a^{(m-1)/2} mod m for all 0 < a < m, so we never claim that a prime is composite.
- If (^a/_m) = 0, then (^a/_p) = 0 for some prime factor p of m. Thus, p | a and m is composite, so we never wrongly return from within the loop.
- At most half of all elements a in \mathbb{Z}_m^* have the property that

$$\left(\frac{a}{m}\right) = a^{(m-1)/2} \mod m \; .$$