
Homework II, Foundations of Cryptography 2009
Due on March 13 at 15.15. The general rules on homework solutions available on the course home-
page apply. In particular, discussions of ideas in groups of up to at most three people are allowed
but implementation should be done individually. How points translate into grades is described in the
course memo.

On the implementation problems that involve large numbers you are allowed to you use pre-
made routines for addition, subtraction and multiplication of large integers as well as the operation
to reduce one integer modulo a different integer. You may not use routines for more sophisticated
operations such as modular exponentiation and modular inversions.

Note that this homework set has a possible total score of 123 points as opposed to the promised
100 points. As the thresholds for grades do not change the extra problem is there to give the student
a choice of which problems to solve and not to create an extra burden.

1 (10p) Study the elliptic curves defined by

y2 ≡ x3 + 2x + b mod 7

by hand forb = 3 andb = 5. Calculate all points and a complete “addition table” as given by addition
rule as defined in the book and in class. Are they both addition tables for a group? Can you explain what
happened?

2 (15p) Consider the elliptic curve defined by

y2 ≡ x3 + 871219x + 1201730773687975 modp

wherep = 1956804417664273 is prime. It is of orderq = 1956804417666157 (which is also prime)
and generated by the pointG = (123456789100,654321). Find a pointP on the curve such that the first
11 digits of thex-coordinate is your 10-digit social security number (“personnummer”) followed by a 0
(5p). Now find the discrete logarithm of this point relative to the generatorG (10p). In other words find
the numbera, 0≤ a < q such thataG = P .

Page 1 (of 3)

Foundations of cryptography • Spring 2009
Johan Håstad



3 (15p) A central concept of cryptography is that of a one-way function which is a function that is easy to
compute (givenx it is easy to findf (x)) and hard to invert (giveny formed asy = f (x) it is hard to find
anyx′ such thaty = f (x′)1

If f mapsn-bit strings ton-bit strings then we can invertf using 2n evaluations off and very little
memory by simply evaluatingf on all inputs. This inversion process can be sped up if we allow large
amounts of memory and massive precomputation.

Your task is to find out how this works. Write a short summary of what is known both in the case
whenf is a permutation and the more general case whenf may map differentn-bit inputs to the same
n-bit output (on thus somen-bit outputs are impossible). Estimate what sizen you can attack with an
ordinary computer in a week in the two situations. You should here ignore the cost of the precomputation.
For the sake of concreteness let us assume that an ordinary computer has 2 GB of RAM, 500 GB of hard
disc space and can compute the value off on any input in 10−7 seconds.

Feel free to use any source of information on this problem except for the estimation problem where
you should do your own calculations based on your own parameter choices.

4 (18p) Implement Schnorr’s signature scheme. Choose the parameter sizes so that you expect them to
withstand attacks for at least 20 years from attackers willing to spend a total of 107 USD to buy hardware.
A sound motivation for your parameters is worth 5p. Choose all parameters needed (public and private
for one user) and sign the message “Send more money” for an additional 13p.

Your code should be handed in as an attachment to an email to johanh@csc.kth.se with subject line
“krypto09-sch”. The attachment should consist of a single file named“firstname_lastname.tar.gz”,
such that the command“tar xvfz firstname_lastname.tar.gz” produces a single directory named
“firstname_lastname” containing your files. If you write your solution in C/C++, the directory must
contain a Makefile such thatmake builds your program. Regardless of the programming language used,
your directory must contain a fileREADME containing a brief description of how your program can be
invoked, including a few concrete examples that execute in a reasonable amount of time. Your code
should obviously be structured and documented. You may use pre-made subroutines as discussed in the
heading of this problem set.

5 (20p) On the course web page you have five sets of sequences, ser1, ser2, ser3, ser4 and ser5. In
each you find five pairs of sequences. In each pair one of the sequences have been produced by a bad
pseudorandom generator giving some nonrandom2 property while the other is output from a much better
generator. In each set, the same bad generator was used for the five bad sequences. Identify a nonrandom
property for each set and identify which sequence in each pair was produced by the bad generator.

1Note that iff is not one-to-one we cannot ask an inverter to findx.
2Of course this notion is imprecise. We mean a fairly natural property that appears with very low probability (lower than

10−6 for a truly random sequence.

Page 2 (of 3)

Foundations of cryptography • Spring 2009
Johan Håstad



6 (15p) You run into a web-page where there is an system for RSA public key encryption that uses values
(in hex)

N = a0346acc9bf5007d9449bb74c827e72d08c8f1997613c102d4d21dc9ae3884610f00ff

6c5171401e668dde129a8fdb149c222122d96f233865abb6126cdd5815

and

e = e73d8e40da57cccc6a0ce5f9499388202813654293d89a64f7da2a0b24180da1897c6

74e75061d8fb14e120e5081edd3d46ff955003b5efd5770945bc1ee88b.

As you interact with the page you are puzzled by the fact that, even though you know that this web-server
is run on an ordinary computer, it seems to decrypt much faster than your are able to encrypt. Factor
N! The numbers are available on the course home page. Pre-made subroutines are allowed to the extent
discussed in the homework headings.

7 (15p) In this problem we study a hash-functionh that maps inputs of any length to{0,1}m. We proved
in class that if a hash-function behaves completely randomly then after computing about 2m/2 values we
expect to findm1 6= m2 with h(m1) = h(m2). How many hash-values are needed to find

1. m1, m2 with h(m1) = h(m2) (bitwise complement).

2. m1, m2, m3 with h(m1) = h(m2) = h(m3).

3. m1, m2, m3 with h(m1) ⊕ h(m2) = h(m3) (bitwise exclusive-or).

In each case we do not allowmi = mj for i 6= j. If you cannot prove a bound rigorously you can resort to
heuristic arguments.

8 (15p) Supposen is a product of two primes, andx is a number that is relatively prime withn, i.e.
gcd(x, n) = 1. Consider the following interactive protocol for proving thatx is a non-square modulon,
i.e. that the equationy2 ≡ x modn is not solvable.

1. The verifier picks a random bitb and a random numberr, 1 ≤ r ≤ n that is relatively prime with
n. If b = 0 then the verifier sendsr2 modn to the prover and ifb = 1 it sendsxr2 modn.

2. The prover responds with a bitb′.

3. The verifier accepts iff b′ = b.

Prove that this protocol is complete and sound. To prove that it is complete you should prove that if
x is a non-square then an all powerful prover can convince a verifier of this fact. Prove that it is efficient
in that if the prover knows the factorization ofn then it can be implemented efficiently. To prove that it is
sound you need to prove that a prover cannot fool an honest verifier too often. To be more precise prove
that if x is a square modulon then, for any strategy of the prover, the probability that a verifier following
the protocol accepts is bounded by 1/2.

Finally discuss whether this protocol has the zero-knowledge property. Argue that if the verifier
follows the protocol then in fact it learns nothing new. Discuss what can be said if the verifier deviates
from the protocol. Can you see any way to make it zero-knowledge (not needed for a full score on the
problem)?

Page 3 (of 3)

Foundations of cryptography • Spring 2009
Johan Håstad


