DD245]1
Parallel and Distributed Computing

FDD3008
Distributed Algorithms

Lecture 7

Consensus, |l

Mads Dam
Autumn/Winter 201 |

Slides: Much material due to R. Wattenhofer, ETH

Previously . ..

Consensus for shared memory

Impossibility of consensus using atomic read-write registers
Consensus hierarchy

RMW instructions

Today:
Leave shared memory behind for a while
Turn to message passing concurrency

Consensus #4: Synchronous Systems

* One can sometimes tell if a processor had crashed
— Timeouts
— Broken TCP connections
— Heartbeats
* Can one solve consensus at least in
synchronous systems?
* Model

— All communication occurs
in synchronous rounds

— Complete communication graph

Reading: Attiya, Welch ch 5 until 5.3

Synchronous Systems - Model

e Model

— All communication occurs
in synchronous rounds

— Complete communication graph

e Synchronous system:

— Roughly synchronized rounds
— Message passing, bounded delay

— Each round: Receive, process, send
| l 1 1 | C l L

| | 1 1 | | |
\ | |)

T | Y
‘ | Receive Process Send | , |

Y | |
Round,, Round, Round,

Crash Failures

e Broadcast: Send a Message to All Processes in One Round
— At the end of the round everybody receives the message a
— Every process can broadcast a value in each round
e Crash Failures: A broadcast can fail if a process crashes
— Some of the messages may be lost, i.e., they are never received

Faulty
Processor

After a Failure, the Process Disappears from the
Network

Round 1 Round 2 Round 3 Round 4 Round 5

Consensus Definition

e Everybody has an initial value
e Everybody must decide on the same value

Start Finish

e Validity condition:
If everybody starts with the same value, they must decide on that value

A Simple Consensus Algorithm

Each process:
1. Broadcast own value

2. Decide on the minimum of all received values

Including the
own value

Note that only one
round is needed!

No Failures

e Broadcast values and decide on minimum = Consensus!

e Validity condition is satisfied: If everybody starts with the same initial
value, everybody sticks to that value (minimum)

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

Failures

e The failed processor doesn’t broadcast its value to all processors
e Decide on minimum - no consensus!

fail

0,1,2,3

1,2,3,4

1,2,3,4 0,1,2,3,4

An f-resilient Consensus Algorithm

e If an algorithm solves consensus for f failed processes, we say it is an
f-resilient consensus algorithm

e Example: The input and output of a 3-resilient consensus algorithm:
Start Finish

* Refined validity condition:
If everybody starts with the same value, they must decide on that value
All non-faulty processes eventually decide

An f-resilient Consensus Algorithm

Algorithm FloodSet:

Each process:

Round 1:
Broadcast own value

Round 2 to round f+1:
Broadcast all newly received values

End of round f+1:
Decide on the minimum value received

An f-resilient Consensus Algorithm

e Example: f= 2 failures, f+ 1 = 3 rounds needed

An f-resilient Consensus Algorithm

e Round 1: Broadcast all values to everybody

Failure 1

- @

1,2,3,4

1,2,3,4

0,1,2,3,4

An f-resilient Consensus Algorithm

e Round 2: Broadcast all new values to everybody

‘ Failure 1

0,1,2,3,4 1,2,3,4

1,2,3,4 c

Failure 2
0,1,2,3,4

An f-resilient Consensus Algorithm

e Round 3: Broadcast all new values to everybody

‘ Failure 1

0,1,2,3,4 0,1,2,3,4

—@
‘ Failure 2

0,1,2,3,4

An f-resilient Consensus Algorithm

e Decide on minimum = Consensus!

‘ Failure 1

0,1,2,3,4 0,1,2,3,4

—@
. Failure 2

0,1,2,3,4

Analysis

e |f there are ffailures and f+1 rounds, then there is a round

with no failed process
e Example: 5 failures, 6 rounds:

No failure

1 2 3 4 5 6
@ o o o o o
0

® o o o o o
@ o

@ @ |0

@ o o o o o
@ o @ o

\e) \O) \CJ \a) \QJ kOJ

Analysis

At the end of the round with no failure

— Every (non faulty) process knows about all the values of all
the other participating processes

— This knowledge doesn’t change until the end of the
algorithm

Therefore, everybody will decide on the same value

However, as we don’t know the exact position of this round,
we have to let the algorithm execute for f+1 rounds

Validity: When all processes start with the same input value,
then consensus is that value

Exercises

Exercise 1

 The message complexity of an algorithm is the number of
messages passed along some link in the process graph

 What is the message complexity of the FloodSet algorithm?

Lower Bound, Crash Failures

Theorem

Any f-resilient consensus algorithm requires at least f + 1 rounds

Note that this is
not a formal proof!

Proof sketch:

e Assume for contradiction that f or less rounds are enough

e Worst-case scenario: There is a process that fails in each
round

Round

Worst-case Scenario

1

P

Pm

e Before process p, fails, it sends
its value a only to one process

Pk
e Before process p, fails, it sends
its value a to only one process

Pm

Worst-case Scenario

Round 1 2 3 f
e Atthe end of
D) round f only
D one process p,
@ knows about
value a
)
O| Pn
2T
Pr ‘

Round 1

~——

Worst-case Scenario

~———

~———

* Process p, may
decide on a and all
other processes
may decide on
another value b

Pn

f decide
b
D
a
D
y’
@

e Therefore f rounds are not enough = At least f+1 rounds are

needed

Arbitrary Behaviour

e The assumption that processes crash and stop forever is

sometimes too optimistic
Probably Are you there?
not... é z

and recover:

?7?7? Are you there?
* Maybe the processes are g' ¢ @

damaged:

 Maybe the processes

R
@/@ are ma|iCiOL:;

* Maybe the processes fail g’ | > ‘
&
T

N
me

Consensus #5: Byzantine Failures

e Different processes may receive different values
e A Byzantine process can behave like a crash-failed process

Faulty
processor

After a Failure, the Process Remains in the
Network

Round 1 Round 2 Round 3 Round 4 Round 5

‘ Failure

Consensus with Byzantine Failures

Again: If an algorithm solves consensus for f failed processes,
we say it is an f-resilient consensus algorithm

Validity condition: If all non-faulty processes start with the
same value, then all non-faulty processes decide on that value

Obviously, any f-resilient consensus algorithm requires at least
f+1 rounds (follows from the crash failure lower bound)

How large can f be...? Can we reach consensus as long as
the majority of processes is correct (non-Byzantine)?

Lower Bound, Byzantine Failures

Theorem

There is no f-resilient algorithm for n processes, where f > n/3

Proof outline:

e First, we prove the 3 processes case

e The general case can be proved by reducing it to the 3
processes case

The 3 Processes Case

Lemma
There is no 1-resilient algorithm for 3 processes

Intuition:

Proof: e Process A may also receive

information from C about B’s
messages to C

Byzantine

e Process A may receive conflicting

information about B from C and
about C from B (the same for Cl!)

e |tisimpossible for Aand Cto
decide which information to
base their decision on!

Proof of Lemma

By contradiction

Assume three process algorithm exists, executed by A, B, C
Construct system S, by running each process with input O or 1
Let an execution of S be given

Proof of Lemma

To nodes B:0 and C:0 there is no difference between execution of
S, and execution of S, — node A might be faulty

They must decide 0 in S; so they decide 0 in S, as well

Proof of Lemma

Similarly nodes A:1 and B:1 must decide 1

Proof of Lemma

Also C:0 and A:1 cannot distinguish an execution of S; from an
execution of 5,

S, solves byzantine agreement so C:0 and A:1 must deci
But C:0 must decide 0 and A:1 must decide 1.

The General Case

Assume for contradiction that there is an f-resilient algorithm
A for n processes, where f > n/3

We use this algorithm to solve the consensus algorithm for 3
processes where one process is Byzantine!

If n is not evenly divisible by 3, we increase it by 1 or 2 to
ensure that n is a multiple of 3

We let each of the
three processes

simulate n/3 processes

The General Case

e One of the 3 processes is Byzantine = Its n/3 simulated
processes may all behave like Byzantine processes

e Since algorithm A tolerates n/3 Byzantine failures, it can still

Consensus! Consensus!

Consensus #6: A Simple Algorithm for Byzantine
Agreement

* (Can the processes reach consensus if n > 3f?
e Asimpler question: Can the processes reach consensus if n=4

and f=17
e The answer is yes. It takes two rounds:
Round 1: Exchange all values Round 2: Exchange the received info

1,1,2,3

0,1,2,3 2,0,2,1
1,1,2,3
0,1,2,3

0,3,1,3
1,1,2,3
2,1,2,3

A Simple Algorithm for Byzantine Agreement

After the second round each node has received 12 values, 3 for
each of the 4 input values. If at least 2 of 3 values are equal,

this value is accepted. If all 3 values are different, the value is
discarded

The node then decides on the minimum accepted value

1,1,3,0
2,1,2,3 »~x,1,2,3
0,1,2,3

Consensus!

0,3,1,3
1,1,2,3 ~x,1,2,3
2,1,2,3

2,0,2,1
x,1,2,3y 1,1,2,3
0,1,2,3

A Simple Algorithm for Byzantine Agreement

e Does this algorithm still work in general for any fand n > 3f?
e Theanswerisno.Tryf=2andn=7:

Round 1: Exchange all values Round 2: Exchange the received info

e The problem is that q can say different things about what p
sent to g

e What is the solution to this problem?

A Simple Algorithm for Byzantine Agreement

e The solution is simple: Again exchange all information!

e This way, the processes learn that a majority thinks that g gave
inconsistent information about p =2 q can be excluded, and
also p if it also gave inconsistent information (about q).

e |f f=2 and n> 6, consensus can be reached in 3 rounds!
e |n fact, the algorithm

Exchange all information for f+1 rounds
lgnore all processes that provided inconsistent information
Let all processes decide based on the same input

solves the problem for any fand any n > 3f

Pease, Shostak, Lamport: Reaching Agreement in the Presence of Faults, JACM vol 27, 1980

Round 1: Exchange All Values

P4 p,said 1
P, said 1
P, said 1

ps said 1

Py:

pg said O
p, said O
: pysaid0
p, said 1
P, said 1
p, said 1
ps said O
pg said O
p, said 0
etc. ...

Etc. complete graph

Round 2: Exchange All Values

p, said p; said 1
p, said p; said 1
p, said p, said 1
p, said ps said 1
p, said pg said 1
p, said p, said 1
p; said p; said 1
p5 said p, said 1

Pq P,:

p, said p; said O
Etc. complete graph p, said p, said O
p, said ps said O
p, said pg said O
etc. ...

Round 3: Exchange All Values

P4

Etc. complete graph

P,:

p5 said p, said p, said 1
p5 said p, said p; said 1
p5 said p, said p, said 1

p5 said p, said p; said 0
p, said p5 said p, said O

etc. ...

Simple Byzantine Agreement - Analysis

p must decide if g has provided inconsistent information:

* |sthere subset P of {p1,...,p7} of size > (n + f)/2 = 4.5 and value v
such that p said|p2 said ... said p7' said g said v ?

Y
All sequences of length <= f

* If gis correct: Yes there is, as we can choose only correct nodes for
P-n—f>(n-f/2+(n=f/2>(n-1)/2+f=(n+f)/2 (recall: n > 3f)
 Ifgisincorrect:
— Suppose both p and p’ finds such a set P and value v for g
— The sets have > 2((n+f)/2) - n = f common members
— One of those is correct, so said the same of g in both cases
— So p and p’ agree that g said v

Simple Byzantine Agreement - Analysis

p must decide if g has provided inconsistent information:
* |sthere subset Pof {p1,...,p7} of size > (n + f)/2 = 4.5 and value v
such that p said p2 said ... said p7 said g said v ?
\)

Y
All sequences of length <= f

e What if p does not find a set P?
* Answer:
— p knows that g has delivered inconsistent information
— Drop g and recurse using n — 1 nodes and f — 1 byzantine nodes

— Drop all strings of shape g1 said ... gm said q said p’ said v from
consideration

— For each g that is not dropped in this way, by induction p finds a
set P

— Why? Eventually all nodes that provided inconsistent
information are dropped

Exercise

2. Write down the algorithm in pseudocode and complete the
proof sketched above

Be clear on what the inductive statement is and how it is
proved

Simple Byzantine Agreement: Summary

e The proposed algorithm has several advantages:
+ It works for any f and n > 3f, which is optimal

+ It only takes f+1 rounds. This is even optimal for crash
failures!

+ It works for any input and not just binary input

e However, it has a considerable disadvantage:
- The size of the messages increases exponentially!

 Can we solve the problem with small(er) messages?

Consensus #7: The Queen Algorithm

e The Queen algorithm is a simple Byzantine agreement
algorithm that uses small messages

e The Queen algorithm solves consensus with n processes and f

failures where n > 4f in f+1 phases
A phase consists
of 2 rounds

e There is a different (a priori known) queen in each phase

Idea:

e Since there are f+1 phases, in one phase the queen is not
Byzantine

e Make sure that in this round all processes choose the same
value and that in future rounds the processes do not change
their values anymore

Berman, Garay, Perry: Towards optimal distributed consensus, FOCS 1989 (also #8)

The Queen Algorithm
. At the end of phase f+1,
In each phase € 1...f+1: decide on own value

Round 1: 4[Also send own }
lue t If
Broadcast own value EREELOIONESE
Set own value to the value that was received most often

If own value appears > n/2+f times

support this value If several values have p
else the same (highest)
do not support any value frequency, choose any
KvaIue, e.g., the smaIIest/
Round 2:

The queen broadcasts its value

If not supporting any value
set own value to the queen’s value

The Queen Algorithm: Example

e Example:n=6, f=1

e Phase 1, round 1 (All broadcast): No process
supports a value

All received values
AL
'e N\

0,0,1,1,1,2
0,0,0,1,1,2 0
0,0,1,1,1,26 1

Broadcast own value
Set own value to the value that was received most often

If own value appears > n/2+f times support this value
else do not support any value

0,0,0,1,1,2

0,0,0,1,1,2

Majority value

The Queen Algorithm: Example

e Phase 1, round 2 (Queen broadcasts):

All processes choose
the queen’s value

The queen broadcasts its value
If not supporting any value
set own value to the queen’s value

The Queen Algorithm: Example

e Phase 2, round 1 (All broadcast)

No process
supports a value

0,0,0,1,1,2

0,0,0,1,1,2

o,o,1,1,1,zc< 1

Broadcast own value
Set own value to the value that was received most often

If own value appears > n/2+f times support this value
else do not support any value

0,0,0,1,1,2

The Queen Algorithm: Example

e Phase 2, round 2 (Queen broadcasts):

All processes choose
the queen’s value

{ Consensus! }

The queen broadcasts its value
If not supporting any value
set own value to the queen’s value

The Queen Algorithm: Analysis

e After the phase where the queen is correct, all correct processes have the
same value

— If all processes change their values to the queen’s value, obviously all
values are the same

— |f some process does not change its value to the queen’s value, it
received a value > n/2+f times > All other correct processes
(including the queen) received this value > n/2 times and thus all
correct processes share this value

e In all future phases, no process changes its value

— In the first round of such a phase, processes receive their own value
from at least n-f > n/2 processes and thus do not change it

— The processes do not accept the queen’s proposal if it differs from
their own value in the second round because the processes received
their own value at least n-f = (n-f)/2 + (n-f)/2 > n/2+f times. Thus, all
correct processes support the same value

[That’s why we need f < n/4! }

The Queen Algorithm: Summary

e The Queen algorithm has several advantages:

+ The messages are small: processes only exchange their
current values

+ It works for any input and not just binary input

e However, it also has some disadvantages:
- The algorithm requires f+1 phases consisting of 2 rounds
each
This is twice as much as an optimal algorithm
- It only works with f < n/4 Byzantine processes!

s it possible to get an algorithm that works with f< n/3
Byzantine processes and uses small messages?

Consensus #8: The King Algorithm

e The King algorithm is an algorithm that tolerates f < n/3
Byzantine failures and uses small messages

e The King algorithm also takes f+1 phases

A phase now
Idea: consists of 3 rounds

e The basicidea is the same as in the Queen algorithm

e There is a different (a priori known) king in each phase

e Since there are f+1 phases, in one phase the king is not
Byzantine

e The difference to the Queen algorithm is that the correct

processes only propose a value if many processes have this
value, and a value is only accepted if many processes propose
this value

The King Algorithm

In each phase i€ 1...f+1: At the end of phase f+1,
decide on own value

Round 1:
e
Broadcast own value Also send own
Lvalue to oneself
Round 2:

If some value x appears > n-f times
Broadcast “Propose x”

If some proposal received > f times
Set own value to this proposal

Round 3:

The king broadcasts its value

If own value received < n-f proposals
Set own value to the king’s value

The King Algorithm: Example

e Example:n=4, f=1

e Phasel: 0* = “Propose 0” All processes choose
1* = “Propose 1” the king’ value
“Propose 1”
0’0’1’1 0’1’1’1 2 propose 1 2 propose 1

1 proposal each

Round 1 Round 2 Round 3
Broadcast own If some value x appears = n-f times The king broadcasts its value
value Broadcast “Propose x” If own value received < n-f proposals
If some proposal received > f times Set own value to the king’s value

Set own value to this proposal

The King Algorithm: Example

e Example:n=4, f=1

e Phase 2: 0* = “Propose 0” { Consensus!]
1* = “Propose 1”
“Propose 1” | take the

2 propose 1 2 1 king’s value!
0,0,1,1 0,1,1,1 prop propose

“Propose 1” 3 propose 1

| keep my
|
Round 1 Round 2 gagvaue! Round 3
Broadcast own If some value x appears = n-f times The king broadcasts its value
value Broadcast “Propose x” If own value received < n-f proposals
If some proposal received > f times Set own value to the king’s value

Set own value to this proposal

The King Algorithm: Analysis

e QObservation: If some correct process proposes x, then no other correct
Process proposes y # x
— Both processes would have to receive > n - f times the same value
— >n-2f of the sending processes are non-faulty
— Then there must be > 2(n - 2f) + f= 2n — 3f > n processes

We used
that f < n/3!
e The validity condition is satisfied

— If all correct processes start with the same value, all correct processes
receive this value > n - f times and propose it

— All correct processes receive 2 n — f proposals, i.e., no correct process
will ever change its value to the king’s value

The King Algorithm: Analysis

e After the phase where the king is correct, all correct processes have the
same value

— If all processes change their values to the king’s value, obviously all
values are the same

— |f some process does not change its value to the king’s value, it
received a proposal > n-f times = > n-2f correct processes broadcast
this proposal and all correct processes receive it > n-2f > f times - All
correct processes set their value to the proposed value. Note that only
one value can be proposed > f times, which follows from the
observation on the previous slide

e |n all future phases, no process changes its value

— This follows immediately from the fact that all correct processes have
the same value after the phase where the king is correct and the
validity condition

Exercises

3. Some networks are organized as a hypercube. There are

n = 2™ processes and each process can communicate with m
other processes.

a) Modify the King algorithm so that it works in a hypercube.
Optimize the algorithm according to resilience.

b) How many failures can your algorithm handle? (Assume
Byzantine processes can neither forge nor alter source or

destination of a message.)
c) How many rounds does this algorithm require?

The King Algorithm: Summary

e The King algorithm has several advantages:
+ It works for any f and n > 3f, which is optimal

+ The messages are small: processes only exchange their
current values

+ It works for any input and not just binary input

e However, it also has a disadvantage:

- The algorithm requires f+1 phases consisting of 3 rounds
each
This is three times as much as an optimal algorithm
Is it possible to get an algorithm that uses small messages
and requires fewer rounds of communication?

Consensus #9: Byzantine Agreement Using
Authentication

* Unforgeability condition: If a process p never |
sends a message m, then no correct process | “M* Q’)\O

be lying! 0
ever accepts m (as coming from p) QD/
vsaid 1 w

 Why is this condition helpful?

— A Byzantine process cannot convince a correct process that
some other correct processes voted for a certain value if they
did not!

Idea:
 Thereis a designated process P. The goal is to decide on P’s value

 Assume binary input. The default value is O, i.e., if P cannot
convince the processes that P’s input is 1, all correct processes
choose 0

D. Doley, R. Strong: Polynomial algorithms for byzantine agreement, Proc. 14t STOC, 1982

Byzantine Agreement Using Authentication

If | am P and own inputis 1

value :=1

broadcast “P has 1”
else

value :=0

In each roundr € 1...f+1:

If value = 0 and accepted r messages “P has 1” in total including a message
from P itself

value :=1

broadcast “P has 1” plus the r accepted messages that caused the

local value to be setto 1

After f+1 rounds: In total r+1 authenticated
“P has 1”7 messages

Decide value

Byzantine Agreement Using Authentication:
Intuition

So what’s going on?

The goal: If one correct P decides 1 (0) then all correct
processes decide 1 (0), at the latest in round f+ 1

Since messages are authenticated, “P has 1” sent from node j
is different from “P has 1” sent from node j

If a correct node p receives an authentic message “P has 1”
from P can it then decide 17?

If so, it can then terminate the following round — then all
other processes will have received the same messages p
received and decide 1

But what if P (e.g.) waits until round f+1 to tell a correct node
that it has 1?

Byzantine Agreement Using Authentication:
Analysis

Case 1: P is correct

— P’sinput is 1: All correct processes accept P’s message in
round 1 and set value to 1. No process ever changes its

value back to 0

— P’s input is O: P never sends a message “P has 1”7, thus no
correct process ever sets its value to 1

Byzantine Agreement Using Authentication:
Analysis

Case 2: P is Byzantine
— P tries to convince some correct processes that its input is 1

— Assume a correct process p sets value =1 inround r < f+1:
Process p has accepted r messages including the message from
P. Therefore, all other correct processes accept the same r
messages plus p’s message and set their values to 1 as well in
round r+1

— Assume that a correct process p sets its value to 1 in round f+1:
In this case, p accepted f+1 messages. At least one of those is
sent by a correct process, which must have set its valueto 1 in
an earlier round. We are again in the previous case, i.e., all
correct processes decide 1!

Exercises

4. Modify the algorithm such that it handles arbitrary input.
The processes may also agree on a “sender faulty” value.
Prove that your algorithm is correct.

Byzantine Agreement Using Authentication:
Summary

e Using authenticated messages has several advantages:
+ It works for any number of Byzantine processes!

+ It only takes f+1 rounds, which is optimal [sub-exponential length }

+ Small messages: processes send at most f+1 “short”
messages to all other processes in a single round

e However, it also has some disadvantages:

- If P is Byzantine, the processes may agree on a value that
is not in the original input

- It only works for binary input
- The algorithm requires authenticated messages...

Byzantine Agreement Using Authentication:
Improvements

e Can we modify the algorithm so that it satisfies the validity
condition?

— Yes! Run the algorithm in parallel for 2f+1 “masters” P.
Either O or 1 is decided at least f+1 times, i.e., at least one
correct process had this value. Decide on this value!

— Alas, this modified protocol only works if f< n/2
e Can we get rid of the authentication?

— Yes! Use consistent-broadcast. This technique is not
discussed

— This modified protocol works if f < n/3, which is optimal

— However, each round is split into two = The total number
of rounds is 2f+2

Consensus #10: A Randomized Algorithm

e So far we mainly tried to reach consensus in synchronous
systems. The reason is that no deterministic algorithm can
guarantee consensus even if only one process may crash

e (Can one solve consensus in asynchronous systems if we allow
randomization?

Asynchronous system: Messages may be
delayed indefinitely

* The answer is yes! [

* The basic idea of the algorithm is to push the initial value. If
other processes do not follow, try to push one of the
suggested values randomly

* For the sake of simplicity, we assume that the input is binary
and at most f < n/9 processes are Byzantine

M. Ben-Or: Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols. PODC 1983

Randomized Algorithm

x:=owninput;r=0
Broadcast proposal(x, r)

In each round r=1,2,...:

Wait for n-f proposals

If at least n-2f proposals have some value y

x :=y; decideony
else if at least n-4f proposals have some value y
X=Y,
else

choose x randomly with P[x=0] = P[x=1] =)%
Broadcast proposal(x, r)

If decided on a value = stop

Randomized Algorithm - Validity

x:=owninput;r=0 n —f correct processes have same x
Broadcast proposal(x, r)

n — f correct processes broadcast x
In each round r=1,2,...:

Wait for n-f proposals

If at least n-2f proposals have some value y

x :=y; decideony All correct processes receive n — 2f

. s f
else if at least n-4f proposals Have somie vdiue y

X=Y,
else

choose x randomly with P[x=0] = P[x=1] =)%
Broadcast proposal(x, r)

If decided on a value = stop

Randomized Algorithm - Agreement

x:=owninput;r=0
Broadcast proposal(x, r)

In each round r=1,2,...:

Wait for n-f proposals
If at least n-2f proposals have some value y

x :=y; decideony Some correct process decides x
else if at least n-4f proposals have some value y
X=Y,
else

choose x randomly with P[x=0] = P[x=1] =)%
Broadcast proposal(x, r)
If decided on a value = stop

Randomized Algorithm - Agreement

x:=owninput;r=0
Broadcast proposal(x, r) n — 3f correct processes proposed x

In each round r=1,2,...:

Wait for n-f proposals
If at least n-2f proposals have some value y

x :=y; decideony Some correct process decides x
else if at least n-4f proposals have some value y
X=Y,
else

choose x randomly with P[x=0] = P[x=1] =)%
Broadcast proposal(x, r)
If decided on a value = stop

Randomized Algorithm - Agreement

x:=owninput;r=0
Broadcast proposal(x, r) n — 3f correct processes proposed x

In each round r=1,2,...:

Wait for n-f proposals
If at least n-2f proposals have some value y

X:=YV, decide on y Some correct process decides x
else if at least n-4f proposals have some value y

X:=Y, n — 4f correct processes proposed x
else So: all n —f correct processes take x

] All decide x next round
choose x randomly with P[x=U] = P[X=1] = 7

Broadcast proposal(x, r)
If decided on a value = stop

Randomized Algorithm - Termination

x:=owninput;r=0
Broadcast proposal(x, r)

In each round r=1,2,...:

Wait for n-f proposals
If at least n-2f proposals have some value y
x :=y; decideony
else if at least n-4f proposals have some value y

X =Y, Some correct process does not set x
else randomly

choose x randomly with P[x=0] = P[x=1] =)%
Broadcast proposal(x, r)
If decided on a value = stop

Randomized Algorithm - Termination

x:=owninput;r=0
Broadcast proposal(x, r)

In each round r=1,2,...:
Wait for n-f proposals n > of

If at least n-2f proposals have~~=~otro e
f prop n — 5f correct processes proposed x =>

x =y, decide on y no correct process proposed y != x
else if at least n-4f proposals have some value y

X =Y, Some correct process does not set x
else randomly

choose x randomly with P[x=0] = P[x=1] =)%
Broadcast proposal(x, r)
If decided on a value = stop

Randomized Algorithm - Termination

x:=owninput;r=0

Broadcast proposal(x, r)
Worst case: All choose randomly
Prob(all choose i) = 2-(n—-#

In each round r = 1,2,..: Termination in expectation < 2"

Wait for n-f proposals n>9f

If at least n-2f proposals have =22 lio
f prop n — 5f correct processes proposed x =>

x =y, decide on y no correct process proposed y != x
else if at least n-4f proposals have some value y

X =Y, Some correct process does not set x
else randomly

choose x randomly with P[x=0] = P[x=1] =)%
Broadcast proposal(x, r)
If decided on a value = stop

Randomized Algorithm: Analysis

e Validity condition (as before)

— If all correct processes have the same initial value x, they
will receive n-2f proposals containing x in the first round
and they will decide on x

e Agreement (if the processes decide, they agree on the value)

— Assume that some correct process decides on x. This
process must have received x from n-3f correct processes.
Every other correct process must have received x at least
n-4f times, i.e., all correct processes set their local value to
x, and propose and decide on x in the next round

Randomized Algorithm: Analysis

Termination (all correct processes eventually decide)

* If some processes do not set their local value randomly, they
set their local value to the same value. Proof: Assume that
some processes set their value to 0 and some othersto 1, i.e.,
there are 2 n-5f correct processes proposing 0 and > n-5f
correct processes proposing 1.

In total there are > 2(n-5f) + f > n processes. Contradiction!

[That’s why we need f < n/9!

* Thus, in the worst case all n-f correct processes need to
choose the same bit randomly, which happens with
probability (%))

* Hence, all correct processes eventually decide. The expected
running time is smaller than 2"

Exercises

5. Explain why it does not work by just setting x = 1 instead of
choosing x randomly

Can we do this faster?! Yes, with a Shared Coin

Replace:

choose x randomly with P[x=0] = P[x=1] = %4

with a subroutine in which all the processes compute a so-
called shared (a.k.a. common, “global”) coin

* Ashared coinis a shared random binary variable that is O
with constant probability, and 1 with constant probability

* And: with constant probability some processes see 0 and
somesee 1l

* For the sake of simplicity, we assume that there are at most f
< n/3 crash failures (no Byzantine failures!!!)

Bracha, G. (1984). An asynchronous .(n - 1)/3.-resilient consensus protocol. PODC 1984

Shared Coin Algorithm

Code for process i:

Set local coin ¢, := 0 with probability 1/n, else c, :=1
Broadcast c,
Wait for exactly n-f coins and collect all coins in the local coin
set s,
Broadcast s,
Wait for exactly n-f coin sets
If at least one coin is 0 among all coins in the coin sets
return 0
else
return 1

Assume the worst case:
Choose f so that 3f+1 = n!

Shared Coin Algorithm - Termination

Code for process i:

Set local coin ¢, := 0 with probability 1/n, else c, :=1
Broadcast c,

Wait for exactly n-f coins and collect all coins in the local coin
sets; All correct processes receive n — f
Broadcast s, coins

Wait for exactly n-f coin sets

If at least one coin is 0 among all coins in the coin sets

return 0 All correct processes receive n —f
else coin sets

return 1

Shared Coin: Analysis

Termination:

All correct processes broadcast their coins.
It follows that all correct processes receive at least n-f coins
All correct processes broadcast their coin sets.

It follows that all correct processes receive at least n-f coin
sets and the subroutine terminates

Shared Coin: Analysis

e We will now show that at least 1/3 of all coins are seen
by everybody

A coinis seen ifitisin at
least one received coin set

e More precisely: We will show that at least f+1 coins are
in at least f+1 coin sets

— Recall that f< n/3

— Since f+1 coins are in at least f+1 coin sets
— and all processes receive n-f coin sets:

— all correct processes see these coins!

Shared Coin: Analysis

e Proof that at least f+1 coins are in at least f+1 coin sets
— Draw the coin sets and the contained coins as a matrix

— Example: n=7, f=2 { X means coin ¢;is in set s,]

Sq S3 S S6 57

C, X X X X X

c, X X

Cy X X X X X

C, X X X

Ce X X

Ce X X X X

c, X X X X

Shared Coin: Analysis

At least f+1 rows (coins) have at least f+1 x’s (are in at least f+1 coin sets)

First, there are exactly (n-f)? x’s in this matrix

Assume that the statement is wrong: Then at most f rows may be full and
contain n-f x’s. And all other rows (at most n—f) have at most f x’s

Thus, in total we have at most f(n-f)+ (n-f)f = 2f(n-f) X's
But 2f(n-f) < (n-f)? because 2f < n-f (recall again; 3f < n)

51 33 S5 S S7

C, X X X X X

C, X X

1Hul

Shared Coin

Theorem

All processes decide 0 with constant probability, and all
processes decide 1 with constant probability

Proof:

e With probability (1-1/n)" = 1/e = 0.37 all processes choose 1.
Thus, all correct processes return 1

e There are at least n/3 coins seen by all correct processes.
The probability that at least one of these coins is set to O is at
least

1-(1-1/n)"3 = 1-(1/e)3 = 0.28

Back to Randomized Consensus

If this shared coin subroutine is used, there is a constant
probability that the processes agree on a value

Some nodes may not want to perform the subroutine because
they received the same value x at least n-4f times. However,
there is also a constant probability that the result of the

shared coin toss is x!

Of course, all nodes must take part in the execution of the
subroutine

This randomized algorithm terminates in a constant number
of rounds (in expectation)!

Randomized Algorithm: Summary

The randomized algorithm has several advantages:
+ It only takes a constant number of rounds in expectation
+ |t can handle crash failures even if communication is asynchronous

However, it also has some disadvantages:

- It works only if there are f < n/9 crash failures.

- It doesn’t work if there are Byzantine processes
- It only works for binary input {

There are similar algorithms for the
shared memory model

Can it be improved?

- There is a constant expected time algorithm that tolerates
f < n/2 crash failures

- There is a constant expected time algorithm that tolerates
f < n/3 Byzantine failures

