
DD2451,	
 Parallel	
 and	
 Distributed	
 Computing,	
 Fall	
 2011	

Mads	
 Dam	

	

	

	

Hand-­in	
 1	

DD2451	
 +	
 FDD3008,	
 Parallel	
 and	
 Distributed	
 Computing	

Fall	
 2011	

	

	

Posted Nov 4 16.00. Due Nov 11 16.00. Answers can be mailed to mfd@kth.se as pdf or dropped
in Mads' intray, located on level 4, Lindstedtsvägen 3 (enter through the doors with the label
“NADA”, after going a small distance to the left proceed straight and you find the department
mail boxes on your right). Make sure answers are clearly marked with name and mail account on
each sheet. The general rules on homework solutions available at the course home-page apply. In
particular, discussions of ideas in groups of up to at most two people are allowed but solutions
should be written down individually, and you should note the name of your discussion partner.
Some of the problems below are “classical” and hence their solutions are probably posted on the
Internet. It is not allowed to use such solutions in any way. The order of the problems is “random”
and hence do not expect that the lowest numbered problems are the easiest. Any corrections or
clarifications on this problem set will be posted under “Exercises and hand-ins” on the course
home page (google DD2451).

1. (40p) Consider the following mutual exclusion protocol:

class MaybeMutex implements Lock {
 boolean[] flag ;
 public MaybeMutex (int n) {
 flag = new boolean[n];
 for (int i = 0; i < n; i++) {flag[i] = false}
 }
 public void lock() {
 int i = ThreadID.get();
 label1: flag[i] = false ;
 for (int j = 0; j < i; j++) {
 if flag[j] = true {continue label1} };
 flag[i] = true;
 for (int j = 0; j < i; j++) {
 if flag[j] = true {continue label1} };
 label2: for (int j = i + 1; j < n; j++) {
 if flag[j] = true {continue label2} };
 }
 public void unlock() {
 int i = ThreadID.get();
 flag[i] = false;
 }

1a (10p) Prove, using interval assertions in the style of Herlihy and Shavit chapter 2,
 that MaybeMutex satisfies mutual exclusion.

1b (10p) Is MaybeMutex deadlock free? Is it starvation free? Either prove that
 deadlock freedom, alt. starvation freedom, holds or explain how a
 counterexample execution can be constructed.

DD2451,	
 Parallel	
 and	
 Distributed	
 Computing,	
 Fall	
 2011	

Mads	
 Dam	

1c (10p) Suppose the second for-loop is removed. Does the algorithm still satisfy
 mutual exclusion? Either prove that it does, or exhibit a counterexample.

1d (10p) Replace the boolean flag array in the MaybeMutex algorithm of exercise 1
 by a safe boolean register array. Does mutual exclusion still hold? Again give a
 proof or produce a counterexample.

2. (30p) Read exercise 32 in H&S. The operations getAndIncrement, get, and
getAndSet are atomic operations which in an uninterruptable fashion, resp.,

a. Reads an atomicInteger register, increments it, and returns the original value
of the register

b. Reads the register and returns the value
c. Reads the register, sets it to the argument value, and returns the original value

of the register.

2a (10p) Give an execution showing that the linearization point for enq() cannot
 occur at line 15

2b (10p) Give an execution showing that the linearization point for enq() cannot
 occur at line 16

2c (10p) For one of the executions in 2a or 2b show in detail why it is linearizable.
 Use the definitions.

2d (Harder + optional: 20 bonus points for everyone) Sketch a proof that the HW
 queue is linearizable.

3. (10p) Prove that sequential consistency as determined by condition L1 of def. 3.6.1 of
H&S is non-blocking. Explain carefully each step in the proof.

4. (20p) Let r be an SRSW read write register. In each case below, give a careful argument

or exhibit a counterexample:

 4a (5p) r quiescently-consistent if and only if r safe

 4b (5p) r is quiescently-consistent if and only if r is regular

 4c (5p) r is sequentially consistent if and only if r is safe

 4d (5p) r is sequentially consistent if and only if r is regular

Good luck!

