Course 2D1453, 2006-07

Advanced Formal Methods

Lecture 3: Simply Typed Lambda calculus

Mads Dam
KTH/CSC

Some material from B. Pierce: TAPL + some from G. Klein, NICTA

Typing A-terms

The uptyped A-calculus allows "strange” terms to be
formed:

* DD = not(D D)
« succ (pair ff ff)

Solution: Rule out ill-formed terms using types
(Church 1940)

ll-formed term: Computation can "go wrong”

« succ (pair ff ff): Cannot complete computation to
produce a sensible value = normal form

« Type unsafety — runtime error

Types

Simply typed A-calculus, A_:
Only two types, base types and function types

Syntax:
Ti=A|T—>T
« A: Base type, e.g. bool, int, float, array[int], ...
e T, =Ty
Type of functions from T, to T,

Type constructor — right-associative:
T,=2T,=5T;==T, = (T, > Ty)

Typed A-terms

Ax.t: Must be of function type T, — T,
But where to find T,?

Alt. 1: Give domain type explicitly as typed A-term Ax:T,.t
Example: Ax:int.x + x : int — int
Used here initially

Alt. 2: Keep untyped syntax
Use types as well-formedness predicate
AXX+ X :int — int
Ax.x: int — int, but also Ax.x: bool — bool, etc.

The Typing Relation

Typing relation
ree:T

I': Type environment

Also: Type context, type assumptions

Finite function x > T,

Must have FV(t) C dom(r) I omitted Function update:

if empty x 0 dom(I)

Typing rules: /
x:Tel Mx:T,-t:T,
rex:T FEAXCTL T, =T,

r-t:7,-T, TkFs:T,;
F-ts:T,

Base Types

Easy to extend to base types
Example: Booleans

Base type Bool
Termst:=x|Ax:T.t|tt|true|false|iftthentelset]...

New typing rules (+ one for false too):
- FHt:bool Thks :T Tks,:T

I+ true : bool MHiftthens, elses,: T

Terms, Notation, Reduction

Same syntactic conventions for typed terms:
e AX:T,y:T,. T==AXT,.Ay:T,.T

Sometimes use , as separator for clarity
 Similar for associativity

Alpha-conversion, substitution, free and bound variables

Reduction: B Sy S
(Ax:T.t)s —gts/X] st—ogs't
t—opt t—gt
st—ogst AT t—gAx:T.t

Typing, Examples

Exercise 1: Give type derivations to show:

1. FAX:A y:B.x:A=>B—A

2. FAXX:A—>B,y:B—=>C,z:A.y(xz):
(A—-B)—»B—-C)—-A—=C

Exercise 2: Find a context under which f x y has type A.
Can you give a simple description of all such contexts?

Properties of the Typing Relation

Lemma 1:

1 frEx:Tthenx:Tel

2. fTFAX:Ty.t:SthenS =T, — T, for some S such
that,x: T, -t:T,

3. If Fts:T,thenthere is some T, such that
r-t:7T,->T,andlFs: T,

Exercise 3: Prove this statement

Exercise 4: Is there any context I and type T such that ' -
x x: T? If so, give a type derivation. If not, prove it.

Unique Typing and Normal Forms

Lemma2:fr-t:T,and M -t:T,then T, =T,
Exercise 5: Prove this statement.

Unique typing fails for many richer languages

Values:
veVali=x|xVv..V|Ax:T.v

Lemma3:t»gifft € Val
Exercise 6: Prove (or disprove) this statement.

Substitution Lemma

I < A: For all x, ['(x) is defined implied A(x) is defined and
then I'(x) = A(x)

Proposition L: IfTFt: Tand T <AthenAFt: T

Lemma 4 [Substitution]: If I, x: St TandM+s: S
then H1[s/x]: T
We'll prove this statement in class.

Theorem 1 [Subject Reduction]: f M -t:Tandt —gt
thenT Ht: T

Exercise 7: Prove this statement (hint: Use induction on
the derivation of ' - t: T)

Extensions - Products

Many extensions possible, see TAPL for more
First: Product types

Types: T:=...|TxT
Terms: t:=...|(t t) | fst|snd

Reduction: Use generic — instead of —,

Can support different evaluation orders

Products — Reduction and Typing

Reduction rules: - -
fst(t,s) —t snd(t,s) — s

+ rules for context closure:

t—t s—s t—t t—t

(ts) — (t',s) (ts)—(ts) fstt—fstt sndt—sndt

Typing rules:
rFt:T Tks:S
Fr=(s):Tx$S

MEfst: TxS—>T N-snd:TxS—S

Sums

Types: T:i=...|T+T
Terms: t:=..|in,|in,|casesin, =>t]||in,=>t

Syntax slightly uncommon. Often use sugared version,
something like:

casetofin (x:Ty) =>s, |liny(y:T,)=>s,
== (casesin, =>AX: T, .S, |Ay:T,.s,)t

Sums — Reduction and Typing

Reduction rules:

(casesin, =>s, || in, =>s,) (in, t) = s, t

(casesin, =>s, || in, =>s,) (in, t) = s, t

Exercise: Give suitable context closure rules for sums

Typing: R
FEing:T—=T+S MEin,:S—=T+S
ks, :T,—»S Mr-s,:7,—S
lcasesinl=>sl||in2=>s2:T,;+T,—S

Exercise 8: Unique typing fails for the type system with
sums. Why?

General Recursion

fix is not definable in A_, (see later), but can be introduced
as new constant

Terms: t = ... | fix
Reduction: fix f — f (fix f)

Typing: -
FrEfix:(T—-T)—>T

Exercise 9: Add a natural number base type, and define
equal, plus, times, and factorial using fix

More Exercises

Exercise 10: Add the following constructs to simply typed
lambda calculus, with reduction and typing rules:
to=..fletx:T=t int,|letrecx:T=t int,
The intention (of course) is that "let” is used for non-
recursive definitions, and "letrec” for recursive ones.
Give reduction and typing rules for "let” and "letrec”.
Show how "let” and "letrec” can be coded in A_,. Do the
same for mutually recursive definitions:
tu= .| letrecx, i Ty =ty, .., X, i T, =t,int

Note: In more realistic languages one will generally want
type annotations T, T,,... to be inferred automatically by
the type checker

The ML Language

With the extensions above A _, is a "grandmother” of many
typed functional languages

ML:

— Highly influential programming language

— Originally developed as a MetaLanguage for the LCF
theorem prover [Gordon-Milner-Wadsworth-79]

— ML used for programming proof search in LCF
Introduce base type "theorem”
The metalanguage must ensure type safety:
The only values of type "theorem” are those that
really are theorems in the logic being represented

— ML main features: cbv semantics, automatic type
inference, polymorphic types

ML, Haskell, PCF

ML and other languages:
— ML was influenced by Landin’s ISWIM
— SML — Standard ML of 1997

Comprehensive formal transition semantics and type
system by [Milner-Tofte-Harper, 1990]

— Check out: SML of New Jersey, OCAML
— SML used in descendants of LCF: HOL, Isabelle

— Haskell is a descendant with cbn (lazy) semantics
(and other twists)

— PCF [Plotkin-77]
A_, + naturals + more types + recursion
Popular in theoretical studies

Strong Normalization

We are now addressing the base calculus A_, with a single
base type A

Strong normalization:
t€ SN, iff any —p-derivationt =t; =g t; —p -+ =g t, =
--- has length at most n
SN ={t|3n.te SN}

Theorem 2 [Strong Normalization]: If - t: T thent € SN

This immediately shows that all terms of functional type
must express total functions on closed terms

Thus, general recursion cannot be encoded in A_,

Logical Relations

Exercise 11: Why is normalization tricky to prove?
As always, the trick is to find the right inductive argument

Proof here follows Tait [JSL-67] and Girard-Lafont-Taylor,
Proofs and Types, CUP’89

Define predicate R; on closed terms by:

- Ry={t|te SN}

— Rg_, r={t|whenevers € Rgthents e R}
Note: Do not require t € Ry implies - t: T.

Proof of Normalization
Lemma6: Ift »gt'and t € Rythent’ € Ry
Proof: By structural induction on the structure of T
Exercise 12: Prove lemma 6.

Neutral term: Either a variable or an application

Lemma7:

1. Ifte Rythente SN

2. Iftis neutral and for all t', t —4 t'implies t' € Ry, then t €
Ry

Proof of Lemma 7

Proof by simultaneous induction on T

T = A. Both 1 and 2 are immediate

T=T,—>T,.
1: Lett € Ry. By the induction hypothesis (2), x € R,
SOtX € Ry, Thentx € SN, sot € SN as well.
2: Suppose tis neutral and whenever t - t'then t’ €
Rr. Lett; € Ry,. We show tt, € Ry,. By the induction
hypothesis (1), t; € SN, for some n. We proceed by
nested induction on n. It is sufficient to show t, € R,
whenever tt, —; t,, by the induction hypothesis (2), and
since tt; is neutral. Since tis neutral, either t —, t' and
t,=t't, orelset; —5t,’, and t, = tt;". In the first case, t,
€ Ry, by the assumptions, and in the second, t," € Ry,
Thent,’ € SN,, n’<n. So by the inner i.h. Tt," € Ry,

Abstraction Lemma

Lemma 8: If ;[t/x] € Ry, whenevert € Ry then Ax: Ty. t; € Ry | q,
Proof: Assume t € Ry,. We must show
t=Mx:T.t)teRy,.
By7.1,te SN, andt, € SN, for some ny, n. Thenn,+n, is an
upper bound on the number of reduction steps that can be
performed before the outermost redex in t' must be reduced, so we
proceed by induction on n,+n,. By 7.2 .il is sufficient to show t" € Ry,
whenever t' —; t”. Check out the possible cases:
- 17 = t,[t/x]. We are done by the assumptions.
St'=(Ax: T t)sandt —gs. Thens € Ry by
Lemma 6 and s € SN, , n,'<n, so we're done by
the induction hypothesis.
St'=(Ax: T y)tandt, =gty Bylemma 6, t,'[t/X] € Ry, and
t;’ € SN, . for some n;’ <ny. Sot” € Ry,

Fundamental Lemma Exercise

Lemma 9: Suppose X, : Ty,....%, : T, = t: T. If t; € Ry, for all Exercise 13: We did not require thatt € Ry only if -t : T.
i 1<i< n, then t[t/xy,...,t/X,] € Ry Why was that?

Note: This proves theorem 2, for n = 0.

Proof: By induction on size of the type derivation. Let I' = x;
1 Ty.0%, : T, and t/x abbreviate t,/X,...,t/X,.

* t=x:Thentlt’)x] =t, T =T, and t € Ry, by the
assumptions.

» t=1tt": By the induction hypothesis, t'[t/x] € Ry _, r and
t'[t’x] € Ry’ Then t[t/x] = (t' t")[t/X] = (t[t/x]) (t"[t/X]) € Ry

s t=AX":T".t.ThenT=T"—=T. Lett” € R;. be
arbitrary. By the induction hypothesis, t'[t/x,t"/x"] € Ry..
But then Ax : T". t[t/x] = t[t/x] € R; as desired.

