
AN OVERVIEW OF PROMELA 3
‘‘What we see depends on mainly what we look for.’ ’

(Sir John Lubbock, 1834–1913)

In the last chapter we saw that the emphasis in PROMELA models is placed on
the coordination and synchronization aspects of a distributed system, and not
on its computational aspects. There are some good reasons for this choice.
First, the design and verification of correct coordination structures for dis-
tributed systems software tends to be much harder in practice than the design
of a non-interactive sequential computation, such as the computation of com-
pound interest or square roots. Second, the curious situation exists that the
logical verification of the interaction in a distributed system, though often
computationally expensive, can be done more thoroughly and more reliably
today than the verification of even the simplest computational procedure. The
specification language we use for systems verification is therefore deliberately
designed to encourage the user to abstract from the purely computational
aspects of a design, and to focus on the specification of process interaction at
the system level.

As a result of this specialization, PROMELA contains many features that are not
found in mainstream programming languages. These features are intended to
facilitate the construction of high-level models of distributed systems, The
language supports, for instance, the specification non-deterministic control
structures; it includes primitives for process creation, and a fairly rich set of
primitives for interprocess communication. The other side of the coin is that
the language also lacks some features that are found in most programming
languages, such as functions that return values, expressions with side effects,
data and functions pointers, etc. The reason is simple: PROMELA is not a pro-
gramming language. PROMELA is a language for building verification models.

A verification model differs in at least two important ways from a program
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written in a mainstream programming language such as Java or C.

• A verification model represents anabstraction of a design that contains
only those aspects of a system that are relevant to the properties one
wants to verify.

• A verification model often contains things that are typically not part of
an implementation. It can, for instance, include worst-case assump-
tions about the behavior of theenvironment that may interact with the
modeled system, and, most importantly, it either explicitly or implicitly
contains a specification ofcorrectness properties.

Even though it can be attractive to hav e a single specification that can serve as
both a verification model and as an implementation of a system design — ver-
ification and implementation have some fundamentally different objectives.
A verification model is comparable in its purpose to the prototype or design
model that a civil engineer might construct: it serves to prove that the design
principles are sound. Design models are normally not expected to be part of
the final implementation of a system.

A full system implementation typically contains more information, and far
more detail, than a design model. This means that it can be difficult to find
automatic procedures for converting design models into system implementa-
tions. The reverse, however, is not necessarily true. In Chapter 10 we will
explore means for mechanically extracting the main elements of a verification
model directly from an implementation, guided by abstraction techniques.
Similarly, in Chapter 17 we will discuss the specific constructs that are avail-
able in PROMELA to facilitate model extraction tools. These topics, though,
should be considered advanced use of the model checker, so we will con-
veniently ignore them for now.

In the last chapter we gav e a bird’s-eye view of the language, briefly touching
on some of the main language constructs that are available to build verifica-
tion models. In this chapter we cover the language more thoroughly. We will
try to cover all main language features in a systematic way, starting with the
most general constructs, and slowly descending into more of the specifics.
We restrict ourselves here to the mechanisms that are at our disposal for
describing process behavior and process interaction. In the next chapter we
will continue the discussion with a description of the various means we have
to define correctness claims. After we have covered these basics, we move on
in Chapter 5 to discuss methods for exploiting design abstraction techniques
as an aid in the control of verification complexity.

First then, our overview of the basic language for specifying the behavior of
concurrently executing, and potentially interacting, processes in a distributed
system.
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TYPES OF OBJECTS
PROMELA derives many of its notational conventions from the C programming
language. This includes, for instance, the syntax for boolean and arithmetic
operators, for assignment (a single equals) and equality (a double equals), for
variable and parameter declarations, variable initialization and comments, and
the use of curly braces to indicate the beginning and end of program blocks.
But there are also important differences, prompted by the focus in PROMELA

on the construction of high-level models of the interactions in distributed sys-
tems.

A PROMELA model is constructed from three basic types of objects:
• Processes
• Data objects
• Message channels

Processes are instantiations ofproctypes, and are used to define behavior.
There must be at least oneproctype declaration in a model, and for the
model to be of much use there will normally also be at least one process
instantiation.

A proctype body consists of zero or more data declarations, and one or
more statements. The semantics of statement execution is somewhat special
in PROMELA, since it also doubles as the primary mechanism for enforcing pro-
cess synchronizations. We hav e seen some of this in the last chapter, and we
will return to it in more detail in the section onexecutability (p. 51).

Process types are always declared globally. Data objects and message chan-
nels can be declared either globally, that is, outside all process type declara-
tions, or locally, that is, within a process type declaration. Accordingly, there
are only two lev els of scope in PROMELA: global and process local. It is, for
instance, not possible to restrict the scope of a global object to only a subset
of the processes, or to restrict the scope of a local object to only part of a
proctype body.

The next three sections contain a more detailed discussion of each of the three
basic types of objects in PROMELA. This is followed by a discussion of
PROMELA’s rules for executability, and a more comprehensive overview of the
primitives in PROMELA for defining flow of control.

PROCESSES
In the last chapter we saw that we can declare and instantiate processes by
prefixing aproctype declaration with the keywordactive. There are sev-
eral ways to instantiate processes in PROMELA. We can create multiple instan-
tiations of a givenproctype by adding the desired number in square brackets
to theactive prefix, for instance as follows:
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active [2] proctype you_run()
{

printf("my pid is: %d\n", _pid)
}

Each running process has a unique process instantiation number. These
instantiation numbers are always non-negative, and are assigned in order of
creation, starting at zero for the first created process. Each process can refer
to its own instantiation number via the predefined local variable_pid. Simu-
lating the example above, for instance, produces the following output:

$ spin you_run.pml
my pid is: 0

my pid is: 1
2 processes created

The two processes that are instantiated here each print the value of their pro-
cess instantiation number and then terminate. The two lines of output happen
to come out in numeric order here, but since process execution is asyn-
chronous, it could just as well have been the opposite. By default, during sim-
ulation runs, SPIN arranges for the output of each active process to appear in a
different column: thepid number is used to set the number of tab stops used
to indent each new line of output that is produced by a process.1

There is also another way to instantiate new PROMELA processes. Any running
process can start other processes by using a predefined operator calledrun.
For instance, we could rewrite the last example as follows:

proctype you_run(byte x)
{

printf("x = %d, pid = %d\n", x, _pid)
}

init {
run you_run(0);
run you_run(1)

}

A disadvantage of this solution is that it often creates one process more than
strictly necessary (i.e., theinit process). For simulation or implementation,
the extra process would not matter too much, but in system verification we
usually take every possible precaution to keep the system descriptions at a
minimum: avoiding all unnecessary elements.

A simulation run of the last model produces the following result:

1. We can now see that the stringhello world in the last chapter was printed left justified by a
happy coincidence. It was because the process executing the statement hadpid zero. We can
suppress the default indentations by invokingspin with option-T (see p. 513).
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$ spin you_run2.pml
x = 1, pid = 2

x = 0, pid = 1
3 processes created

In this version of theproctype you_run, we added a parameter of type
byte. This formal parameter is initialized in therun statement, which
appears here in theinit process. This means that when the ‘‘execution’’ of a
run statement results in the creation of a new process, all formal parameters
from the targetproctype declaration are initialized to the values of the corre-
sponding actual parameters that are provided in therun statement (i.e.,
parameter passing is by value).

Parameter values, of course, cannot be passed to theinit process, or to pro-
cesses that are instantiated asactive proctypes. If processes created
through the use of anactive prefix have formal parameters, they are treated
as if they were local variables, and they are initialized to zero. This initializa-
tion rule matches the rule for all data objects in PROMELA: if no explicit initial-
ization is present, an object is always initialized to zero.

A newly created process may,but need not, start executing immediately after
it is instantiated. Similarly, the new process may, but need not and generally
will not, terminate before the process that created it moves on to its next state-
ment. That is: processes do not behave like functions. Each process, no mat-
ter how it is created, defines an asynchronous thread of execution that can
interleave its statement executions in arbitrary ways with other processes.

We mentioned in passing thatrun is really anoperator, and therefore techni-
cally what so far we have casually referred to as arun ‘‘statement’’ is really
anexpression. Technically again, the expression is not ‘‘executed’’ but evalu-
ated. Therun expression is the only type of expression that can have a side
effect when it evaluates to non-zero, but not when it evaluates to zero (i.e.,
when it fails to instantiate a new process). A run expression is also special in
the sense that it can contain only onerun operator and cannot be combined
with any other conditionals.

The value of arun expression evaluates to zero if no process can be instanti-
ated, otherwise it evaluates to a non-zero value which equals the process
instantiation number of the newly created process. Note that thepid returned
upon successful process instantiation can never itself be zero, because there
must be at least one process running to evaluate the expression. Evaluating a
run expression, then, produces a value of typepid (cf. p. 16, 36).

Becauserun is an operator, we can also change the definition ofinit in the
last example into the following version, where the process instantiation num-
bers are stored in local variables.
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init { pid p0, p1;

p0 = run you_run(0);
p1 = run you_run(1);
printf("pids: %d and %d\n", p0, p1)

}

Simulating the execution of this model produces:

$ spin you_run2.pml
x = 1, pid = 2

pids: 1 and 2
x = 0, pid = 1

3 processes created

Note that the output from the three processes can again appear in any order
because of the concurrent nature of the executions.

Finiteness: Why would evaluating arun expression everfail to instantiate a
new process, and return zero? The reason lies in the fact that a PROMELA

model can only define finite systems. Enforcing that restriction helps to guar-
antee that any correctness property that can be stated in PROMELA is decidable.
It is impossible to define a PROMELA model for which the total number of
reachable system states can grow to infinity. Data objects can only have a
finite range of possible values; there can be only finitely many active pro-
cesses, finitely many message channels, and every such channel can have only
finite capacity. The language does not prescribe a precise bound for all these
quantities, other than that there is such a bound and that it is finite. For all
currently existing versions of SPIN, the bound on the number of active pro-
cesses and the bound on the number of message channels is put at 255.

An attempt to ignore these bounds will necessarily fail. For instance, we
could try to define the following model:

active proctype splurge(int n)
{ pid p;

printf("%d\n", n);
p = run splurge(n+1)

}

Simulating the execution of this model with SPIN, using the-T option to dis-
able the default indentation ofprintf output, produces the following result:

$ spin -T splurge.pml
0
1
2
3
...
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252
253
254
spin: too many processes (255 max)
255 processes created

The creation of the 256th process fails (note that the process numbering start
at zero) and ends the simulation run. But there are more interesting things to
discover here, not just about how processes are instantiated, but also about
how they can terminate and die. Process termination and process death are
two distinct events in PROMELA.

• A process ‘‘terminates’’ when it reaches the end of its code, that is, the
closing curly brace at the end of theproctype body from which it was
instantiated.

• A process can only ‘‘die’’ and be removed as an active process if all
processes that were instantiated later than this process have died first.

Processes canterminate in any order, but they can onlydie in the reverse
order of their creation. When a process reaches the end of its code this only
signifies processtermination, but not processdeath. When a process has ter-
minated, this means that it can no longer execute statements, but will still be
counted as an active process in the system. Specifically, the processpid num-
ber remains associated with this process and cannot be reused for a new pro-
cess. When a process dies, it is removed from the system and itspid can be
reused for another process.

This means that each instantiation of theproctype splurge in the last
exampleterminates immediately after it creates the next process, but none of
these processes candie until the process creation fails for the first time on the
255th attempt. That last process is the first process that can die and be
removed from the system, since it is the most recently created process in the
system. Once this happens, its immediate predecessor can die, followed by its
predecessor, and all the way back to the first created process in stack order,
until the number of active processes drops to zero, and the simulation ends.

PROVIDED CLAUSES
Process execution is normally only guided by the rules of synchronization
captured in the statement semantics ofproctype specifications. It is possi-
ble, though, to define additional global constraints on process executions.
This can be done with the help of the keywordprovided which can follow
the parameter list of aproctype declaration, as illustrated in the following
example:
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bool toggle = true; /* global variables */
short cnt; /* visible to A and B */

active proctype A() provided (toggle == true)
{
L: cnt++; /* means: cnt = cnt+1 */

printf("A: cnt=%d\n", cnt);
toggle = false; /* yield control to B */
goto L /* do it again */

}

active proctype B() provided (toggle == false)
{
L: cnt--; /* means: cnt = cnt-1 */

printf("B: cnt=%d\n", cnt);
toggle = true; /* yield control to A */
goto L

}

The provided clauses used in this example force the process executions to
alternate, producing an infinite stream of output:

$ spin toggle.pml | more
A: cnt=1

B: cnt=0
A: cnt=1

B: cnt=0
A: cnt=1

B: cnt=0
A: cnt=1
...

A process cannot take any step unless itsprovided clause evaluates totrue.
An absentprovided clause defaults to the expressiontrue, imposing no
additional constraints on process execution.

Provided clauses can be used to implement non-standard process scheduling
algorithms. This feature can carry a price-tag in system verification, though.
The use ofprovided clauses can disable some of SPIN’s most powerful
search optimization algorithms (cf. Chapter 9).

DATA OBJECTS
There are only two lev els of scope in PROMELA models: global and process
local. Naturally, within each level of scope, all objects must be declared
before they can first be referenced. Because there are no intermediate levels
of scope, the scope of a global variable cannot be restricted to just a subset of
processes, and the scope of a process local variable cannot be restricted to
specific blocks of statements. A local variable can be referenced from its
point of declaration to the end of theproctype body in which it appears,
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Table 3.1 Basic Data Types

Type Typical Range
bit 0,1
bool false,true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
shor t −215 .. 215 − 1
int −231 .. 231 − 1
unsigned 0 .. 2n − 1

ev en when it appears in a nested block (i.e., a piece of code enclosed in curly
braces). This is illustrated by the following example:

init {
/* x declared in outer block */
int x;
{ /* y declared in inner block */

int y;
printf("x = %d, y = %d\n", x, y);
x++;
y++;

}
/* y remains in scope */
printf("x = %d, y = %d\n", x, y);

}

When simulated this model produces the output:

$ spin scope.pml
x = 0, y = 0
x = 1, y = 1
1 process created

Table 3.1 summarizes the basic data types in PROMELA, and the typical range
of values that corresponds to each type on most machines.

The data typeunsigned, like its counterpart in the C programming language,
can be used to declare a quantity that is stored in a user-defined number of bits
n, with 1 ≤ n ≤ 32. With just two exceptions, these data types can store only
unsigned values. The two exceptions areshort and int, which can hold
either positive or neg ative values. The precise value ranges of the various
types is implementation dependent. Forshort, int, and unsigned, the
effective range matches those of the same types in C programs when compiled
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on the same hardware. Forbyte, chan, mtype, andpid, the range matches
that of the typeunsigned char in C programs. The value ranges forbit
andbool are always restricted to two values.

Typical declarations of variables of these basic types include:

bit x, y; /* two single bits, initially 0 */
bool turn = true; /* boolean value, initially true */
byte a[12]; /* all elements initialized to 0 */
chan m; /* uninitialized message channel */
mtype n; /* uninitialized mtype variable */
short b[4] = 89; /* all elements initialized to 89 */
int cnt = 67; /* integer scalar, initially 67 */
unsigned v : 5; /* unsigned stored in 5 bits */
unsigned w : 3 = 5; /* value range 0..7, initially 5 */

Only one-dimensional arrays of variables are supported, although there are
indirect ways of defining multidimensional arrays through the use of structure
definitions, as we will see shortly. All variables, including arrays, are by
default initialized to zero, independent of whether they are global or local to a
process.

Variables always have a strictly bounded range of possible values. The vari-
ablew in the last example, for instance, can only contain values that can be
stored in three bits of memory: from zero to seven. A variable of typeshort,
similarly, can only contain values that can be stored in sixteen bits of memory
(cf. Table 3.1). In general, if a value is assigned to a variable that lies outside
its declared domain, the assigned value is automatically truncated. For
instance, the assignment

byte a = 300;

results in the assignment of the value 44 (300%256). When such an assign-
ment is performed during random or guided simulations, SPIN prints an error
message to alert the user to the truncation. The warning is not generated dur-
ing verification runs, to avoid generating large volumes of repetitive output.

As usual, multiple variables of the same type can be grouped behind a single
type name, as in:

byte a, b[3] = 1, c = 4;

In this case, the variable nameda is, by default, initialized to zero; all ele-
ments of arrayb are initialized to one, and variablec is initialized to the value
four.

Variables of typemtype can hold symbolic values that must be introduced
with one or moremtype declarations. Anmtype declaration is typically
placed at the start of the specification, and merely enumerates the names, for
instance, as follows:
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mtype = { appel, pear, orange, banana };
mtype = { fruit, vegetables, cardboard };

init {
mtype n = pear; /* initialize n to pear */

printf("the value of n is ");
printm(n);
printf("\n")

}

Of course, none of the names specified in anmtype declaration can match
reserved words from PROMELA, such asinit, or short.

As shown here, there is a special predefined print routineprintm that can be
used to print the symbolic name of anmtype variable. There can be multiple
mtype declarations in a model, but distinct declarations do not declare distinct
types. The last model, for instance, is indistinguishable to SPIN from a model
with a singlemtype declaration, containing the concatenation (in reverse
order) of the two lists, as in:

mtype = { fruit, vegetables, cardboard,
appel, pear, orange, banana };

Because of the restricted value range of the underlying type, no more than 255
symbolic names can be declared in allmtype declarations combined. The
SPIN parser flags an error if this limit is exceeded.

DATA STRUCTURES
PROMELA has a simple mechanism for introducing new types of record struc-
tures of variables. The following example declares two such structures, and
uses them to pass a set of data from one process to another in a single, indivis-
ible operation:

typedef Field {
short f = 3;
byte g

};

typedef Record {
byte a[3];
int fld1;
Field fld2;
chan p[3];
bit b

};

proctype me(Field z) {
z.g = 12

}
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init {
Record goo;
Field foo;

run me(foo)
}

We hav e defined two new data types namedField andRecord, respectively.
The local variablegoo in theinit process is declared to be of typeRecord.
As before, all fields in the new data types that are not explicitly initialized
(e.g., all fields exceptf in variables of typeField) are by default initialized
to zero. References to the elements of a structure are written in a dot notation,
as in for instance:

goo.a[2] = goo.fld2.f + 12

A variable of a user-defined type can be passed as a single argument to a new
process inrun statements, as shown in the example, provided that it contains
no arrays. So in this case it is valid to pass the variable namedfoo as a
parameter to therun operator, but usinggoo would trigger an error message
from SPIN about the hidden arrays. In the next section we shall see that these
structure type names can also be used as a field declarator in channel declara-
tions.

The mechanism for introducing user-defined types allows for an indirect way
of declaring multidimensional arrays, even though PROMELA supports only
one-dimensional arrays as first class objects. A two-dimensional array can be
created, for instance, as follows:

typedef Array {
byte el[4]

};

Array a[4];

This creates a data structure of sixteen elements, that can now be referenced
asa[i].el[j].

As in C, the indices of an array ofN elements range from zero toN-1.

MESSAGE CHANNELS
Message channels are used to model the exchange of data between processes.
They are declared either locally or globally. In the declaration

chan qname = [16] of { short, byte, bool }

the typenamechan introduces a channel declaration. In this case, the channel
is namedqname, and it is declared to be capable of storing up to sixteen mes-
sages. There can be any finite number of fields per message. In the example,
each message is said to consist of three fields: the first is declared to be of
type short, the second is of typebyte, and the last is of typebool. Each
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field must be either a user-defined type, such asField from the last section,
or a predefined type from Table 3.1. In particular, it is not possible to use an
array as a type declarator in a message field. An indirect way of achieving
this effect is again to embed the array into a user-defined type, and to use the
type name as the type declarator for the message field. Note also that since
the typechan appears in Table 3.1, it is always valid to usechan itself as a
field declarator. We can make good use of this capability to pass channel
identifiers from one process to another.

The statement

qname!expr1,expr2,expr3

sends a message with the values of the three expressions listed to the channel
that we just created. The value of each expression is cast to the type of the
message field that corresponds with its relative position in the list of message
parameters. By default2 the send statement is only executable if the target
channel is not yet full, and otherwise it blocks.

The statement

qname?var1,var2,var3

retrieves a message from the head of the same buffer and stores the values
from the three fields into the corresponding variables.

The receive statement is executable only if the source channel is non-empty.

It is an error to send or receive either more or fewer message fields than were
declared for the message channel that is addressed.

An alternative, and equivalent, notation for the send and receive operations is
to use the first message field as a message type indication, and to enclose the
remaining fields in parentheses, for instance, as follows:

qname!expr1(expr2,expr3)
qname?var1(var2,var3)

Some or all of the parameters to a receive operation can be given as constants
(e.g.,mtype symbolic constants) instead of variables:

qname?cons1,var2,cons2

In this case, an extra condition on the executability of the receive operation is
that the value of all message fields specified as constants match the value of
the corresponding fields in the message that is to be received. If we want to
use the current value of a variable for this purpose, that is, to constrain the

2. This default can be changed with SPIN option-m into one where the send statement is always
executable, but the message will be lost when an attempt is made to send a message to a full
channel.
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receive operation to messages that have a matching field, we can use the pre-
defined functioneval, for instance, as follows:

qname?eval(var1),var2,var3

In this case, the variablevar1 is evaluated, and its value is used as a con-
straint on incoming messages, just like a constant. The receive operation is
now executable only if a message is available that has a first field with a value
that matches the current value ofvar1. If so, the values ofvar2 andvar3
are set to the values of the corresponding fields in that message, and the mes-
sage is removed from channelqname.

A simple example of the mechanisms discussed so far is as follows:

mtype = { msg0, msg1, ack0, ack1 };

chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype };

active proctype Sender()
{
again: to_rcvr!msg1;

to_sndr?ack1;
to_rcvr!msg0;
to_sndr?ack0;
goto again

}

active proctype Receiver()
{
again: to_rcvr?msg1;

to_sndr!ack1;
to_rcvr?msg0;
to_sndr!ack0;
goto again

}

The model shown here is a simplified version of the alternating bit protocol as
defined by Bartlett, Scantlebury, and Wilkinson [1969]. We will extend it into
a more complete version shortly, after we have covered a little bit more of the
language.

The declaration

mtype = { msg0, msg1, ack0, ack1 };

introduces the four types of messages we will consider as symbolic constants.

We hav e used a label, namedagain in eachproctype and agoto statement,
with the usual semantics. We talk in more detail about control-flow constructs
towards the end of this chapter. The first ten steps of a simulation run with the
model above generate the following output.
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$ spin -c -u10 alternatingbit.pml
proc 0 = Sender
proc 1 = Receiver
q 0 1

1 to_rcvr!msg1
1 . to_rcvr?msg1
2 . to_sndr!ack1
2 to_sndr?ack1
1 to_rcvr!msg0
1 . to_rcvr?msg0
2 . to_sndr!ack0
2 to_sndr?ack0

-------------
depth-limit (-u10 steps) reached
-------------
...

We hav e used the SPIN option-c to generate a columnated display of just the
send and receive operations, which in many cases gives us just the right type
of information about process interaction patterns. Every channel and every
process is assigned an identifying instantiation number. Each column in the
display above corresponds to a process number as before. Each row (line) of
output also contains the instantiation number of the channel that is addressed
in the left margin.

We hav e also used the SPIN option -u10 to limit the maximum number of
steps that will be executed in the simulation to ten.

There are many more operations in PROMELA that may be performed on mes-
sage channels. We will review the most important operations here.

The predefined functionlen(qname) returns the number of messages that is
currently stored in channelqname. Some shorthands for the most common
uses of this function are:empty(qname), nempty(qname), full(qname),
andnfull(qname) with the obvious connotations.

In some cases we may want to test whether a send or receive operation would
be executable, without actually executing the operation. To do so, we can
transform each of the channel operations into a side effect free expression. It
is, for instance, not valid to say:

(a > b && qname?msg0) /* not valid */

or

(len(qname) == 0 && qname!msg0) /* not valid */

because these expressions cannot be evaluated without side effects, or more to
the point, because send and receive operations do not qualify as expressions
(they are i/o statements).

To state a condition that should evaluate totrue when both(a > b) and the
first message in channelqname is of typemsg0, we can, however, write in
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PROMELA:

(a > b && qname?[msg0]) /* valid */

The expressionqname?[msg0] is true precisely when the receive statement
qname?msg0 would be executable at the same point in the execution, but the
actual receive is not executed, only its precondition is evaluated. Any receive
statement can be turned into a side effect free expression in a similar way, by
placing square brackets around the list of message parameters. The channel
contents remain undisturbed by the evaluation of such expressions.

CHANNEL POLL OPERATIONS
It is also possible to limit the effect of a receive statement to just the copying
of parameter values from message fields, without removing the message from
the channel. These operations are calledchannel poll operations. Any
receive statement can be turned into a poll operation by placing angle brackets
around its list of parameters. For instance, assuming that we have declared a
channelq with two message fields of typeint, the receive statement

q?<eval(y),x>

wherex andy are variables, is executable only if channelq contains at least
one messageand if the first field in that message has a value that is equal to
the current value of variabley. When the statement is executed the value of
the second field in the incoming message is copied into variablex, but the
message itself is not removed from the channel.

SORTED SEND AND RANDOM RECEIVE
Tw o other types of send and receive statements are used less frequently:
sorted send and random receive. A sorted send operation is written with two,
instead of one, exclamation marks, as follows:

qname!!msg0

A sorted send operation inserts a message into the channel’s buffer in numeri-
cal, rather than in FIFO, order. For instance, if a process sends the numbers
from one to ten into a channel in random order, but using the sorted send oper-
ation, the channel automatically sorts them, and stores them in numerical
order.

When a sorted send operation is executed, the existing contents of the target
channel is scanned from the first message towards the last, and the new mes-
sage is inserted immediately before the first message that follows it in numeri-
cal order. To determine the numerical order, all message fields are taken into
account and are interpreted as integer values.

The counterpart of the sorted send operation is the random receive. It is writ-
ten with two, instead of one, question marks:
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qname??msg0

A random receive operation is executable if it is executable forany message
that is currently buffered in a message channel (instead of being restricted to a
match on the first message in the channel). In effect, the random receive oper-
ation as implemented in SPIN will always return thefirst message in the chan-
nel buffer that matches, so the term ‘‘random receive’’ is a bit of a misnomer.

Normal send and receive operations can freely be combined with sorted send
and random receive operations. As a small example, if we consider the chan-
nel with the sorted list of integers from one to ten, a normal receive operation
can only retrieve the first message, which will be the smallest value one. A
random receive operation on the same channel would succeed for any of the
values from one to ten: the message need not be at the head of the queue. Of
course, a random receive operation only makes sense if at least one of the
parameters is a constant, and not a variable. (Note that the value of a variable
is not evaluated to a constant unless forced with aneval function.)

RENDEZVOUS COMMUNICATION
So far we have talked about asynchronous communication between processes
via message channels that are declared for instance as

chan qname = [N] of { byte }

whereN is a positive constant that defines the maximum number of messages
that can be stored in the channel. A logical extension is to allow for the decla-
ration

chan port = [0] of { byte }

to define a rendezvous port. The channel capacity is now zero, that is, the
channelport can pass, but cannot store messages. Message interactions via
such rendezvous ports are by definition synchronous. Consider the following
example:

mtype = { msgtype };

chan name = [0] of { mtype, byte };

active proctype A()
{ name!msgtype(124);

name!msgtype(121)
}

active proctype B()
{ byte state;

name?msgtype(state)
}

Channel name is a rendezvous port. The two processes synchronously
execute their first statement: a handshake on messagemsgtype and a transfer
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of the value 124 from processA into local variablestate in processB. The
second statement in processA is unexecutable (it blocks), because there is no
matching receive operation for it in processB.

If the channelname is defined with a non-zero buffer capacity, the behavior is
different. If the buffer size is at least two, the process of typeA can complete
its execution, before its peer even starts. If the buffer size is one, the sequence
of events is as follows. The process of typeA can complete its first send
action, but it blocks on the second, because the channel is now filled to capac-
ity. The process of typeB can then retrieve the first message and terminate.
At this pointA becomes executable again and also terminates, leaving its sec-
ond message as a residual in the channel.

Rendezvous communication is binary: only two processes, a sender and a
receiver, can meet in a rendezvous handshake.

Message parameters are always passed by value in PROMELA. This still leaves
open the possibility to pass thevalue of a locally declared and instantiated
message channel from one process to another. The value stored in a variable
of type chan is nothing other than the channel identity that is needed to
address the channel in send and receive operations. Even though we cannot
send the name of the variable in which a channel identity is stored, we can
send the identity itself as a value, and thereby make even a  local channel
accessible to other processes. When the process that declares and instantiates
a channel dies, though, the corresponding channel object disappears, and any
attempt to access it from another process fails (causing an error that can be
caught in verification mode).

As an example, consider the following model:

mtype = { msgtype };

chan glob = [0] of { chan };

active proctype A()
{ chan loc = [0] of { mtype, byte };

glob!loc;
loc?msgtype(121)

}

active proctype B()
{ chan who;

glob?who;
who!msgtype(121)

}

There are two channels in this model, declared and instantiated in two differ-
ent levels of scope. The channel namedglob is initially visible to both pro-
cesses. The channel namedloc is initially only visible to the process that
contains its declaration. ProcessA sends the value of its local channel variable
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to processB via the global channel, and thereby makes it available to that pro-
cess for further communications. ProcessB now transmits a message of the
proper type via a rendezvous handshake on that channel and both processes
can terminate. When processA dies, channelloc is destroyed and any further
attempts to use it will cause an error.

RULES FOR EXECUTABILITY
The definition of PROMELA centers on its semantics ofexecutability, which
provides the basic means in the language for modeling process synchroniza-
tions. Depending on the system state, any statement in a SPIN model is either
executable or blocked. We hav e already seen four basic types of statements in
PROMELA: print statements, assignments, i/o statements, and expression state-
ments. A curiosity in PROMELA is indeed that expressions can be used as if
they were statements in any context. They are ‘‘executable’’ (i.e., passable) if
and only if they evaluate to the boolean valuetrue, or equivalently to a
non-zero integer value. The semantics rules of PROMELA further state that
print statements and assignments are always unconditionally executable. If a
process reaches a point in its code where it has no executable statements left
to execute, it simply blocks.

For instance, instead of writing a busy wait loop

while (a != b) /* while is not a keyword in Promela */
skip; /* do nothing, while waiting for a==b */

we achieve the same effect in PROMELA with the single statement

(a == b); /* block until a equals b */

The same effect could be obtained in PROMELA with constructions such as

L: /* dubious */
if
:: (a == b) -> skip
:: else -> goto L
fi

or

do /* also dubious */
:: (a == b) -> break
:: else -> skip
od

but this is always less efficient, and is frowned upon by PROMELA natives. (We
will cover selection and repetition structures in more detail starting at p. 56.)

We saw earlier that expressions in PROMELA must be side effect free. The rea-
son will be clear: a blocking expression statement may have to be evaluated
many times over before it becomes executable, and if each evaluation could
have a side effect, chaos would result. There is one exception to the rule. An
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expression that contains therun operator we discussed earlier can have a side
effect, and it is therefore subject to some syntactic restrictions. The main
restriction is that there can be only onerun operator in an expression, and if it
appears it cannot be combined with any other operators. This, of course, still
allows us to use arun statement as a potentially blocking expression. We can
indicate this effect more explicitly if instead of writing

run you_run(0); /* potentially blocking */

without change of meaning, we write

(run you_run(0)) -> /* potentially blocking */

Consider, for instance, what the effect is if we use such arun expression in
the following model, as a variation on the model we saw on p. 39.

active proctype new_splurge(int n)
{

printf("%d\n", n);
run new_splurge(n+1)

}

As before, because of the bound on the number of processes that can be run-
ning simultanesously, the 255th attempt to instantiate a new process will fail.
The failure causes therun expression to evaluate to zero, and thereby it per-
manently blocks the process. The blocked process can now not reach the end
of its code and it therefore cannot terminate or die. As a result, none of its
predecessors can die either. The system of 255 processes comes to a grinding
halt with 254 processes terminated but blocked in their attempt to die, and one
process blocked in its attempt to start a new process.

If the evaluation of therun expression returns zero, execution blocks, but no
side effects have occurred, so there is again no danger of repeated side effects
in consecutive tests for executability. If the evaluation returns non-zero, there
is a side effect as the execution of the statement completes, but the statement
as a whole cannot block now. It would decidedly be dubious if compound
conditions could be built withrun operators. For instance,

run you_run(0) && run you_run(1) /* not valid */

would block if both processes could not be instantiated, but it would not
reveal whether one process was created or none at all. Similarly,

run you_run(0) || run you_run(1) /* not valid */

would block if both attempts to instantiate a process fail, but if successful
would not reveal which of the two processes was created.

ASSIGNMENTS AND EXPRESSIONS
As in C, the assignments
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c = c + 1; c = c - 1  /* valid */

can be abbreviated to

c++; c-- /* valid */

but, unlike in C,

b = c++

is not a valid assignment in PROMELA, because the right-hand side operand is
not a side effect free expression. There is no equivalent to the shorthands

--c; ++c /* not valid */

in PROMELA, because assignment statements such as

c = c-1; c = c+1 /* valid */

when taken as a unit are not equivalent to expressions in PROMELA. With these
constraints, a statement such as--c is always indistinguishable fromc--,
which is supported.

In assignments such as

variable = expression

the values of all operands used in the expression on the right-hand side of the
assignment operator are first cast to signed integers, before any of the
operands are applied. The operator precedence rules from C determine the
order of evaluation, as reproduced in Table 3.2. After the evaluation of the
right-hand side expression completes, and before the assignment takes place,
the value produced is cast to the type of the target variable. If the right-hand
side yields a value outside the range of the target type, truncation of the
assigned value can result. In simulation mode SPIN issues a warning when this
occurs; in verification mode, however, this type of truncation is not inter-
cepted.

It is also possible to use C-style conditional expressions in any context where
expressions are allowed. The syntax, however, is slightly different from the
one used in C. Where in C one would write

expr1 ? expr2 : expr3 /* not valid */

one writes in PROMELA

(expr1 -> expr2 : expr3) /* valid */

The arrow symbol is used here to avoid possible confusion with the question
mark from PROMELA receive operations. The value of the conditional expres-
sion is equal to the value ofexpr2 if and only ifexpr1 evaluates totrue and
otherwise it equals the value ofexpr3. PROMELA conditional expressions
must be surrounded by parentheses (round braces) to avoid misinterpretation
of the arrow as a statement separator.
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Table 3.2 Operator Precedence, High to Low

Operators Associativity Comment
() [] . left to right parentheses, array brackets
! ˜ ++ -- right to left negation, complement, increment, decrement
* / %  left to right multiplication, division, modulo
+ -  left to right addition, subtraction
<< >> left to right left and right shift
< <= > >= left to right relational operators
== != left to right equal, unequal
& left to right bitwise and
ˆ left to right bitwise exclusive or
| left to right bitwise or
&& left to right logical and
|| left to right logical or
-> : right to left conditional expression operators
= right to left assignment (lowest precedence)

CONTROL FLOW: COMPOUND STATEMENTS
So far, we hav e mainly focused on the basic statements of PROMELA, and the
way in which they can be combined to model process behavior. The main
types of statements we have mentioned so far are: print and assignment state-
ments, expressions, and send and receive statements.

We saw thatrun is an operator, which makes a statement such asrun
sender() an expression. Similarly,skip is not a statement but an expres-
sion: it is equivalent to(1) or true.

There are five types of compound statements in PROMELA:
• Atomic sequences
• Deterministic steps
• Selections
• Repetitions
• Escape sequences

Another control flow structuring mechanism is available through the definition
of macros and PROMELA inline functions. We discuss these constructs in the
remaining subsections of this chapter.

AT OMIC SEQUENCES
The simplest compound statement is the atomic sequence. A simple example
of an atomic sequence is, for instance:
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atomic { /* swap the values of a and b */
tmp = b;
b = a;
a = tmp

}

In the example, the values of two variablesa andb are swapped in a sequence
of statement executions that is defined to be uninterruptable. That is, in the
interleaving of process executions, no other process can execute statements
from the moment that the first statement of this sequence begins to execute
until the last one has completed.

It is often useful to useatomic sequences to initialize a series of processes in
such a way that none of them can start executing statements until the initial-
ization of all of them has been completed:

init {
atomic {

run A(1,2);
run B(2,3)

} }

Atomic sequences may be non-deterministic. If, however, any statement
inside an atomic sequence is found to be unexecutable (i.e., blocks the execu-
tion), the atomic chain is broken and another process can take over control.
When the blocking statement becomes executable later, control can non-deter-
ministically return to the process, and the atomic execution of the sequence
resumes as if it had not been interrupted.

Note carefully that without atomic sequences, in two subsequent statements
such as

nfull(qname) -> qname!msg0

or

qname?[msg0] -> qname?msg0

the second statement is not necessarily executable after the first one is
executed. There may be race conditions when access to the channels is shared
between several processes. In the first example, another process can send a
message to the channel just after this process determined that it was not full.
In the second example, another process can steal away the message just after
our process determined its presence. On the other, it would be redundant to
write

atomic { qname?[msg0] -> qname?msg0 }

since this is equivalent to the single statement

qname?msg0
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DETERMINISTIC STEPS
Another way to define an indivisible sequence of actions is to use thed_step
statement. In the above case, for instance, we could also have written:

d_step { /* swap the values of a and b */
tmp = b;
b = a;
a = tmp

}

Unlike an atomic sequence, ad_step sequence is always executed as if it
were a single statement: it is intended to provide a means for defining new
types of primitive statements in PROMELA. This restricts the use ofd_step
sequences in several ways, compared to atomic sequences:

• The execution of ad_step sequence is always deterministic. If
non-determinism is encountered in ad_step sequence, it is resolved in
a fixed way, for example, by executing the first true guard in each
non-deterministic selection or repetition structure. The precise way in
which the non-determinism insided_step sequences is resolved is
undefined.

• No goto jumps into or out ofd_step sequences are permitted: they
will be flagged as errors by the SPIN parser.

• The execution of ad_step sequence may not be interrupted by block-
ing statements. It is an error if any statement other than the first one
(the guard statement) in ad_step sequence is found to be unex-
ecutable.

None of the above three restrictions apply to atomic sequences. This means
that the keywordd_step can always be replaced with the keywordatomic,
but not vice versa. It is safe to embedd_step sequences inside atomic
sequences, but the reverse is not allowed.

SELECTION
Using the relative values of two variablesa and b we can define a choice
between the execution of two different options with a selection structure, as
follows:

if
:: (a != b) -> option1
:: (a == b) -> option2
fi

The selection structure above contains two execution sequences, each pre-
ceded by a double colon. Only one sequence from the list will be executed.
A sequence can be selected only if its first statement, that is, the first state-
ment that follows the double colon, is executable. The first statement is there-
fore called theguard of the option sequence.
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In the last example the guards are mutually exclusive, but they need not be. If
more than one guard is executable, one of the corresponding sequences is
selected nondeterministically. If all guards are unexecutable the process will
block until at least one of them can be selected. There is no restriction on the
type of statements that can be used as a guard: it may include sends or
receives, assignments,printf, skip, etc. The rules of executability deter-
mine in each case what the semantics of the complete selection structure will
be. The following example, for instance, illustrates the use of send statements
as guards in a selection.

mtype = { a, b };

chan ch = [1] of { mtype };

active proctype A() { ch?a }

active proctype B() { ch?b }

active proctype C()
{ if

:: ch!a
:: ch!b
fi

}

The example defines three processes and one channel. The first option in the
selection structure of the process of typeC is executable if channelch is
non-full, a condition that is satisfied in the initial state. Since both guards are
executable, the process of typeC can arbitrarily pick one, and execute it,
depositing a message in channelch. The process of typeA can execute its
sole statement if the message sent was ana, wherea is a symbolic constant
defined in themtype declaration at the start of the model. Its peer process of
typeB can execute its sole statement if the message is of typeb, where, simi-
larly, b is a symbolic constant.

If we switch all send statements for receive statements, and vice versa, we
also get a valid PROMELA model. This time, the choice inC is forced by the
message that gets sent into the channel, which in turn depends on the
unknown relative speeds of execution of the processes of typeA and B. In
both versions of the model, one of the three running processes hangs at the
end of system execution, and will fail to terminate.

A process of the following type either increments or decrements the value of
variablecount. Because assignments are always executable, the choice made
here is truly a non-deterministic one that is independent of the initial value of
the variablecount.
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byte count; /* initial value defaults to zero */

active proctype counter()
{

if
:: count++
:: count--
fi

}

REPETITION
We can modify the last model to obtain a cyclic program that randomly
changes the value of the variable up or down by replacing the selection struc-
ture with a repetition.

byte count;

active proctype counter()
{

do
:: count++
:: count--
:: (count == 0) -> break
od

}

As before, only one option can be selected for execution at a time. After the
option completes, the execution of the repetition structure is repeated. The
normal way to terminate the repetition structure is with abreak statement. In
the example, the loop can be broken only when the count reaches zero. Note,
however, that it need not terminate since the other two options always remain
executable. To force termination we could modify the program as follows:

active proctype counter()
{

do
:: (count != 0) ->

if
:: count++
:: count--
fi

:: (count == 0) -> break
od

}

A special type of statement that is useful in selection and repetition structures
is the else statement. Anelse statement becomes executable only if no
other statement within the same process, at the same control-flow point, is
executable. We could try to use it in two places in the example, as follows:
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active proctype counter()
{

do
:: (count != 0) ->

if
:: count++
:: count--
:: else
fi

:: else -> break
od

}

The first else, inside the nested selection structure, can never become
executable though, and is therefore redundant (both alternative guards of the
selection are assignments, which are always executable). The second use of
the else, however, becomes executable exactly when!(count != 0) or
(count == 0), and therefore preserves the option to break from the loop.

There is also an alternative way to exit the do-loop, without using abreak
statement: the infamousgoto. This is illustrated in the following PROMELA

implementation of Euclid’s algorithm for finding the greatest common divisor
of two non-zero, positive numbers.

proctype Euclid(int x, y)
{

do
:: (x > y) -> x = x - y
:: (x < y) -> y = y - x
:: (x == y) -> goto done
od;

done:
printf("answer: %d\n", x)

}

init { run Euclid(36, 12) }

Simulating the execution of this model, with the numbers given, yields:

$ spin euclid.pml
answer: 12

2 processes created

Thegoto in this example jumps to a label nameddone. Multiple labels may
be used to label the same statement, but at least one statement is required. If,
for instance, we wanted to omit theprintf statement behind the label, we
must replace it with a dummyskip. Like askip, agoto statement is always
executable and has no other effect than to change the control-flow point of the
process that executes it.

With these extra constructs, we can now also define a slightly more complete
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description of the alternating bit protocol (cf. p. 46).

mtype = { msg, ack };

chan to_sndr = [2] of { mtype, bit };
chan to_rcvr = [2] of { mtype, bit };

active proctype Sender()
{ bool seq_out, seq_in;

do
:: to_rcvr!msg(seq_out) ->

to_sndr?ack(seq_in);
if
:: seq_in == seq_out ->

seq_out = 1 - seq_out;
:: else
fi

od
}

active proctype Receiver()
{ bool seq_in;

do
:: to_rcvr?msg(seq_in) ->

to_sndr!ack(seq_in)
:: timeout -> /* recover from msg loss */

to_sndr!ack(seq_in)
od

}

The sender transmits messages of typemsg to the receiver, and then waits for
an acknowledgement of typeack with a matching sequence number. If an
acknowledgement with the wrong sequence number comes back, the sender
retransmits the message. The receiver can timeout while waiting for a new
message to arrive, and will then retransmit its last acknowledgement.
The semantics of PROMELA’s timeout statement is very similar to that of the
else statement we saw earlier. Atimeout is defined at the system level,
though, and anelse statement is defined at the process level.timeout is a
predefined global variable that becomestrue if and only if there are no
executable statements at all in any of the currently running processes. The
primary purpose oftimeout is to allow us to model recovery actions from
potential deadlock states. Note carefully thattimeout is a predefined vari-
able and not a function: it takes no parameters, and in particular it is not possi-
ble to specify a numeric argument with a specific timebound after which the
timeout should become executable. The reason is that the types of properties
we would like to prove for PROMELA models must be fully independent of all
absolute and relative timing considerations. The relative speeds of processes
is a fundamentally unknown and unknowable quantity in an asynchronous
system.
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ESCAPE SEQUENCES
The last type of compound structure to be discussed is theunless statement.
This type of statement is used less frequently, but it requires a little more
explanation. It is safe to skip this section on a first reading.

The syntax of an escape sequence is as follows:

{ P } unless { E }

where the lettersP andE represent arbitrary PROMELA fragments. Execution
of the unless statement begins with the execution of statements fromP.
Before each statement execution inP the executability of the first statement of
E is checked, using the normal PROMELA semantics of executability. Execution
of statements fromP proceeds only while the first statement ofE remains
unexecutable. The first time that this ‘guard of the escape sequence’ is found
to be executable, control changes to it, and execution continues as defined for
E. Individual statement executions remain indivisible, so control can only
change from insideP to the start ofE in between individual statement execu-
tions. If the guard of the escape sequence does not become executable during
the execution ofP, then it is skipped entirely whenP terminates.

An example of the use of escape sequences is:

A;
do
:: b1 -> B1
:: b2 -> B2
...
od unless { c -> C };
D

As shown in the example, the curly braces around the main sequence (or the
escape sequence) can be deleted if there can be no confusion about which
statements belong to those sequences. In the example, conditionc acts as a
watchdog on the repetition construct from the main sequence. Note that this
is not necessarily equivalent to the construct

A;
do
:: b1 -> B1
:: b2 -> B2
...
:: c -> break
od; C; D

if B1 or B2 are non-empty. In the first version of the example, execution of
the iteration can be interrupted atany point inside each option sequence. In
the second version, execution can only be interrupted at the start of the option
sequences.

An example application of an escape sequence is shown in Figure 3.1. Shown
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here is a somewhat naive model of the behavior of apots (plain old telephone
service) system (cf. Chapter 14, p. 299).

There are two processes in this system, a subscriber and thepots server. The
subscriber process follows a strict regimen. After going offhook it always
waits for a dial tone, and it always sends a number to be connected to when
the dial tone message is received. After that it waits to receive either a busy or
a ring tone. On seeing a busy tone, our idealized subscriber process hangs up
and tries the call again. On seeing a ring tone, it either waits for the signal
that the call is connected, or it impatiently hangs up. When connected, it
waits for notification from thepots server that the remote party has discon-
nected the call, but if this does not come, it can timeout and terminate the call
anyway.

The model of the subscriber behavior is fairly standard, requiring no unusual
control-flow constructs. We can be more creative in modeling thepots server.
The server process starts in itsidle state by waiting for a subscriber to send an
offhook signal together with the channel via which it wants to communicate
with the server for this session. The server always complies by sending a dial
tone, and then waits for the number to be dialed. Once the number has been
received, either a busy tone or a ring tone is chosen, matching the subscriber’s
expectations at this point in the call. A ring tone is followed by a connected
signal, and after this the server process proceeds to thezombie state where it
waits for the subscriber to hangup the phone, possibly, but not necessarily
sending ahungup message first. Note that theskip and thegoto zombie
statements lead to the same next state in this case (meaning that thegoto is
really redundant here).

Note that we have not included any treatment for a subscriberhangup mes-
sage in this main flow of thepots behavior. The reason is that we would like
to model the fact that the behavior of thepots server can be interrupted atany
point in this flow if ahangup message should unexpectedly arrive. Similarly,
if the pots server gets stuck at any point in its flow, it should be possible to
define a timeout option, without spelling out that very same option at any
point in the main flow where the server could possibly get stuck. The escape
clause of theunless construct spells out the two conditions under which the
main flow should be aborted, and gives the actions that must be taken in each
case. After ahangup, the server simply returns to itsidle state, since it knows
that the subscriber is back onhook. After atimeout, it moves to thezombie
state.

A fragment of the output for a SPIN simulation run for this system follows.
The run can in principle be continuedad infinitum, so it is prudent to filter the
output from SPIN through a utility likemore. The first two full executions,
starting and ending with both processes in theiridle state, look as follows:
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mtype = { offhook, dialtone, number, ringing,
busy, connected, hangup, hungup };

chan line = [0] of { mtype, chan };

active proctype pots()
{ chan who;
idle: line?offhook,who;

{ who!dialtone;
who?number;
if
:: who!busy; goto zombie
:: who!ringing ->

who!connected;
if
:: who!hungup; goto zombie
:: skip
fi

fi
} unless
{ if

:: who?hangup -> goto idle
:: timeout -> goto zombie
fi

}
zombie: who?hangup; goto idle
}

active proctype subscriber()
{ chan me = [0] of { mtype };
idle: line!offhook,me;

me?dialtone;
me!number;
if
:: me?busy
:: me?ringing ->

if
:: me?connected;

if
:: me?hungup
:: timeout
fi

:: skip
fi

fi;
me!hangup; goto idle

}

Figure 3.1 Simple Model of a Telephone System
_______________________________________
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$ spin -c pots.pml | more
proc 0 = pots
proc 1 = subscriber
q\p 0 1

2 . line!offhook,1
2 line?offhook,1
1 who!dialtone
1 . me?dialtone
1 . me!number
1 who?number
1 who!ringing
1 . me?ringing
1 who!connected
1 . me?connected

timeout
1 . me!hangup
1 who?hangup
2 . line!offhook,1
2 line?offhook,1
1 who!dialtone
1 . me?dialtone
1 . me!number

1 who?number
1 who!ringing
1 . me?ringing
1 . me!hangup
1 who?hangup

There are no surprises here. The model, though, cannot properly be called a
verification model just yet. For that, we would have to add some statement of
the requirements or properties that we would like this model to satisfy. We
may well ask, for instance, if it is possible for the server to get stuck perma-
nently in thezombie state. Only a verification run can give the answer to such
questions.

INLINE DEFINITIONS
Some motivation for and examples of the use of PROMELA inline’s was
already given in the last chapter. The PROMELA inline is meant to provide
some of the structuring mechanism of a traditional procedure call, without
introducing any overhead during the verification process. The PROMELA parser
replaces each point of invocation of aninline with the text of theinline
body. If any parameters are used, their actual values from the call will textu-
ally replace the formal place holders that are used inside the definition of the
inline body. That is, there is no concept of value passing withinline’s.
The parameter names used inside the definition are mere stand ins for the
names provided at the place of call. A small example can clarify the working
and intent of this mechanism, as follows:
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inline example(x, y) {
y = a;
x = b;
assert(x)

}
init {

int a, b;

example(a,b)
}

In this example we have defined aninline namedexample and we gav e it
two parameters. The parameters do not have a type associated with them.
They could in fact be replaced in a call with variables of any type that matches
the use of the names inside theinline body.

At the point of invocation the names of two variables are provided as actual
parameters. The parser treats this code as if we had written the following
specification instead:

init {
int a, b;

b = a;
a = b;
assert(a)

}

This version of the model is obtained by inserting the body of theinline at
the point of call, while textually replacing every occurrence of the namex
with the namea and every occurrence ofy with b, as stipulated by the param-
eter list at the point of invocation.

We could have achieved the same effect by defining a C-style macro, as fol-
lows:

#define example(x, y) \
y = a; \
x = b; \
assert(x)

init {
int a, b;

example(a,b)
}

For a smallinline function the difference is not that remarkable, but for
larger pieces of code the macro method can quickly become unwieldy. There
is one other benefit to the use of aninline compared to a macro definition.
When we simulate (or verify) the version of the example using theinline
definition ofexample, we see the following output:
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$ spin inline.pml
spin: line 4 "inline", Error: assertion violated
spin: text of failed assertion: assert(a)
#processes: 1

3: proc 0 (:init:) line 4 "inline" (state 3)
1 process created

Not surprisingly, the assertion is violated. The line number pointed at by SPIN

is the location of theassert statement inside theinline body, as one would
expect. If, however, we try to do the same with the version using a macro, we
see this result:

$ spin macro.pml
spin: line 9 "macro", Error: assertion violated
spin: text of failed assertion: assert(a)
#processes: 1

3: proc 0 (:init:) line 9 "macro" (state 3)
1 process created

The same assertion violation is reported, but the line number reference now
gives the point of invocation of the macro, rather than the location of the fail-
ing assertion. Finding the source of an error by searching through possibly
complex macro definitions can be challenging, which makes the use of
PROMELA inlinespreferable in most cases.

To help find out what really happens with parameter substitution ininline
functions and preprocessing macros, option-I causes SPIN to generate a ver-
sion of the source text that shows the result of all macro-processing and inlin-
ing on proctype bodies. It can be an invaluable source of information in
determining the cause of subtle problems with preprocessing. The two ver-
sions of our sample program, the first using aninline definition and the sec-
ond using a macro, produce the following results:

$ spin -I inline.pml
proctype :init:()
{

{
b = a;
a = b;
assert(a);

};
}

$ spin -I macro.pml
proctype :init:()
{

b = a;
a = b;
assert(a);

}

Note that the version of the model that is generated with the-I option is not
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itself a complete model. No variable declarations are included, and some of
the names used forproctypes and labels are the internally assigned names
used by SPIN (using, for instance,:init: instead ofinit). The proctype
body text, though, shows the result of all preprocessing.

There is not much difference in the output for the two versions, except that the
use of theinline function creates a non-atomic sequence (the part enclosed
in curly braces), where the macro definition does not. There is no difference
in behavior.

When usinginline definitions, it is good to keep the scope rules of PROMELA

in mind. Because PROMELA only knows two lev els of scope for variables,
global and process local, there is no subscope forinline bodies. This means
that an attempt to declare a local scratch variable, such as this:

inline thisworks(x) {
int y;

y = x;
printf("%d\n", y)

}

init {
int a;
a = 34;
thisworks(a)

}

produces the following, after inlining is performed:

init {
int a;
a = 34;

int y;
y = a;
printf("%d\n", y)

}

This works because variable declarations can appear anywhere in a PROMELA

model, with their scope extending from the point of declaration to the closing
curly brace of the surroundingproctype or init body. This means that the
variabley remains in scope, also after the point of invocation of theinline.
It would therefore be valid, though certainly confusing, to write

inline thisworks2(x) {
int y;

y = x;
printf("%d\n", y)

}
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init {
int a;
a = 34;
thisworks(a);
y = 0

}

that is, to access the variabley outside theinline body in which it was
declared.

READING INPUT
On an initial introduction to PROMELA it may strike one as odd that there is a
generic output statement to communicate information to the user in the form
of theprintf, but there is no matchingscanf statement to read information
from the input. The reason is that we want verification models to beclosed to
their environment. A model must always containall the information that
could possibly be required to verify its properties. It would be rather clumsy,
for instance, if the model checker would have to be stopped dead in its tracks
each time it needed to read information from the user’s keyboard.

Outputs, likeprintf, are harmless in this context, since they generate no new
information that can affect future behavior of the executing process, but the
executing of an input statement likescanf can cause the modification of vari-
able values that can impact future behavior. If input is required, its source
must always be represented in the model. The input can then be captured with
the available primitives in PROMELA, such as sends and receives.

In one minor instance we deviate from this rather strict standard. When SPIN

is used insimulation mode, there is a way to read characters interactively from
a user-defined input. To enable this feature, it suffices to declare a channel of
the reserved typeSTDIN in a PROMELA model. There is only one message
field available on this predefined channel, and it is of typeint. The model in
Figure 3.2 shows a simple word count program as an example.

We can simulate the execution of this model (but not verify it) by invoking
SPIN as follows, feeding the source text for the model itself as input.

$ spin wc.pml < wc.pml
27 85 699
1 process created

PROMELA supports a small number of other special purpose keywords that can
be used to fine-tune verification models for optimal performance of the veri-
fiers that can be generated by SPIN. We mention the most important of these
here. (This section can safely be skipped on a first reading.)

SPECIAL FEATURES
The verifiers that can be generated by SPIN by default apply a partial order
reduction algorithm that tries to minimize the amount of work done to prove
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chan STDIN;
int c, nl, nw, nc;

init {
bool inword = false;

do
:: STDIN?c ->

if
:: c == -1 ->

break /* EOF */
:: c == ’\n’ ->

nc++;
nl++

:: else ->
nc++

fi;
if
:: c == ’ ’
|| c == ’\t’
|| c == ’\n’ ->

inword = false
:: else ->

if
:: !inword ->

nw++;
inword = true

:: else /* do nothing */
fi

fi
od;
assert(nc >= nl);
printf("%d\t%d\t%d\n", nl, nw, nc)

}

Figure 3.2 Word Count Program Using STDIN Feature
_______________________________________

system properties. The performance of this algorithm can be improved, some-
times very substantially, if the user provides some hints about the usage of
data objects. For instance, if it is known that some of the message channels
are only used to receive messages from a single source process, the user can
record this knowledge in a channel assertion.

In the example shown in Figure 3.3, for instance, the number of states that has
to be searched by the verifier is reduced by 16 percent if the lines containing
the keywordsxr andxs are included. (The two keywords are acronyms for
exclusive read access andexclusive write access, respectively.) These
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mtype = { msg, ack, nak };

chan q = [2] of { mtype, byte };
chan r = [2] of { mtype };

active proctype S()
{ byte s = 1;

xs q; /* assert that only S sends to chan q */
xr r; /* and only S receives from chan r */

do
:: q!msg(s);

if
:: r?ack; s++
:: r?nak
fi

od
}
active proctype R()
{ byte ns, s;

xs r; /* only R sends messages to chan r */
xr q; /* only R retrieves messages from chan q */

do
:: q?msg(ns);

if
:: (ns == s+1) -> s = ns; r!ack
:: else -> r!nak
fi

od

}

Figure 3.3 Using Channel Assertions
_______________________________________

statements are calledchannel assertions.

The statements are called assertions because the validity of the claims they
make about channel usage can, and will, be checked during verifications. If,
for instance, it is possible for a process to send messages to a channel that was
claimed to be non-shared by another process, then the verifier can always
detect this and it can flag a channel assertion violation. The violation of a
channel assertion in effect means that the additional reduction that is based on
its presence is invalid. The correct counter-measure is to then remove the
channel assertion.
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The reduction method used in SPIN (more fully explained in Chapter 9) can
also take advantage of the fact that the access to local variables cannot be
shared between processes. If, however, the verification model contains a
globally declared variable that the user knows to be non-shared, the keyword
local can be used as a prefix to the variable declaration. For instance, in the
last example we could have declared the variablens from proctype R as a
global variable, without incurring a penalty for this change from the partial
order reduction algorithm, by declaring it globally as:

local byte ns;

The use of this prefix allows the verifier to treat all access to this variable as if
it were access to a process local variable. Other than for channel assertions,
though, the verifier does not check if the use of the prefix is unwarranted.

Another case that one occasionally runs into is when a variable is used only as
a scratch variable, for temporary use, say, deep inside ad_step or anatomic
sequence. In that case, it can be beneficial to tell the verifier that the variable
has no permanent state information and should not be stored as part of the
global state-descriptor for the modeled system. We can do so by using the
prefixhidden. The variable must again be declared globally, for instance, as:

hidden int t;

In the following PROMELA fragment the variablet is used as a temporary vari-
able that stores no relevant information that must be preserved outside the
d_step sequence in which it is used:

d_step { /* swap the values of a an b */
t = a;
a = b;
b = t

}

As with the use of thelocal prefix, the verifier takes the information on good
faith and does not check if the use of thehidden keyword is unwarranted. If
a hidden variable does contain relevant state information, the search per-
formed by the verifier will be incomplete and the results of the search become
unreliable.

There is a third, and last, type of prefix that can be used with variable declara-
tions in special cases. The use of the prefixshow on a variable declaration, as
in

show byte cnt;

tells SPIN’s graphical user interface XSPIN that any value changes of this vari-
able should be visualized in the message sequence charts that it can generate.
We will discuss this interface in more detail in Chapter 12.

Theshow prefix can be used on both global and local variable declarations.
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FINDING OUT MORE
This concludes our overview of the main features of the PROMELA specifica-
tion language. A few more seldomly used constructs were only mentioned in
passing here, but are discussed in greater detail in the manual pages that are
included in Chapters 16 and 17. More examples of PROMELA models are
included in Chapters 14 and 15. A definition of the operational semantics for
PROMELA can be found in Chapter 7.

Alternate introductions to the language can be found in, for instance, Ruys
[2001] and Holzmann [1991]. Several other tutorial-style introductions to the
language can also be found on the SPIN Web site (see Appendix D).
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