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Part II. Hoare Logic and Program 
Verification

Dilian Gurov

Part II. Hoare Logic and 
Program Verification

Props: safety of data manipulation
Models: source code
Specs: logic assertions
Method: Hoare logic, VCG
Tool: VeriFast
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Specification and Verification

• Program specification
– states program correctness, formally
– relates properties of states

before och after the execution

• Program verification
– proves program correctness, formally
– relative to a specification
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Why specify programs?

• Good for documentation: capture 
unambiguously what the program 
should do (and not how)

• Programs annotated with specs can be 
fed into static checkers

• However, specifications:
– require expertise and time
– can get large and difficult to handle
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Why verify programs?

• Testing can only find errors, but 
cannot prove their absense

• However, verification is expensive:
– requires formal specs
– requires expertise and time
– faces decidability and complexity issues

• Therefore:
– use light-weight tools for critical parts
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Code Verification

• Code verification
– the code itself is the model!
– i.e., no abstraction…
– …but must still be based on a 

formal description of execution: a 
formal semantics of the 
programming language
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Semantics  of Programming 
Languages

• Semantics
– a formal definition of how 

programs execute
– can be given in various ways
– see course DD2457
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Semantics  of Programming 
Languages

• Natural semantics
– relates states before and after 

the execution
– is defined inductively on the 

program structure
– here: informal understanding
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A Core Programming Language

• A simple program:
y = 1;

z = 0;

while (z != x) {

z = z + 1;

y = y * z;

}
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Formal Syntax
• Arithmetic expressions

E ::= n |  x |  (E + E)  |  (E – E)  | (E  E)

• Boolean expressions
B ::= true |  false |  (E < E)  |  

(!B)  |  (B & B)  |  (B || B)

• Commands
C ::= x = E |  C ; C |  if B {C} else {C}  |

while B {C}
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States and Configurations

• State (in this context)
– captures the values of the variables in the 

program
– formally, a mapping Var  Int

• Configuration
– describes where we are in the execution
– consists of a control point and a state
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State Properties

• State properties
– can be expressed as logic formulas in 

predicate calculus (over program variables)
– are called assertions

t.ex. x > y eller   z (x = 2  z)

• We associate assertions with control 
points in the program
– could be seen as control point properties
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Program Specification
• Can be accomplished with two assertions: 

– precondition
– postcondition

• Formal notation: Hoare tripples

 P 
read (roughly): if execution of program P
starts in a state where precondition  holds,
then the execution ends in a state where 
postcondition  holds
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Specification Example
• The factorial program  Fac1

y = 1;
z = 0;
while (z != x) {

z = z + 1;
y = y * z;

}

can be specified with the Hoare tripple

x  0 Fac1 y = x!
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Partial Correctness

|=par  P  holds if:

if the execution of P starts in a state 
where precondition  holds, 

and   the execution terminates,
then postcondition  holds in the final state
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Total Correctness

|=tot  P  holds if:

if the execution of P starts in a state 
where precondition  holds, 

then  the execution terminates,
and    postcondition  holds in the final state
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Example

• When does  |=par true P false hold?

when execution of P does not 
terminate, regardless of the start 
state
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Example

• When does  |=tot true P false hold?

never!
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Logic Variables

• Can the factorial program  Fac2
y = 1;

while (x != 0) {

y = y * x;

x = x - 1;

}

be specified with the Hoare tripple
x  0 Fac2 y = x!
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Logic Variables

• We need additional variables, so-
called logic variables, to capture 
how the final values of the 
variables relate to the initial values

• These variables are considered 
universally quantified in a Hoare 
tripple
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Logic Variables
• The factorial program  Fac2

y = 1;
while (x != 0) {

y = y * x;
x = x - 1;

}

can be specified with the Hoare tripple

x  0  x = x0 Fac2 y = x0!
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Program Specification
• It should be clear from the 

specification how the program can be 
used - without knowing the code itself!

x  0  x = x0 Fac2 y = x0!

x  0 then the program terminates
x = x0 binds the start value of x
y = x0! relates the final value of y to the 

initial value of x

Hoare Logic
• Consists of a set of rules

– for reasoning over Hoare tripples
– to verify programs (partial correctness)

• Proofs
– in the form of proof trees

…or so-called ”tableaux”
– reduce the validity of Hoare tripples to the 

validity of predicate logic formulas over 
arithmetic
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Assignment Rule

–

[E/x] x = E 

• ”propagates” the postcondition 
backwards
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Implied Rules

|– ’ →   C 
’ C 

 C  |– → ’ 

 C ’
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Proof Example

� –

|– x > 0 → x + 1 > 0      x + 1 > 0 x = x + 1 x > 0
x > 0 x = x + 1 x > 0

• One proof obligation: |– x > 0 → x + 1 > 0

to be proved in an “external” proof system
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Sequential Composition Rule

 C1   C2 
 C1 ; C2 

• introduce an intermediate assertion  in 
the control point preceding C2
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Example
• What does this program do

z = x;
x = y;
y = z;

and how can this be specified?
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Example

• Program  Swap

z = x;
x = y;
y = z;

can be specified with
x = x0  y = y0 Swap x = y0  y = x0
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The Proof Tree

• Too big to be shown here…
– …show on whiteboard instead

30



6

Proof Tableaux

• Alternative presentation:
– as tableau
– correctness proofs can be 

presented as commented (or 
annotated) programs, where the 
comments are assertions 
associated with control points
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The Proof in Tableau Form
x = x0  y = y0 Precondition
y = y0  x = x0 Implied (�)
z = x;
y = y0  z = x0 Assignment
x = y;
x = y0  z = x0 Assignment
y = z;
x = y0  y = x0 Assignment
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Tableaux

• A tableau is an annotated program
• An operational interpretation: 

if execution begins in a state where the 
first annotation (precondition) holds, 

then every time the execution reaches 
a control point, all assertions 
associated with this control point hold
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Proofs in Tableau Form
• A proof in tableau form is a program 

annotated with at least one assertion at 
every control point, where the 
annotations match the rules (patterns)

• The proof process can be seen as 
completion of the initial annotation 
”inwards”

• Assertions associated with the same 
control point give rise to proof 
obligations
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If Rule

  B C1    B C2 
 if B {C1} else {C2} 
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Example
• What does the program

if (x > 0) {
y = x;

} else {
y = -x;

}

and how can this be specified?

36
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Example
• Program  Abs

if (x > 0) {
y = x;

} else {
y = -x;

}

can be specified with
x = x0 Abs y = | x0 |
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Proof Tableau
x = x0 Precondition
if (x > 0) {

x = x0  x > 0 If
x = | x0 | Implied (�)
y = x;
y = | x0 | Assignment

} else {
x = x0  (x > 0)  If
-x = | x0 | Implied (�)
y = -x;
y = | x0 | Assignment

}
y = | x0 | Postcondition
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Partial-while Rule

  B C 
 while B {C}   B

loop invariant

39

Example

• Proof
x < 0 while (x!=0) {x = x - 1;} false

• Proof
true while (x!=0) {x = x - 1;} x = 0
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Loop Invariants

• A loop invariant to
while B {C}

is an assertion  for which
|=par   B C 

holds
• Big choice, e.g.: false and true
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Loop Invariants

• To the Hoare tripple
 while B {C} 

we need a loop invariant  such  
that:

|– →  and
|–   B →  (|– →   B)

42
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Loop Invariants

• A whole ”assertion interval” to 
choose from:

|– → →   B

• Two immediate candidates:
– 
–   B

in case they are loop invariants!
43

Example

• Find suitable loop invariants for:

– x < 0 while (x!=0) {x = x - 1;} false
– true while (x!=0) {x = x - 1;} x = 0

• One answer: the preconditions!
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Proof Tableau 1
x < 0 Precondition
while (x!=0) {

x < 0  x  0 Partial-while
x - 1 < 0 Implied (�)
x = x - 1;
x < 0 Assignment

}
x < 0  (x  0) Partial-while
false Implied (�)
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Proof Tableau 2
true Precondition
while (x!=0) {

true  x  0 Partial-while
true Implied (�)
x = x - 1;
true Assignment

}
true  (x  0) Partial-while
x = 0 Implied (�)
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Example
• Verify the factorial program  Fac1

y = 1;

z = 0;

while (z != x) {

z = z + 1;

y = y * z;

}

specified with the Hoare tripple

x  0  x = x0 Fac1 y = x0!
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Proof Tableau
x  0  x = x0 Precondition
1 = 0!  x = x0  0  0 Implied (�)
y = 1;
y = 0!  x = x0  0  0 Assignment
z = 0;
y = z!  x = x0  z  0 Assignment
while (z != x) {

y = z!  x = x0  z  0  z  x Partial-while
y (z + 1) = (z + 1)!  x = x0  z+1  0 Implied (�)
z = z + 1;
y z = z!  x = x0  z  0 Assignment
y = y * z;
y = z!  x = x0  z  0 Assignment

}
y = z!  x = x0  z  0  (z  x) Partial-while
y = x0! Implied (�)
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