Part IT. Hoare Logic and Program
Verification

Dilian Gurov

Part II. Hoare Logic and
Program Verification

Props: safety of data manipulation
Models: source code

Specs: logic assertions

Method: Hoare logic, VCG

Tool: VeriFast

Specification and Verification

* Program specification
- states program correctness, formally
- relates properties of states
before och after the execution

* Program verification
- proves program correctness, formally
- relative to a specification

Why specify programs?

* Good for documentation: capture
unambiguously what the program
should do (and not how)

* Programs annotated with specs can be
fed into static checkers

* However, specifications:

- require expertise and time
- can get large and difficult to handle

Why verify programs?

« Testing can only find errors, but
cannot prove their absense
* However, verification is expensive:
- requires formal specs
- requires expertise and time
- faces decidability and complexity issues
* Therefore:
- use light-weight tools for critical parts

Code Verification

« Code verification
-the code itself is the modell
-i.e., no abstraction...

- ...but must still be based on a
formal description of execution: a
formal semantics of the
programming language

Semantics of Programming
Languages

* Semantics
-a formal definition of how
programs execute
- can be given in various ways
- see course DD2457

Semantics of Programming
Languages

* Natural semantics
-relates states before and after
the execution
- is defined inductively on the
program structure
- here: informal understanding

A Core Programming Language

* A simple program:

y = 1;

z = 0;

while (z '= x) {
z =2z + 1;
y =y *z

}

Formal Syntax

* Arithmetic expressions
Ex=n|x|(E+E) | (E-E) [(E*E)
* Boolean expressions

B ::= true | false | (E<E) |
(!B) [(B&B) | (B B)

- Commands
C:=x=E|C;C| ifB{C}else{(C} |
while B (C}

States and Configurations

+ State (in this context)
- captures the values of the variables in the
program
- formally, a mapping Var — Int

+ Configuration
- describes where we are in the execution

- consists of a control point and a state

State Properties

+ State properties
- can be expressed as logic formulas in
predicate calculus (over program variables)

- are called assertions
tex. x>y eller 3z(x=2*2)

* We associate assertions with control
points in the program
- could be seen as control point properties

Program Specification

* Can be accomplished with two assertions:
- precondition
- postcondition

+ Formal notation: Hoare tripples

(0) P (y)
read (roughly): if execution of program P
starts in a state where precondition ¢ holds,

then the execution ends in a state where
postcondition y holds

Specification Example

+ The factorial program Facl

y = 1;

z = 0;

while (z = x) {
z =2z + 1;
y =y *z;

}

can be specified with the Hoare tripple
(X2 0) Facl {y =x!)

Partial Correctness
|:par <¢> P <\|f> hOldS If.

/f the execution of P starts in a state
where precondition ¢ holds,

and the execution terminates,
then postcondition y holds in the final state

Total Correctness

|= ot () P {w) holds if:

if the execution of P starts in a state
where precondition ¢ holds,

then the execution terminates,
and postcondition y holds in the final state

Example

* When does |=,,, (trve) P (false) hold?

when execution of P does not
terminate, regardless of the start
state

Example

* When does |=,, (true) P (false) hold?

never!

Logic Variables

+ Can the factorial program Fac2

y =1;
while (x 1= 0) {
y =y *X;

X =X - 1;
}
be specified with the Hoare tripple

(x> 0) Fac2 {y =x!)

Logic Variables

+ We need additional variables, so-

called logic variables, fo capture
how the final values of the
variables relate to the initial values

« These variables are considered

universally quantified in a Hoare
tripple

20

Logic Variables

* The factorial program Fac2

y = 1;

whille (x 1= 0) {
y =y *X;
X =x -1;

¥

can be specified with the Hoare tripple
(X=0 A X=X, Fac2 y=x,!)

21

Program Specification

It should be clear from the

specification how the program can be
used - without knowing the code itself!

(X=0 A X=X, Fac2 {y=x,!)

x>0 then the program terminates
X=X, binds the start value of x

y=X,! relates the final value of y to the
initial value of x

Hoare Logic

* Consists of a set of rules
- for reasoning over Hoare tripples
- to verify programs (partial correctness)
* Proofs
- in the form of proof trees
..or so-called “tableaux”

- reduce the validity of Hoare tripples to the
validity of predicate logic formulas over
arithmetic

23

Assignment Rule

(WIE/X]) X =E(y)

* "propagates” the postcondition

backwards

24

Implied Rules

o =0 (9 C(y
(97) Cy)

(¢ C(y) = vy
(¢ C(y?)

25

Proof Example

- x>0—-x+1>0 (X+1>0)x=x+1{x>0)

X>0)yx=x+1{X>0)

* One proof obligation: - x>0—->x+1>0

to be proved in an “external” proof system

26

Sequential Composition Rule

PC m Gy
() Ci5 C{w)

+ introduce an intermediate assertion) in
the control point preceding C,

27

Example
* What does this program do
Z = X;
X =VY;
y = z;

and how can this be specified?

28

Example

* Program Swap

z = X;
X =Y;
y = 2,

can be specified with
(X=Xg AY =Yo) SWap (X =Yy AY = Xo)

29

The Proof Tree

* Too big to be shown here...

- ...show on whiteboard instead

30

Proof Tableaux

- Alternative presentation:
- as tableau

- correctness proofs can be
presented as commented (or
annotated) programs, where the
comments are assertions
associated with control points

31

The Proof in Tableau Form

(X=%X,AYy=Y, Precondition
y=YoAX=Xy Implied (D)
z = X;

y=yoAnz=Xx, Assignment
X = Y;

(X=YyAZ=X, Assignment
y = Z;

X=YoAy=X, Assignment

32

Tableaux

* A tableau is an annotated program

* An operational interpretation:

if execution begins in a state where the
first annotation (precondition) holds,

then every time the execution reaches
a control point, all assertions
associated with this control point hold

33

Proofs in Tableau Form

* A proof in tableau form is a program

annotated with at least one assertion at
every control point, where the
annotations match the rules (patterns)

* The proof process can be seen as

completion of the initial annotation
“inwards”

+ Assertions associated with the same

control point give rise to proof
obligations

34

If Rule

@OABCiy) 9A=B)C ()
(¢) 1T B {C,} else {C,} (y)

35

Example

* What does the program
if (x>0) {
y = X;
} else {
y = -X;
}

and how can this be specified?

36

Example

Proof Tableau

* Program Abs (x=xy) Precondition
_ if x>0 {
it x>0) { (X=XyAX>0) If
y = X, (x=1%[) Implied ()
y = X;
} else { y=1% Assignment
y = =X; } else {
} (X=XoA —=(X>0)) If
(X=1%,) Implied (1))
can be specified with y = -
P yY=1%D Assignment
<X - XO) ADS <y - ‘ %o D y=1%0D Postcondition
37 38
Partial-while Rule Example
* Proof

(nABYC{n)
(mywhile B {C! (n A —B)

f

loop invariant

39

x<0ywhile (x1=0) {x = x - 1;} {false)

» Proof
(trueywhille (xXI=0) {x = x - 1;}x=0)

40

Loop Invariants

* A loop invariant to
while B {C}
is an assertion n for which
[=par (N AB) C (M)
holds
. Big choice, e.g.: false and true

41

Loop Invariants

* To the Hoare tripple

() while B {C} (y)

we need a loop invariant 1 such
that:

- o—n and
FnA-B—-y (-n—-yvB)

42

Loop Invariants

+ A whole "assertion interval” to
choose from:

~¢—>n—yvB
* Two immediate candidates:
-0
-yvB
in case they are loop invariants!

43

Example

* Find suitable loop invariants for:

—(x<0ywhile (x!=0) {x = x - 1;} (false)
— (true)whille (x1=0) {x = x - 1;}{(x=0)

* One answer: the preconditions!

44

Proof Tableau 1

(x<0) Precondition
while (x1=0) {

(Xx<0Ax=0) Partial-while

Proof Tableau 2

(true) Precondition
while (x1=0) {

(true A X % 0) Partial-while

(Xx-1<0) Implied (1) (true) Implied ()
X =X - 1; X =x - 1;
(x < 0) Assignment (true) Assignment
} }
(X< 0 A—=(x=0)) Partial-while (true A —(X = 0)) Partial-while
(false) Implied (1) (x=0) Implied (1)
45 46
Example Proof Tableau
+ Verify the factorial program Facl éTingAxx;x;’iAozo> ;ﬁ?:g? io)n
y =13 X/:O;L/'\X’X(,AOZ(» Assignment
z = 0; z=0;
(Yy=2! AX=%X,A220) Assignment

while (z '= x) {
z =2z +1;
y =y *z;
}
specified with the Hoare tripple

(x>0 A x=X, Facl {y=x,!)

47

while (z '= x) {
(Y= AX=XAZZ0AZ#X) Partial-while
(y-z+1)=(@z+ 1) Ax=x,Az+1>0)Implied (1)

z=2z+1;

(Y-2=2' AX=XAZ20) Assignment

y=y>*z;

(Yy=2' AX=XyAz20) Assignment
3
Y=2Z!AX=XgAZ20 A (2 #X)) Partial-while
Y=x" Implied (1)

48

