Promela and SPIN

Mads Dam

Dept. Microelectronics and Information
Technology

Royal Institute of Technology, KTH

2004 Mads Dam 1 2G1516/2G1521
IMIT, KTH Formal Methods

Promela and SPIN

* Promela (Protocol Meta Language):
— Language for modelling discrete, event-driven systems as
transition systems
« SPIN
— Tool for performing simulations and full state-space
validations of Promela models
* XSPIN

— X-interface to SPIN with graphic and textual representation
of execution traces, message sequence diagrams, state-
transition diagrams when running a Promela model

2004 Mads Dam 2 2G1516/2G1521
IMIT, KTH Formal Methods

Promela and SPIN

Promela and SPIN/XSPIN are
— Developed by Gerard Holzmann at Bell Labs
— Freeware for non-commercial use
— State-of-art model checker (another is SMV)
— Used by more than 2000 users

See course binder and SPIN home page for more
information

2004 Mads Dam 3 2G1516/2G1521
IMIT, KTH Formal Methods

Promela Models

» Describe (possibly very large but) finite transition
system
» Essentially:
— No unbounded data
— No recursive processes
— No unbounded process creation
* SPIN traverses the finite transition system
» States constructed as they are visited (on-the-fly)

— CWB equivalence checker constructs state space in
advance

» Temporal logic: Specifications represented as
transition systems

» This lecture: Getting started with Promela

2004 Mads Dam 4 2G1516/2G1521
IMIT, KTH Formal Methods

SPIN vs CCS

CcCs:

SPIN:
« Dressed up automata

» Verification by traversing
states

» "Realistic” program model
e Linear time
» Properties as automata

« On-the-fly state space
exploration

* Sharable store
« Buffered comms

Dressed up automata

Verification by traversing
states

Elegance of theory
Branching time
Properties as logic

State space constructed "in
advance”

No store

Primitive, synchronous
comms

2004 Mads Dam
IMIT, KTH

2G1516/2G1521
Formal Methods

Alternating Bit Protocol

mtype = { msg,ack };
chan to_sndr = [2] of { mtype,bit };
chan to_rcvr = [2] of { mtype,bit };

proctype Sender(chan in, chan out)
{
bit sendval, recval;
do
11 out!msg(sendval) ->
in?ack(recval);

if
:: recval == sendval ->
sendval = 1 - recval
: else -> skip
fi

od

proctype Receiver(chan in, chan out)

{
bit recval;
do
11 in?msg(recval) ->
out!ack(recval)
11 timeout ->
out!ack(recval)
od
}
init
{
run Sender(to_sndr,to_rcvr);
run Receiver(to_rcvr,to_sndr)
}

2004 Mads Dam
IMIT, KTH

2G1516/2G1521
Formal Methods

Promela

Promela model: chan to_sndr = ...
* Process typeS proctype Sender (chan in,m chan out)
. {

* Channel declarations
+ Variable declarations }
L Main pI’OgI’am proctype Receiver (chan in, chan out)

{

}

init

{

}
2004 Mads Dam 7 2G1516/2G1521
IMIT, KTH Formal Methods
A process

— executes concurrently with
all other processes,
independent of speed and

behaviour
— communicates with other
processes using channels proctype Sender (chan in, chan out)
{
— may access shared
variables }

— follows the description of a
process type
There may be several
processes of the same type
Each process has own local
state

2004 Mads Dam 8 2G1516/2G1521
IMIT, KTH Formal Methods

A Process Type

A process type consists of

— aname
a list of formal parameters
local variable declarations
body

Local variable
declarations

Process name

—

proctype Sender(chan in, chan out)
{
bit sendval,
do
: out!msg(sendval) ->
in?ack(recval);

recval; Forma

if
: recval == sendval ->
sendval !=
recval
: else -> skip
i
od
} Body

2004 Mads Dam
IMIT, KTH

2G1516/2G1521
Formal Methods

Process Creation

* Processes created by run
statement

* Value of run statement is a
process identifier

* Processes can be created at
any point of execution

» Processes start executing
after execution of run
statement

* Processes can also be
created by adding active in
front of process type
declaration

proctype p(byte x)
{ 3

init
{
run p(a ;

pid4 = run p(b) ;

3

Number of processes
created (optional)

active[3] proctype Myprocess()

{ Cen }
Obs No parameter
when using active

2004 Mads Dam
IMIT, KTH

2G1516/2G1521
Formal Methods

parameters

Data Types and Variables

» Five different types of Integers
H H bit flag, turn=1 [0..1]
integers as basic types ooy o 0.1]
« Records and arrays for byte counter [0..255]
compound data short balance [-215..215-1]
i int range [-231,.231-1]
« Type conflicts detected at
runtime” Records
runume typedef Field {
o Default initial value O short foo =8 ;
byte bar
1
Arrays
typedef Array {
byte elmnt[4]
i
2004 Mads Dam 11 2G1516/2G1521
IMIT, KTH Formal Methods

Tests and Assignment

Assignment with single equals sign: a = 2
Testing for equality: a ==

Inequality: a != 2

Comparisons: a >= 2, a <= 2

Logical conjunction: foo && bar
Disjunction: foo || bar

Negation: ! foo

2004 Mads Dam 12 2G1516/2G1521
IMIT, KTH Formal Methods

Channels

Channels model transfer of data
between processes

Each channel has typed buffer
of finite length

Special type mtype used for
enumerating message types

Enumerated from 1 upwards

chan to_sndr = [2] of byte

/ [Type of fields
Name in each ot

Size of buffer

mtype = { msg,ack }

Hasvalue 1

chan to_rcvr = [2] of {mtype,bit}

2004 Mads Dam
IMIT, KTH

2G1516/2G1521
Formal Methods

Channels, cont'd

¢ Channel: Fifo buffer with
number of slots, each with
same number and types of
fields

e Several processes can share
same channel

e A channel is usually, but not
always, used unidirectionally
between two processes

Receive statement:
in_g?msg,recval
Equivalently:
in_g?msg(recval)
Executable only if buffer
nonempty

Send statement:
out_qg'!ack,sendval
Equivalently:
out_qg'!ack(sendval)
Default: Executable when buffer
has at least 1 free slot

2004 Mads Dam
IMIT, KTH

2G1516/2G1521
Formal Methods

Channels, cont'd

/

So: A channel is a fifo buffer
with n slots, each consisting

. n dots
of k fields
Clidds
chan ch = [n] of { T;,...,T }
2004 Mads Dam 15 2G1516/2G1521
IMIT, KTH Formal Methods
Channels, Variations
e Can change default ¢ Queue operations:
behaviour to always send, - Ten(gname)
loose message if buffer full - empty(gname)
« Can receive more or less - full(aname)
values than specified in * Attention!
receive statement Ifull(gname) ->
— More values => message qname !msg0
loss not guaranteed to succeed
— Less values => params e Lookahead:
undefined gname? [msg]
+ Can match against + Also rendez-vous
constants: construction and sorted
in_g?chanl(recval) input/output
2004 Mads Dam 16 2G1516/2G1521

IMIT, KTH Formal Methods

Concurrency

» Specification of process behaviour in
Promela

» Processes execute concurrently
* Nondeterministic scheduling, interleaving

» All statements within a single process are
executed sequentially

» Each process may have several different
possible actions enabled at each point of
execution

* One choice is made, nondeterministically

2004 Mads Dam 17 2G1516/2G1521

IMIT, KTH

Formal Methods

Semantics of Execution

» Transition has two components: Side-effect free condition and
an atomic action

* A transition is executable if its condition holds, otherwise it is
blocked

» Following rules apply:

Assignments are always executable

Run statements are executable is new processes can be created
Conditions are executable if the truth value is true

Send statements are executable if channel not full (or ...)

Receive statements are executable if channel is nonempty and
patterns match

Skip statements are always executable

2004 Mads Dam 18 2G1516/2G1521

IMIT, KTH

Formal Methods

if Statement

First statement in each entry if
acts as guard it (n%2!'=0 >
Collect all entries with n=1
executable guard it (n>=0) ->
Select one of these entries n=n-2
nondeterministically and it (n% 3 ==0) —>
execute it n=3
If no entry is executable then 11 else -> skip
execute the else entry fi

If no else entry exists, hang
No restriction on type of guard

2004 Mads Dam 19 2G1516/2G1521
IMIT, KTH Formal Methods

Statement Delimiters

There are two types of statement delimiters to use
between (not after) statements. These can be used
interchangably:

; and ->
Use the one most appropriate at the given situation
Usually, ; is used between ordinary statements

An -> is often used after "guards” in a do or if
statement, pointing at what comes next

2004 Mads Dam 20 2G1516/2G1521
IMIT, KTH Formal Methods

10

do Statement

Repeat forever, or until abreak do

or goto statement is it (n%2!'=0) —>
encountered goto oddLabel

First statementineach entrywill :: (n >=0) ->
act as guard n=n-2

Collect all entries with :(n%3=0) ->
executable guard; randomly m=3
select one for execution i (n==3) -> break

If no executable entry exists, od
hang

2004 Mads Dam 21 2G1516/2G1521

IMIT, KTH Formal Methods

skip

« Condition always true, no effect

« Useful when removing a statement, but state
space should be unaffected

e (Sometimes needed in never claims when
matching an arbitrary statement)

2G1516/2G1521
Formal Methods

2004 Mads Dam 22
IMIT, KTH

11

Alternating Bit Protocol

mtype = { msg,ack };
chan to_sndr = [2] of { mtype,bit };
chan to_rcvr = [2] of { mtype,bit };

proctype Sender(chan in, chan out)
{

bit sendval, recval;

proctype Receiver(chan in, chan out)
{
bit recval;
do
11 in?msg(recval) ->
out!ack(recval)
: timeout ->

do out!ack(recval)
11 out!msg(sendval) -> od
in?ack(recval); }
if
recval == sendval -> init
sendval = 1 - recval {
: else -> skip run Sender(to_sndr,to_rcvr);
fi run Receiver(to_rcvr,to_sndr)
od }
}
2004 Mads Dam 23 2G1516/2G1521

IMIT, KTH

Formal Methods

Modelling Loss of Messages

mtype = { msg,ack };

active proctype Sender()

chan to_sndr = [2] of { mtype,bit }; {
chan to_rcvr = [2] of { mtype,bit }; bit seq_in, seq_out;
do
active proctype Receiver() 11 to_rcvr!imsg(seq_out) ->
{ if
bit seq_in; 11 to_sndr?ack(seq_in) ->
do if
11 to_rcvr?msg(seq_in) -> 11 seg_in == seq_out ->
to_sndr!ack(seq_in) seq_out = 1 - seq_in
11 to_rcvr?msg(seq_in) -> 11 else -> skip
skip /* message loss */ fi
11 timeout -> 11 to_sndr?ack(seq_in) ->
to_sndr'!ack(seq_in) skip * message loss *
od fi
} od
}
2004 Mads Dam 24 2G1516/2G1521

IMIT, KTH

Formal Methods

12

atomic Statement

Flag is a global variable. Will the loops terminate?

do do
flag = 1 ; 1 atomic
if { flag =1
(flag == 1) -> break if - b
.. _ . ag == ->
: else -> skip break
fi :: else -> skip
od fi

}
od

atomic statements used to prevent interference

2004 Mads Dam 25 2G1516/2G1521
IMIT, KTH Formal Methods

d_step Statements

Atomic statements used to Swap values of a and b:
prevent interference, but
individual states and d_step {
transitions still present tmp = b ;
d_step used to construct new b=a:
primitive transitions a = tmp
Requires: 3

— Determinacy

— No jumps in or out of
d_steps

— No statements inside d_step
must become unexecutable
— else runtime error

2004 Mads Dam 26 2G1516/2G1521
IMIT, KTH Formal Methods

13

Labels

* Alabelis an identifier ending

with a colon used for snd_loc: nxt!nxtval(val);
referring to specific
statement

endState:

» Labels are used for jumps

and for some validations do

11 to_rcvr?msg(seq_in)

+ Special labels start with one =
of progressLabel:
- accept to_sndr!ack(seqg_in)
- progress 11 to_rcvr?msg(seq_in)
- end acceptanceHere: skip
od
2004 Mads Dam 27 2G1516/2G1521
IMIT, KTH Formal Methods
Validation

Four ways of representing validation information:
» Asserting conditions

* Adding special labels
— End states
— Progress cycles
— Acceptance cycles
* Never (Buchi) automata

» Temporal logic — translated into never automata

2004 Mads Dam 28 2G1516/2G1521
IMIT, KTH Formal Methods

14

Asserting a Condition

assert(a==1 || b < 2)

* An assert statement can be inserted to express that
condition must be fulfilled at certain point in execution
— Itis always executable
— It has no effect provided result is non-zero

» Asserted expressions must be side-effect free

» Failing assertion will cause execution to be aborted

2004 Mads Dam 29 2G1516/2G1521
IMIT, KTH Formal Methods
End States
When execution stops, each proctype S(chan in, chan out)
process has either reached { outlsend(0) ;

the end or it is blocked in7ack ;

out!send(l) ;

By default the only valid end in?ack }

states are those where

process execution has
completed

End labels used to indicate that
also other states can
represent valid end states

proctype R(chan in, chan out)

{ bit val ;
end:
do
out?send(val) ->
in?ack
od }

2004 Mads Dam 30
IMIT, KTH

2G1516/2G1521
Formal Methods

15

Progress Cycles

Loops may be jUSt idling Proctype Send(chan in, chan out)

. {
Loops may contribute useful bit sendval, recval ;
work do
Non progress cycle analysis: i+ outimsg(sendval) ->
i 7 in?ack(recval) ;
Cycle which does not visit a if
progress labelled state will :: recval == sendval ->
be an error Progress: sendval = 1 - recval
:: else -> skip
Fi
od
}
2004 Mads Dam 31 2G1516/2G1521
IMIT, KTH Formal Methods

Undesired Cycles

May also be necessary to Proctype Send(chan in, chan out)

trace a cycle which is bgd bit sendval, recval ;

Acceptance cycle analysis: do

Cycles which visit states s °“t,“'fg(k5(e”dva11)) ~
? \Y ;

labelled by acceptance label jnrackirecya

if
are In error :: recval == sendval ->
sendval = 1 - recval
11 else ->
Accept: skip
fi
od
}
2004 Mads Dam 32 2G1516/2G1521
IMIT, KTH Formal Methods

16

Referencing Process States

Process identifiers (pid’s) are
used to reference processes

Process referenced by process ~ Sieve[7] @ send_label

type along with pid \
Process in particular state
Processtype

referenced by L abel
— Process type Pid

— Pid

— Label

Expression returns O if
predicate false, o/w 1

2004 Mads Dam 33 2G1516/2G1521
IMIT, KTH Formal Methods

Never Claims

How can we express a property such as A(P U Q) :

For all execution sequences, P remains true until Q becomes true,
if ever ?

active proctype monitor() active proctype monitor()

{ {
progress: progress:

do do
it P ->Q 11 P -> assert(P || Q)
od od

} }

"If P is sometime true, some Execution can be interleaved
time later, Q will become Q may become true undetected
true”

2004 Mads Dam 34 2G1516/2G1521

IMIT, KTH Formal Methods

17

Never Claims, cont'd

* Never claims used to synchronously monitor
execution to detect prohibited execution sequences

* Never claim may "look” at execution, but not interfere

* So0: no assignments, no message passing, no
process creation, etc.

* Only one never claim in a Promela model

» Express the desired sequence in Linear Time
Temporal Logic. Negate it. Transform to a Never
claim. Verify.

» Supported by SPIN!

2004 Mads Dam 35 2G1516/2G1521
IMIT, KTH Formal Methods

Temporal Logic

Temporal logic: Language for expressing properties
(sequences) of states.

[Ip AGP Always P In Alternating Bit Protocol it is
<>P AFP Eventually P always the case that if
PU A(PUO)P until msg(0) has been sent then
Q (PUQ) Q eventually msg(1) will be
sent:
=> Implication

[1(to_rcvr?[msg(0)] =>
<>to_rcvr?[msg(1 1)

2004 Mads Dam 36 2G1516/2G1521
IMIT, KTH Formal Methods

18

Never Claim - Example
spec = [](to_rcvr?[msg(0)] => <>to_rcvr?[msg(1)])

to_rcvr?[msg(0)] &&

Ito_rcvr?[msg(1)]
true Ito_rcvr?[msg(1)]

\ yd

Initial state Accepting state

* Negation of spec —the "bad” execution sequences:
e Some time
to_rcvr?[msg(0)] && !to_rcvr?[msg(1l)]

becomes true and then forever after
Ito_rcvr?[msg(1)]

2004 Mads Dam 37 2G1516/2G1521
IMIT, KTH Formal Methods

Never Claim Example, in Promela

to_rcvr?[msg(0)] &&

Ito_rcvr?[msg(1)]
true Ito_rcvr?[msg(1)]

never {
do
11 oskip
11 to_rcvr?[msg(0)] && !'to_rcvr?[msg(l)] ->
goto accept

od ; If the Never claim can match
Accept: the processes and detects an
do acceptance cycle then report
Ito_rcvr?[msg(1)] an error
od }
2004 Mads Dam 38 2G1516/2G1521
IMIT, KTH Formal Methods

19

Some Practical Remarks

Read chapter 6 and 7 in Holtzmann'’s book

SPIN supports both simulation and exhaustive
validation

Use both!
Do some simulations first
Then try exhaustive validation

Do not increase suggested available memory — it will
only cause your computer to swap

If SPIN reports out-of-memory switch to supertrace

2004 Mads Dam 39 2G1516/2G1521
IMIT, KTH Formal Methods

Supertrace

What if state size (S) and number of reachable states
(R) do not fit into memory, i.e.

M < S*R ?
Use bit state hashing: Coverage can be increased
dramatically by using two different hash functions
Hash factor: Number of available bits / number of
reached states

Aim for hash factor > 100, otherwise you cannot have
confidence in the result

2004 Mads Dam 40 2G1516/2G1521
IMIT, KTH Formal Methods

20

More Hints

» If you find a deadlock at a large depth then do a
revalidation but reduce max number of steps

» Use mtype in channel declarations to produce better
MSC'’s

2004 Mads Dam 41 2G1516/2G1521
IMIT, KTH Formal Methods

D-Spin

Experimental extension of Spin for
» Pointers

» Garbage collection

* Functions

* Function call stacks

Very useful for modelling Java-like programs (cf. JDK
1.2 assignment)

2004 Mads Dam 42 2G1516/2G1521
IMIT, KTH Formal Methods

21

