
Verification of data-race-freedom of a

Java chat server with VeriFast

Cedric Cuypers Bart Jacobs Frank Piessens

Report CW550, June 2009

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

Verification of data-race-freedom of a

Java chat server with VeriFast

Cedric Cuypers Bart Jacobs Frank Piessens

Report CW550, June 2009

Department of Computer Science, K.U.Leuven

Abstract

Even now, when computers have become a vital part of our so-
ciety, software errors are still common, and their effects can be dev-
astating. From the recent rise of multicores emerged the need for
multi-threading software and a way to cope with its typical software
errors such as data-races and deadlocks. This paper shows how Veri-
Fast can be used to verify the data-race-freedom of a multi-threaded
Java application, by means of a simple Java chat server example.
We will cover the verification of jar files in general, how to deal with
Java core classes and interfaces such as ArrayList and the specifics of
verifying a multi-threaded Java application, using Thread, Runnable
and Semaphore as building blocks. To achieve this, we need to take
a closer look at VeriFast elements such as predicate families, predi-
cate constructors and fractional permissions. This paper is intended
as an experience report. We will conclude with some suggested im-
provements and possible future work.

Verification of data-race-freedom of a Java chat server with
VeriFast

Cedric Cuypers Bart Jacobs Frank Piessens
Department of Computer Science, Katholieke Universiteit Leuven, Belgium

Abstract
Even now, when computers have become a vital part of our soci-
ety, software errors are still common, and their effects can be dev-
astating. From the recent rise of multicores emerged the need for
multi-threading software and a way to cope with its typical software
errors such as data-races and deadlocks. This paper shows how
VeriFast can be used to verify the data-race-freedom of a multi-
threaded Java application, by means of a simple Java chat server
example. We will cover the verification of jar files in general, how
to deal with Java core classes and interfaces such as ArrayList and
the specifics of verifying a multi-threaded Java application, using
Thread, Runnable and Semaphore as building blocks. To achieve
this, we need to take a closer look at VeriFast elements such as pred-
icate families, predicate constructors and fractional permissions.
This paper is intended as an experience report. We will conclude
with some suggested improvements and possible future work.

1. Introduction
In this paper we use the VeriFast tool [4] to verify a simple Java chat
server. VeriFast is a tool that verifies safety properties, in the form
of annotations in the source code, of some program in C or Java
using an approach based on separation logic and symbolic execu-
tion. Users may add additional annotations such as inductive data
types, abstract predicates etc. that can be used in the verification
process. In order to understand this approach, readers are strongly
advised to have read the technical report of VeriFast [3] before con-
tinuing.Although this technical report describes the verification of
a linked list ADT in C, almost everything is equally applicable to
Java programs. Any differences will be noted in the rest of this pa-
per.

The basic idea behind multi cores is simple yet powerful: mul-
tiple CPUs working together in order to decrease the latency or in-
crease the throughput. The advantages of multi cores may be clear,
but in order to use these advantages, special multi-threaded soft-
ware is required. This software is vulnerable to different security
issues than single-threaded software, such as data-races, deadlock
etc. For a good overview of multi-threaded software in Java, its pit-
falls and solutions, see [6].

First we will show how to verify jar files with VeriFast in Sec-
tion 2. Then we explain how the use of core Java classes is handled
in VeriFast in Section 3. We consider classes and interfaces con-
cerning collections (List, Iterator and ArrayList) in Section 3.1,
multi-threading(Thread, Runnable) in Section 3.2 and locking
(Semaphore) in Section 3.3. Other supported core classes and in-
terfaces such as Socket, won’t be discussed in detail. In Section 4
we will show how this support can be used to verify our simple
Java chat server example. Finally we conclude with a list of prob-
lems we experienced and possibilities for future work that counter
them in Section 5.

The binaries of VeriFast, the full sources of the examples dis-
cussed in this paper and more can be found in the latest release
[4].

2. Verification of jar files
Usually a Java application will consist of a jar file, containing the
different components of the application (class files, images, . . .).
To verify a jar file, we need information about the behavior of the
different components. VeriFast supports the following construct to
verify jar files: suppose we want to verify lib.jar,

• lib.jarsrc contains a list of all the Java files in this jar and the
other jars used in the implementation of this jar. It can also state
the class that contains the main method of this jar, if there is
any.

• (optionally) lib.jarspec contains a list of Javaspec files that
deliver the specification of this jar, and a list of other jars whose
specification is used in the specification of this jar.

A jar can thus separate its implementation and specification by cre-
ating a jarsrc file containing a list of plain Java files that make up its
implementation, and a jarspec file containing a list of Javaspec files
to describe its specification. Javaspec is just an extension used here
to indicate a special kind of Java-like file, with the intent of specify-
ing behavior rather than implementing it. A Javaspec file can con-
tain specification elements (inductive data types, predicates, lem-
mas, fixpoint functions) and classes or interfaces with constructors
and methods with only their signature and their contract, not their
body. This specification can be used in the verification process of
this jar or other jars that use this jar. The verification process of a
jar proceeds as follows:

1. First the specification of the jar file is type-checked, if the cor-
responding jarspec file is present. This means that the Javaspec
files in the jarspec file are type-checked, together with the spec-
ifications of the other jars mentioned in the jarspec file.

2. Then the implementation, augmented with the specification, if
any, is verified. This means that the Java files in the jarsrc file
are verified together with their specifications in the Javaspec
files of the jarspec file, and the specifications of any jars listed
in the jarsrc file.

3. Next, VeriFast checks whether the elements in the Javaspec
files of that jar that require a concrete implementation, are im-
plemented. For instance if a method of constructor of a class is
specified in a Javaspec file, it must be implemented accordingly
in a Java-file. If a main method is specified in the jarsrc file, it
must be present in the right class in the implementation.

4. Finally, a jardeps file is generated, containing all the jars used
in the specification or implementation of this jar.

To illustrate this, consider A.jar, consisting of A1.java and A2.java,
and B.jar, with B1.java and B2.java, that uses A.jar in its imple-
mentation. So, suppose we have:

• A.jarsrc: A1.java A2.java
• A.jarspec: A1.javaspec A2.javaspec
• B.jarsrc: B1.java B2.java A.jar [main-class: Program]

The verification of A.jar will go as follows:

1. First A1.javaspec and A2.javaspec are type-checked in isola-
tion.

2. Then the specifications in A1.javaspec and A2.javaspec are
combined with A1.java and A2.java and the result is verified.

3. The elements in A1.javaspec and A2.javaspec requiring im-
plementation, are checked to be implemented in A1.java or
A2.java.

4. Finally, an empty A.jardeps file is generated, because A.jar does
not use any other jars.

The verification of B.jar will be similar:

1. There is no B.jarspec file, so there is no specification of the jar
file that has to be type-checked.

2. Then the specification of A.jar, being A1.javaspec and A2.javaspec,
is verified together with B1.java and B2.java.

3. B1.java or B2.java must contain a class called Program with a
main method with true as precondition and postcondition.

4. Finally, B.jardeps file is generated, which consists of a single
line ”A.jar”, because B.jar uses A.jar in its implementation.

A complete program can consist of multiple jars (at least rt.jar
(see Section 3) and the jar with the main method). VeriFast offers
the following soundness statement: if all jars verify, and there
are no cycles in the jar dependency graph, than the program is
safe, meaning it won’t throw any assertion errors. In this context
the jardeps are used to ensure that there are no mutually recursive
lemmas.

3. Core Java classes in VeriFast
If we want to be able to verify programs that use core Java classes
and interfaces, such as Object and String but also Thread, Runnable
and Socket, then we need to create specifications for these core
classes and interfaces so their behavior can be used in the verifi-
cation process. In VeriFast every Java file or jar file implicitly uses
the specifications listed in rt.jarspec. This jarspec file simply con-
sists of a list of Javaspec files who specify the behavior of some
core Java classes and interfaces. Notice that the implementation of
this jarspec file is not considered, since it is provided by the Java
API.

Currently there is support for the following core classes and
interfaces: Object, Class, String, Runnable, Thread, Semaphore,
List, Iterator, ArrayList, StringBuffer, Socket, ServerSocket, Input-
StreamReader and OutputStreamWriter. Not every method of these
classes is present in the specifications, only the ones that are neces-
sary in order to verify our Java chat server example. In the future,
extra specifications or additional core classes or interfaces can be
added very easily by adapting the current Javaspec files or adding
a new one to rt.jarspec, though writing correct and useful specifi-
cations is far less trivial.

One of the encountered difficulties was that some of the meth-
ods of those core classes and interfaces can throw checked excep-
tions, such as InterruptedException, IOException etc. , that must be
handled properly by try/catch statements or throws list at the call
site. Currently there is no support in VeriFast for either of those, so

package java.util;

inductive listval = nil | cons(Object , listval);
predicate list (List l, listval v);
predicate iter (Iterator i,List l, listval v, int i);
lemma void iter dispose(Iterator iter);

requires iter(iter, ?l, ?v, ?i);
ensures list(l, v);

interface List {
boolean add(Object element)

requires list(this, ?v);

ensures list(this, list add(v, element)) ∗ result ;

boolean remove(Object element)

requires list(this, ?v);

ensures contains(v, element)?list(this, remove(v, element))
: list(this, v);

Iterator iterator()

requires list(this, ?v);

ensures iter(result , this, v, 0);

}
interface Iterator {

boolean hasNext()

requires iter(this, ?l, ?v, ?i);

ensures iter(this, l, v, i) ∗ result = (i < length(v));

Object next()

requires iter(this, ?l, ?v, ?i) ∗ i < length(v);

ensures iter(this, l, v, i + 1) ∗ result = ith(v, i);

}
public class ArrayList implements List {

public ArrayList()

requires true;

ensures list(result ,nil);

}

Figure 1. Specifications of List, Iterator and ArrayList (Note: an-
notations are shown on a gray background. Also, for readability, we
typeset some operators differently from the implementation.)

we used a wrapper around the original core class, that catches all
checked exceptions and converts them in a non-checked exception
such as RuntimeException. The wrapper classes have the name of
the core class, extended with an underscore and they are located in
subpackages of a wrapper package. For simplicity reasons, we will
use the names of the core classes or interfaces instead of the names
of the wrapper classes in the rest of this paper. Support for checked
exceptions in VeriFast is a must if we want to handle more realistic
Java applications.

VeriFast has some support for string literals in Java. Every
string literal is considered to be of type String and at the evaluation
of a string literal, an assumption that the resulting String object is
not null, is added to the assumptions. At the moment there is no
support for specifications involving knowledge of the contents of
strings.

package wrapper.lang;

predicate family thread run pre(Class c)
(Runnable run,any info);
predicate family thread run post(Class c)
(Runnable run,any info);

interface Runnable {
void run()

requires thread run pre(this.getClass())(this, ?info);

ensures thread run post(this.getClass())(this, info);

}
predicate thread(Thread thread,Runnable run);
predicate thread started(Thread thread,Runnable run,

any info);

public class Thread {
public Thread (Runnable run)

requires true;

ensures thread(result , run);

void start()

requires thread(this, ?run)∗
thread run pre(run.getClass())(run, ?info);

ensures thread started(this, run, info);

void join()

requires thread started(this, ?run, ?info);

ensures thread run post(run.getClass())(run, info);

}

Figure 2. Specifications of Thread and Runnable (Note: the exact
semantics of the join method were slightly changed in the Thread
wrapper because of a soundness issue.)

3.1 Collections: specifications of List and Iterator
We did achieve full functional correctness of List, ArrayList and
Iterator. The most important elements are shown in Figure 1. The
inductive data type listval is used to reason about the contents
of a list. The list predicate binds a List object with its inductive
value. The iter predicate does the same for an Iterator object and
its List object, inductive value and current index. The contracts of
the methods and the constructor are pretty straightforward and they
will not be discussed in details here. We must state that the contract
of the remove method is only sound for objects of classes that do
not override the equals method of Object. For space reasons, the
fixpoint functions operating on listvals (ith, length, remove, list add
and contains) were not added to Figure 1. A minor inconvenience
is that VeriFast does not support Java generics (yet), so all elements
in the list are of type Object and casts are sometimes necessary in
the code.

3.2 Multi-threading: specifications of Thread and Runnable
We won’t give the full specifications of StringBuffer, Socket,
ServerSocket, InputStreamReader and OutputStreamWriter. In-
stead we will focus on the details of the contracts used in Thread,
Runnable and Semaphore, since these are more interesting when
considering the verification of multi-threaded Java applications
[2]. The specifications of Thread and Runnable can be found in
Figure 2.

Predicate families [5] such as thread run pre and thread run post
are a special construct in VeriFast: they represent a collection of
predicate family instances, with the same name and arguments,
who are indexed by Class objects. When a predicate family is
closed or opened, the correct instance is searched using the in-
dex argument (between the first pair of brackets). This construct
is particularly useful in cases of inheritance: the super class or in-
terface can use the predicate family in its contracts, with as index
argument the actual class of the implicit this argument. When the
overridden or implemented method of the subclass is called, the
predicate family instance with that subclass as index, will be used
in the contract of that method. Later in our chat server example
(Section 4) we will show how to use this construct when we want
to develop a class that implements Runnable. Notice the second
argument of thread run pre and thread run post,called info. This
is an inductive data type value that may contain some additional
information. It has type any, which means that info can be of any
type of inductive data type. It can be useful when the join method
is used to synchronize threads, but in this paper, this is not the case,
so at the call site it will always be unit, meaning nothing really.

The Runnable interface contains only one method: the run
method, which is called automatically when a new thread, con-
structed with that Runnable object, is started. The contract of this
method has the following effect: when called, the predicate family
instance of thread run pre with the actual class of this as index,
is consumed and the predicate family instance of thread run post
with the same index is produced. When a class wants to imple-
ment Runnable, it just has to create predicate family instances of
thread run pre and thread run post indexed with that class, and of
course implement the run method so that it is consistent with the
contract in the Runnable interface.

The Thread class contains one constructor, that takes a Runnable-
argument and produces a thread predicate on the heap when called.
This predicate is used to bind the newly constructed thread with its
runnable and it is required in order to be able to successfully call
the start method. The start method requires a thread predicate as
mentioned above and a predicate family instance of thread run pre
indexed with the actual class of the runnable of this thread, on the
heap. In turn it produces a thread started predicate on the heap,
indicating that the thread has been started. The join method takes
a thread started predicate from the heap, and replaces it with the
correct predicate family instance of thread run post, meaning that
the thread has stopped running and that the postcondition of its
runnable is now valid.

There was an soundness issue concerning the join method of
Thread. Suppose thread B creates a new thread A with Runnable
object R, starts the new thread and then B joins with A. If the
execution of the run method of R would end with an unchecked
exception before its body is fully executed, it might be that the
postcondition of this method does not hold. This would mean that
the postcondition of the join method of A would also not hold,
but the joining thread B would not be able to detect this because
the join would just succeed normally. This soundness issue is the
reason why we changed the exact semantics of the join method in
the wrapper implementation Thread : the wrapper will remember if
any exception was thrown during the execution of the run method
of the Runnable object of the Thread object and when another
thread joins with it, the join method will throw a new unchecked
exception containing the original exception as its inner exception.

3.3 Locking: specifications of Semaphore
In order to prove data-race-freedom, some form of locking can be
necessary. In VeriFast, the notion of locking is provided by the
specification of Semaphore in Figure 3. Notice that VeriFast does
not support reentrant locks (yet), so we had to choose Semaphore

package wrapper.util.concurrent;

predicate lock(Semaphore s;predicate ()inv);
predicate create lock ghost arg(predicate ()inv)

requires inv();
lemma void lock dispose(Semaphore lock);

requires lock(lock, ?a);
ensures a();

public class Semaphore {
public Semaphore (int n)

requires n = 1 ∗ create lock ghost arg(?a);

ensures lock(result , a);

void acquire()

requires [?f]lock(this, ?a);

ensures [f]lock(this, a) ∗ a();

void release()

requires [?f]lock(this, ?a) ∗ a();

ensures [f]lock(this, a);

}

Figure 3. Specifications of Semaphore (Note: the actual class is
called Semaphore because we had to use a wrapper to convert the
checked exceptions to unchecked.)

instead of something like ReentrantLock. Semaphore has one con-
structor that takes an integer as argument that must be one to
achieve a mutual exclusion lock, and produces a lock predicate to
bind the new semaphore to its lock invariant. The contract is ac-
tually also sound for multiple permits (and it should be because
Semaphore allows multiple releases), but this will only verify if
the lock invariant can occur multiple times, which is not the case
for e.g. fields, but it is the case for e.g. fractions of fields. The
semaphore owns as many copies of the lock invariant as its number
of permits. So a non-acquired lock owns the lock invariant, while
an acquired lock does not own anything. When constructing a lock,
ownership of the lock invariant is transfered to the lock. Acquiring
the lock, transfers the ownership back to the thread, while releas-
ing it does the opposite and transfers it back to the lock. This is
precisely what the contracts of the constructor and the acquire and
release methods state. If a thread wants to perform a sensitive op-
eration that has the lock invariant as part of its precondition, it first
has to acquire the lock in order to own the lock invariant so the
precondition can be fulfilled. When it no longer needs the lock in-
variant, it can transfer ownership of it back to the lock by releasing
it.

The create ghost lock arg serves to pass the lock invariant as a
ghost argument to the constructor. The square brackets before the
lock predicates in the contracts of acquire and release, indicate that
fractional permissions [1] are allowed. In VeriFast a predicate can
be split in multiple fractions that can be used in the contracts of
methods or constructors, afterwards those fractions can be joined
together again. This construct allows sharing of predicates amongst
for instance multiple threads. Applied here, this means that a thread
can still acquire/release a lock, even when the lock predicate is
shared by multiple threads, which is exactly the point of a lock.

4. Verification of the Java chat server example
We will now illustrate how to verify a multi-threaded Java applica-
tion by a simple chat server example with the following classes:

public static void main(String []args)

requires true;

ensures true;

{
Room room = new Room ();

close room ctor(room)();

close create lock ghost arg(room ctor(room));

Semaphore roomLock = new Semaphore (1);
ServerSocket serverSocket = new ServerSocket (12345);

while(true)

invariant []lock(roomLock, room ctor(room))∗
server socket(serverSocket);

{
Socket socket = serverSocket.accept();

split fraction lock(roomLock,);

Session session = new Session (room, roomLock, socket);

close thread run pre(Session.class)(session,unit);

Thread t = new Thread (session);
t.start();
}
}

Figure 4. Main method in the Program class of the Java chat server
example.

• Member: a member of a chat room, with a nickname and an
outputstream.

• Room: a chat room, with a list of members present in that room.
• Session: a chat session per member connecting through a

socket; implements Runnable.
• Program: contains main method that constructs one chat room

and a corresponding lock and one server socket and waits for-
ever for client connections on this server socket; creates a new
thread and session for each incoming client connection.

Our focus will be on Session and Program because they render
the application multi-threaded. The most important elements of
Session can be found in Figure 5, the Program class consists of
only the main method, which is given in Figure 4.

The main method simply creates a new chat room and a
semaphore to lock it, and a server socket. Then it listens for client
connections to this server socket in an endless loop, creating a new
session for every incoming connection and a new thread to run this
session. Notice that the split fraction ghost statement splits the lock
predicate in smaller parts, so the lock predicate can be shared by
multiple threads. Finally, it starts the new thread and goes back to
wait for new connections to the server socket. The loop invariant of
the loop simply states that with every execution, there is always a
certain fraction of the lock predicate preserved with each execution
and the server socket continues to exist.

Session is the class that implements the Runnable interface. As
said in Section 3.2, Session must create a predicate family instance
of thread run pre and thread run post: the first will just consist of
a session predicate, that binds the Session object with its fields, the
latter is simply true because after the run method is finished, the
session has no further use. The predicate constructor room ctor is
used to create a constructed predicate value room ctor(room) to be
used as a lock invariant for the semaphore of the chat room. The

run method is a rather long method, that does a lot of input and
output using the in- and output stream of the socket of the session.
The flow of the run method is that it first prints a welcome message
to the new client, listing the members that are already present in
the room. Next it prompts the client for its nick: if the there is
already a member with the same nickname, it refuses the nick and
sends an error message to the client and requests a different nick;
otherwise the thread continues by calling another method, called
run with nick. This method starts by adding the new member to
the room. Secondly, it broadcasts any message said by the new
member, to the other members in the chat room, until the new
member ends the session by sending an empty string. Finally the
member is removed from the room, and a goodbye message is sent
to the members that are left in the room.

The run method in Figure 5 is a simplified version of the actual
one, to illustrate how VeriFast handles the locking of the chat room.
The sensitive operation [***] will have the room predicate in its
pre- and postcondition. In order to satisfy these conditions, the
lock of the room must first be acquired, since that will transfer
ownership of the lock invariant to this thread. Afterwards, when
the predicate is no longer required, the lock can be released and
ownership of the invariant will be transfered back to the lock, so
other threads can try to claim ownership of the lock invariant.
Actually the lock does not really have to be released; not releasing
it will just keep the lock locked longer than necessary, but it won’t
introduce any data races, so it is still valid.

5. Conclusion
The Java chat server example shows that VeriFast can be used
to verify multi-threaded Java software, but there are still some
problems or inconveniences. We will give a short overview of some
possibilities for future work:

• In order to deal with more realistic Java applications, VeriFast
needs to be able to handle checked exceptions, try/catch state-
ments and throws lists. This might increase the annotation over-
head, since one might have to specify the behavior separately
for each kind of exception.

• Now there is only support for a list of Object elements, and thus
casts are needed if we want to use for instance a list of Member
elements. Adding support for Java generics would be extremely
useful for this case.

• Only a small subset of core classes and interfaces and their
methods are supported in VeriFast. Expanding this subset will
probably happen example driven.

• There are some assume statements in the code of the chat server
example. They are needed because the solver sometimes can’t
prove certain statements. For instance, in the run with nick
method of Session, an assume statement is needed to assure
the prover that the new member is still in the list of members
in the chat room, after having added him and having sent some
messages. The reasons why these statements are needed, are too
complex to explain here; but the goal of course is to eliminate
the need for any assume statements.

References
[1] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and

Matthew Parkinson. Permission accounting in separation logic.
In Proc. POPL, 2005.

[2] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky,
and Mooly Sagiv. Local reasoning for storable locks and
threads. In APLAS, 2007.

predicate ctor room ctor(Room room)()
requires room(room);

predicate session(Session session)
requires session.room7→?room∗
session.room lock 7→?roomLock∗
session.socket 7→?socket∗
socket(socket, ?reader, ?writer)∗
[?f]lock(roomLock, room ctor(room))∗
reader(reader) ∗ writer(writer);

predicate family instance thread run pre
(Session.class)(Session session,any info)
requires session(session);

predicate family instance thread run post
(Session.class)(Session session,any info)
requires true;

public class Session implements Runnable{
Room room;
Semaphore room lock;
Socket socket;
public void run()

requires thread run pre(Session.class)(this, ?info);

ensures thread run post(Session.class)(this, info);

{
open thread run pre(Session.class)(this, info);

open session(this);

. . .
roomLock.acquire();

open room ctor(room)();

open room(room);

[∗ ∗ ∗]
close room(room);

close room ctor(room)();

roomLock.release();
. . .

close thread run post(Session.class)(this, info);

}
. . .

}

Figure 5. Some predicate elements and the run method of the
Session class. [***] indicates a sensitive operation that accesses the
chat room.

[3] Bart Jacobs and Frank Piessens. The VeriFast program verifier.
Technical Report CW-520, Department of Computer Science,
Katholieke Universiteit Leuven, Belgium, August 2008.

[4] Bart Jacobs, Frank Piessens, Cedric Cuypers, Lieven
Desmet, and Jan Smans. VeriFast. Website, 2008.
http://www.cs.kuleuven.be/~bartj/verifast/.

[5] Matthew Parkinson and Gavin Bierman. Separation logic and
abstraction. In Proc. POPL, 2005.

[6] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer,
Doug Lea, and David Holmes. Java Concurrency in Practice.
Addison-Wesley Professional, 2005. ISBN 0321349601.

